Connectivity properties of the adjacency graph of SLE_{κ} bubbles for $\kappa \in (4,8)$

Random Conformal Geometry and Related Fields, KIAS, Seoul

Joshua Pfeffer Joint work with Ewain Gwynne

MIT

June 20, 2018

- Introduction
- 2 Review of LQG
- Proof of our main result
 - Defining an (L, R)-Markovian path to infinity
 - Reducing to a single bubble
 - Estimate for a single bubble
- 4 Converse and Open Problems

Introduction

Consider a chordal SLE_κ curve η from 0 to ∞ in $\mathbb H$ for $\kappa \in (4,8)$. A *bubble* of η is a connected component of $\mathbb H \setminus \eta$.

Introduction

Today's talk is about the following question, originally posed by Duplantier, Miller and Sheffield (2014):

Question

Is the adjacency graph of bubbles connected? I.e., is there a finite path in the adjacency graph between any pair of bubbles?

The analogous question for Brownian motion is a well-known open problem.

Introduction

Is the adjacency graph of bubbles even connected for any κ ? The answer is not obvious.

- The set of points on the curve which do not lie on the boundary of any bubble has full Hausdorff dimension.
- There could exist pairs of macroscopic bubbles separated by an infinite "cloud" of small bubbles.

Figure: An SLE_6 in a square domain. Simulation by Jason Miller.

Main Result

Theorem (Gwynne, P. (2018))

For each fixed $\kappa \in (4, \kappa_0]$, the adjacency graph of bubbles of a chordal SLE_{κ} curve is almost surely connected, where $\kappa_0 \approx 5.6158$ is the unique solution of the equation $\pi \cot(\pi \kappa/4) + \psi(2 - \kappa/4) - \psi(1) = 0$ on the interval (4,8).

Here, $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ denotes the digamma function.

Corollary (Gwynne, P. (2018))

For $\kappa \in (4, \kappa_0]$, the set of points on a chordal SLE_{κ} curve which do not lie on the boundary of any bubble is almost surely totally disconnected.

Our Approach

• By theory of LQG, the left and right boundaries of an SLE_{κ} curve (with a particular parametrization) are a pair (L,R) of independent $\kappa/4$ -stable Levy processes.

Our Approach

- We use (L, R) to define a stronger "Markovian" connectivity condition for the graph of bubbles.
- We will show that this condition holds for $\kappa \in (4, \kappa_0]$ and fails for κ sufficiently close to 8. (Reminder: $\kappa_0 \approx 5.6158$ is the unique solution of the equation $\pi \cot(\pi \kappa/4) + \psi(2 \kappa/4) \psi(1) = 0$ on the interval (4,8).)

- Introduction
- 2 Review of LQG
- Proof of our main result
 - Defining an (L, R)-Markovian path to infinity
 - Reducing to a single bubble
 - Estimate for a single bubble
- 4 Converse and Open Problems

To define (L, R) precisely, we need some definitions from LQG.

- $D \subset \mathbb{C}$ open
- h a GFF-type distribution on D

"Definition"

The γ -LQG surface associated with h is the random Riemannian surface with Riemann metric tensor $e^{\gamma h(z)} (dx^2 + dy^2)$, where $dx^2 + dy^2$ is the Euclidean metric tensor.

• This definition does not make literal sense since *h* is a distribution, not a pointwise-defined function.

- However, certain objects associated with γ -LQG surfaces can be defined rigorously using regularization procedures:
 - ▶ a γ -LQG area measure on D (defined as limit of regularized versions of $e^{\gamma h(z)} dz$)
 - ▶ a γ -LQG length measure on certain curves in \overline{D} , such as ∂D and ${\sf SLE}_{\kappa}$ -type curves for $\kappa = \gamma^2$ (or, equivalently, the outer boundaries of ${\sf SLE}_{16/\kappa}$ curves by SLE duality)

- We parametrize our SLE_{κ} curve by quantum natural time.
- Roughly speaking, this is the same as parametrizing by "quantum Minkowski content"
- It is the quantum analogue of the so-called natural parametrization of SLE.

Definition of (L, R)

Sample an ${\rm SLE}_\kappa$ curve independently on a $\frac{4}{\gamma}-\frac{\gamma}{2}$ - quantum wedge with $\gamma=4/\sqrt{\kappa}.$

To construct the $\frac{4}{\gamma}-\frac{\gamma}{2}$ - quantum wedge:

- Take the distribution $\tilde{h}-\left(\frac{4}{\gamma}-\frac{\gamma}{2}\right)\log|\cdot|$ on \mathbb{H} , where \tilde{h} a free boundary GFF on \mathbb{H} .
- "Zoom in near the origin"
- Rescale so the γ -LQG mass of $\mathbb{D} \cap \mathbb{H}$ remains of constant order.

Definition of (L, R)

Sample an SLE $_{\kappa}$ curve independently on a $\frac{4}{\gamma}-\frac{\gamma}{2}$ - quantum wedge with $\gamma=4/\sqrt{\kappa}$.

Theorem (Duplantier, Miller and Sheffield (2014))

The processes L_t and R_t are i.i.d. totally asymmetric $\frac{\kappa}{4}$ -stable Levy processes with only negative jumps.

SLE-Levy process dictionary

We can use (L, R) to describe some geometric features of an SLE_{κ} curve.

