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Introduction

Consider a chordal SLEκ curve η from 0 to ∞ in H for κ ∈ (4, 8).
A bubble of η is a connected component of H\η.
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Introduction

Today’s talk is about the following question, originally posed by
Duplantier, Miller and Sheffield (2014):

Question

Is the adjacency graph of bubbles connected? I.e., is there a finite path in
the adjacency graph between any pair of bubbles?

The analogous question for Brownian motion is a well-known open
problem.
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Introduction

Is the adjacency graph of bubbles
even connected for any κ? The
answer is not obvious.

The set of points on the curve
which do not lie on the
boundary of any bubble has full
Hausdorff dimension.

There could exist pairs of
macroscopic bubbles separated
by an infinite “cloud” of small
bubbles.

Figure: An SLE6 in a square domain.
Simulation by Jason Miller.
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Main Result

Theorem (Gwynne, P. (2018))

For each fixed κ ∈ (4, κ0], the adjacency graph of bubbles of a chordal
SLEκ curve is almost surely connected, where κ0 ≈ 5.6158 is the unique
solution of the equation π cot(πκ/4) + ψ(2− κ/4)− ψ(1) = 0 on the
interval (4, 8).

Here, ψ(x) = Γ′(x)
Γ(x) denotes the digamma function.

Corollary (Gwynne, P. (2018))

For κ ∈ (4, κ0], the set of points on a chordal SLEκ curve which do not lie
on the boundary of any bubble is almost surely totally disconnected.
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Our Approach

By theory of LQG, the left and right boundaries of an SLEκ curve
(with a particular parametrization) are a pair (L,R) of independent
κ/4-stable Levy processes.

Lt =νh(green)
−νh(orange)

Rt = νh(blue)
−νh(purple)

η(t)

0

8 / 36



Our Approach

Lt =νh(green)
−νh(orange)

Rt = νh(blue)
−νh(purple)

η(t)

0

We use (L,R) to define a stronger “Markovian” connectivity
condition for the graph of bubbles.

We will show that this condition holds for κ ∈ (4, κ0] and fails for κ
sufficiently close to 8. (Reminder: κ0 ≈ 5.6158 is the unique solution of

the equation π cot(πκ/4) + ψ(2− κ/4)− ψ(1) = 0 on the interval (4, 8).)
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Review of LQG

To define (L,R) precisely, we need some definitions from LQG.
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Review of LQG

D ⊂ C open

h a GFF-type distribution on D

“Definition”

The γ-LQG surface associated with h is the random Riemannian surface
with Riemann metric tensor eγh(z) (dx2 + dy2), where dx2 + dy2 is the
Euclidean metric tensor.

This definition does not make literal sense since h is a distribution,
not a pointwise-defined function.
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Review of LQG

However, certain objects associated with γ-LQG surfaces can be
defined rigorously using regularization procedures:

I a γ-LQG area measure on D (defined as limit of regularized versions of
eγh(z) dz)

I a γ-LQG length measure on certain curves in D, such as ∂D and
SLEκ-type curves for κ = γ2 (or, equivalently, the outer boundaries of
SLE16/κ curves by SLE duality)
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Review of LQG

We parametrize our SLEκ curve by quantum natural time.

Roughly speaking, this is the same as parametrizing by “quantum
Minkowski content”

It is the quantum analogue of the so-called natural parametrization of
SLE.
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Definition of (L,R)

Sample an SLEκ curve independently on a 4
γ −

γ
2 - quantum wedge with

γ = 4/
√
κ.

To construct the 4
γ −

γ
2 - quantum wedge:

Take the distribution h̃ −
(

4
γ −

γ
2

)
log | · | on H, where h̃ a free boundary

GFF on H.

“Zoom in near the origin”

Rescale so the γ-LQG mass of D ∩H remains of constant order.
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Definition of (L,R)

Sample an SLEκ curve independently on a 4
γ −

γ
2 - quantum wedge with

γ = 4/
√
κ.

Lt =νh(green)
−νh(orange)

Rt = νh(blue)
−νh(purple)

η(t)

0

Theorem (Duplantier, Miller and Sheffield (2014))

The processes Lt and Rt are i.i.d. totally asymmetric κ
4 -stable Levy

processes with only negative jumps.
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SLE-Levy process dictionary

We can use (L,R) to describe some geometric features of an SLEκ curve.

Points on boundary of bubble

Points of the boundary of two different bubbles
⇔ (local) cut points ⇔ edges of adjacency graph of bubbles

0 ρx
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Proof of our main result

1 We define an “(L,R)-Markovian path to infinity”
I If it exists, the graph must be connected.

2 We reduce the task of proving existence of this path to an estimate
for a single bubble.

3 We outline the proof of the estimate for a single bubble.

After the proof, we will remark on our converse result for large κ and
discuss open problems.
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Step 1: (L,R)-Markovian path to infinity

Definition

For κ ∈ (4, 8), an (L,R)-Markovian path to infinity in the adjacency graph
of bubbles of η is an infinite increasing sequence of stopping times
τ1 < τ2 < τ3 < · · · for (L,R) such that almost surely

τk →∞,

η forms a bubble bk at each time τk (equivalently, either L or R has a
downward jump at time τk), and

bk and bk+1 are connected in the adjacency graph (i.e.,
∂bk ∩ ∂bk+1 6= ∅) for each k .

Note: this is a random path defined for almost every realization of the
SLEκ curve.
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Step 1: (L,R)-Markovian path to infinity

0

η(τ2)

η(τ1)

b1

b2

0

There is an (L,R)-Markovian
path to infinity started at
every stopping time at which
η forms a bubble almost
surely.

⇓
Adjacency graph of bubbles is
connected almost surely.

22 / 36



Table of Contents

1 Introduction

2 Review of LQG

3 Proof of our main result
Defining an (L,R)-Markovian path to infinity
Reducing to a single bubble
Estimate for a single bubble

4 Converse and Open Problems

23 / 36



Step 2: Reducing to a single bubble

E log(Lτ − Lσ) ≥ 0

0

η(σ)

η(τ)ρ1

⇒
There is an (L,R)-Markovian
path to infinity started at
every stopping time at which
η forms a bubble almost
surely.

⇓
Adjacency graph of bubbles is
connected almost surely.
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Step 2: Reducing to a single bubble

Using E log(Lτ − Lσ) ≥ 0 to construct (L,R) Markovian path to infinity:

0

η(σ1)

η(τ1)

η(σ2)

η(τ2) b1

b2

X1 = Lτ1 − Lσ1

X2 = Rτ2 − Rσ2

etc.
Xk+1/Xk

i .i .d .≡ Lτ − Lσ

25 / 36



Step 2: Reducing to a single bubble

E log(Lτ − Lσ) ≥ 0

0

η(σ)

η(τ)ρ1

⇒
There is an (L,R)-Markovian
path to infinity started at
every stopping time at which
η forms a bubble almost
surely.

⇓
Adjacency graph of bubbles is
connected almost surely.

26 / 36



Table of Contents

1 Introduction

2 Review of LQG

3 Proof of our main result
Defining an (L,R)-Markovian path to infinity
Reducing to a single bubble
Estimate for a single bubble

4 Converse and Open Problems

27 / 36



Step 3: Estimate for a single bubble

We have reduced the theorem to proving E log(Lτ − Lσ) ≥ 0.

0

η(σ)

η(τ)ρ1

Lτ − Lσ stochastically dominates
Rτ− − Rσ.

t

Lt

(σ, Lσ)

(τ, Lτ )

Why is this estimate tricky?
The laws of τ and σ are not known explicitly!
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Step 3: Estimate for a single bubble

η(ξ)0

η(σ)

η(τ)ρ1

Lτ − Lσ stochastically dominates
Rτ− − Rσ.

(ξ,Rξ)

t

Lt

(σ, Lσ)

(τ, Lτ )

t

Rt

(τ, Rτ )

(σ,Rσ)

(τ, Rτ−)

−1
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Step 3: Estimate for a single bubble

(L,R) run backwards from τ to ξ
conditional on {Rτ− − Rξ = r}

L
=

(L,R) run backward
until R hits −r

For fixed r , we know the law of the last simultaneous running
infimum of (L,R) run backward until R hits −r .

I The set of simultaneous running infima is a subordinator with known
index (by result of Brownian motions), so can use arcsine law for
subordinators.

Now the only thing we need to know is the law of Rτ− − Rξ.

Fortunately, this is known!
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Step 3: Estimate for a single bubble

Theorem (Doney and Kyprianou (2006))

P(−1− Rτ ∈ du,Rτ− + 1 ∈ dv ,Rξ + 1 ∈ dy)

=
κ

4

(
1− κ

4

)sin (πκ/4)

π

(1− y)κ/4−2

(v + u)κ/4+1
du dv dy

for u > 0, y ∈ [0, 1], and v ≥ y.

t

Rt

(τ, Rτ )

(ξ,Rξ)

(τ, Rτ−)

−1
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Converse for large κ

We can prove that, for large κ, there does not exist an
(L,R)-Markovian path to infinity.

The proof is similar to the small κ case; this time we wish to show
the expected log of some random variable is negative.

Our proof is based on the fact that a κ/4-stable process converges in
law to Brownian motion as κ increases to 8.

I We do not get an explicit range of large κ for which there is no
(L,R)-Markovian path to infinity.

Our result does not imply that the graph of bubbles of SLEκ is not
connected a.s. for large κ.
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Open Problems

Three versions of connectivity for the graph of bubbles:
1 The graph is a.s. connected
2 There a.s. exists a path to infinity from any fixed bubble.
3 There exists an (L,R)-Markovian path started at any stopping time ζ

when bubble is formed a.s.

We have 3⇒ 2⇒ 1.

We show 3 holds for explicit small range of κ, and 3 fails for κ
sufficiently large.

There should be a phase transition for each of these properties. Do
these phase transitions coincide?
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Thank you for your attention!
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