- Points on boundary of bubble
- Points of the boundary of two different bubbles
 ⇔ (local) cut points ⇔ edges of adjacency graph of bubbles

- Introduction
- 2 Review of LQG
- Proof of our main result
 - Defining an (L, R)-Markovian path to infinity
 - Reducing to a single bubble
 - Estimate for a single bubble
- 4 Converse and Open Problems

Proof of our main result

- We define an "(L, R)-Markovian path to infinity"
 - ▶ If it exists, the graph must be connected.
- We reduce the task of proving existence of this path to an estimate for a single bubble.
- 3 We outline the proof of the estimate for a single bubble.

After the proof, we will remark on our converse result for large κ and discuss open problems.

Table of Contents

- Introduction
- Review of LQG
- Proof of our main result
 - Defining an (L, R)-Markovian path to infinity
 - Reducing to a single bubble
 - Estimate for a single bubble
- 4 Converse and Open Problems

Step 1: (L, R)-Markovian path to infinity

Definition

For $\kappa \in (4,8)$, an (L,R)-Markovian path to infinity in the adjacency graph of bubbles of η is an infinite increasing sequence of stopping times $\tau_1 < \tau_2 < \tau_3 < \cdots$ for (L,R) such that almost surely

- $\tau_k \to \infty$,
- η forms a bubble b_k at each time τ_k (equivalently, either L or R has a downward jump at time τ_k), and
- b_k and b_{k+1} are connected in the adjacency graph (i.e., $\partial b_k \cap \partial b_{k+1} \neq \emptyset$) for each k.

Note: this is a *random* path defined for almost every realization of the SLE_{κ} curve.

Step 1: (L, R)-Markovian path to infinity

There is an (L,R)-Markovian path to infinity started at every stopping time at which η forms a bubble almost surely.

Adjacency graph of bubbles is connected almost surely.

Table of Contents

- Introduction
- 2 Review of LQG
- Proof of our main result
 - Defining an (L, R)-Markovian path to infinity
 - Reducing to a single bubble
 - Estimate for a single bubble
- 4 Converse and Open Problems

Step 2: Reducing to a single bubble

There is an (L,R)-Markovian path to infinity started at every stopping time at which η forms a bubble almost surely.

Adjacency graph of bubbles is connected almost surely.

Step 2: Reducing to a single bubble

Using $\mathbb{E} \log(L_{\tau} - L_{\sigma}) \geq 0$ to construct (L, R) Markovian path to infinity:

$$\begin{array}{l} X_1 = L_{\tau_1} - L_{\sigma_1} \\ X_2 = R_{\tau_2} - R_{\sigma_2} \\ \text{etc.} \end{array}$$

Step 2: Reducing to a single bubble

There is an (L,R)-Markovian path to infinity started at every stopping time at which η forms a bubble almost surely.

Adjacency graph of bubbles is connected almost surely.

Table of Contents

- Introduction
- 2 Review of LQG
- 3 Proof of our main result
 - Defining an (L, R)-Markovian path to infinity
 - Reducing to a single bubble
 - Estimate for a single bubble
- 4 Converse and Open Problems

We have reduced the theorem to proving $\mathbb{E} \log(L_{\tau} - L_{\sigma}) \geq 0$.

Why is this estimate tricky? The laws of τ and σ are not known explicitly!

 $L_{\tau}-L_{\sigma}$ stochastically dominates $R_{\tau^-}-R_{\sigma}$.

$$(L,R)$$
 run backwards from τ to ξ conditional on $\{R_{\tau^-} - R_{\xi} = r\}$ $\stackrel{\mathcal{L}}{=}$ (L,R) run backward until R hits $-r$

- For fixed r, we know the law of the last simultaneous running infimum of (L, R) run backward until R hits -r.
 - ► The set of simultaneous running infima is a subordinator with known index (by result of Brownian motions), so can use arcsine law for subordinators.
- Now the only thing we need to know is the law of $R_{ au^-}-R_{\xi}.$
- Fortunately, this is known!

Theorem (Doney and Kyprianou (2006))

$$\mathbb{P}(-1 - R_{\tau} \in du, R_{\tau^{-}} + 1 \in dv, R_{\xi} + 1 \in dy) \\
= \frac{\kappa}{4} \left(1 - \frac{\kappa}{4}\right) \frac{\sin(\pi \kappa/4)}{\pi} \frac{(1 - y)^{\kappa/4 - 2}}{(v + u)^{\kappa/4 + 1}} du dv dy$$

for u > 0, $y \in [0, 1]$, and $v \ge y$.

- Introduction
- 2 Review of LQG
- Proof of our main result
 - Defining an (L, R)-Markovian path to infinity
 - Reducing to a single bubble
 - Estimate for a single bubble
- 4 Converse and Open Problems

Converse for large κ

- We can prove that, for large κ , there does not exist an (L,R)-Markovian path to infinity.
- The proof is similar to the small κ case; this time we wish to show the expected log of some random variable is negative.
- Our proof is based on the fact that a $\kappa/4$ -stable process converges in law to Brownian motion as κ increases to 8.
 - We do not get an explicit range of large κ for which there is no (L, R)-Markovian path to infinity.
- Our result does *not* imply that the graph of bubbles of ${\sf SLE}_{\kappa}$ is not connected a.s. for large κ .

Open Problems

- Three versions of connectivity for the graph of bubbles:
 - 1 The graph is a.s. connected
 - 2 There a.s. exists a path to infinity from any fixed bubble.
 - **3** There exists an (L, R)-Markovian path started at any stopping time ζ when bubble is formed a.s.
- We have $3 \Rightarrow 2 \Rightarrow 1$.
- We show 3 holds for explicit small range of κ , and 3 fails for κ sufficiently large.
- There should be a phase transition for each of these properties. Do these phase transitions coincide?

Thank you for your attention!