Multiple SLEs, pure partition functions, and connection probabilities

Eveliina Peltola

Université de Genève; Section de Mathématiques < eveliina.peltola@unige.ch>

June 21st 2018

Based on joint works with

Vincent Beffara, Alex Karrila, Kalle Kytölä, and Hao Wu

Random Conformal Geometry and Related Fields, KIAS

Plan

- Motivation
 - critical models in statistical physics, scaling limits
 - conformal invariance of interfaces & correlations
- Multiple SLEs: classification
 - global multiple SLEs
 - local multiple SLEs (i.e., commuting SLEs)
 - partition functions of multiple SLEs
 - local \Leftrightarrow global ???
- 8 Relation to connection probabilities
 - multichordal loop-erased random walks
 - level lines of the Gaussian free field
 - double-dimer pairings
 - Ising model crossing probabilities
- More on partition functions?

MOTIVATION

1

Conformal invariance of an Ising interface

© Antti Kemppainen

interface of Ising model $\xrightarrow{\delta \to 0}$ Schramm-Loewner evolution, SLE₃

[Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov (2014)]

CONFORMAL INVARIANCE OF MULTIPLE ISING INTERFACES

... then we have:

Theorem

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider the critical Ising model in Ω^δ ⊂ δZ² with alternating b.c.
- Izyurov (2015):

interfaces $\stackrel{\delta \to 0}{\longrightarrow}$ (local) multiple SLE₃

Proof: multi-point holomorphic observable

• If we condition on the event that the interfaces connect the boundary points according to a given connectivity ...

The law of the *N* macroscopic interfaces of the critical Ising model **converges in the scaling limit** $\delta \rightarrow 0$ **to the** *N*-SLE_{κ} **with** $\kappa = 3$.

Wu [arXiv:1703.02022] Beffara, P. & Wu [arXiv:1801.07699] Proof: convergence for N = 1 and classification of global multiple SLE_{κ}

CONFORMAL INVARIANCE OF MULTIPLE FK-ISING INTERFACES

... then we have:

Theorem

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider the critical FK-Ising model in Ω^δ ⊂ δZ² with alternating b.c.
- Kemppainen & Smirnov (2018): 2 interfaces $\xrightarrow{\delta \to 0} hSLE_{16/3}$

Proof: holomorphic observable

• If we condition on the event that the interfaces connect the boundary points according to a given connectivity ...

The law of the *N* macroscopic interfaces of the critical FK-Ising model **converges in the scaling limit** $\delta \rightarrow 0$ **to the** *N*-SLE_{κ} **with** $\kappa = 16/3$.

Beffara, P. & Wu [arXiv:1801.07699]

Proof: convergence for N = 1 and classification of global multiple SLE_{κ}

Plan

- Motivation
 - critical models in statistical physics, scaling limits
 - conformal invariance of interfaces & correlations
 - Multiple SLEs: classification
 - global multiple SLEs
 - local multiple SLEs (i.e., commuting SLEs)
 - partition functions of multiple SLEs
 - local \Leftrightarrow global ???
 - 8 Relation to connection probabilities
 - multichordal loop-erased random walks
 - level lines of the Gaussian free field
 - double-dimer pairings
 - Ising model crossing probabilities
 - More on partition functions?

Schramm-Loewner

EVOLUTIONS

SLE_K

Schramm's classification of chordal SLE_{κ}

Theorem [Schramm ~2000]

 \exists ! one-parameter family $(SLE_{\kappa})_{\kappa\geq 0}$ of probability measures on chordal curves with **conformal invariance** and **domain Markov property**

- encode SLE_κ random curves in random conformal maps (g_t)_{t≥0}
- driving process = image of the tip:

 $X_t := \lim_{z \to \gamma(t)} g_t(z) = \sqrt{\kappa} B_t$

g_t: ℍ \ γ[0, t] → ℍ solutions to
 Loewner equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}g_t(z) = \frac{2}{g_t(z) - X_t}, \qquad g_0(z) = z$$

IHI

g

CLASSIFICATION OF GLOBAL MULTIPLE SLE_{κ}

- family of random curves in $(\Omega; x_1, \ldots, x_{2N})$
- various connectivities encoded in planar pair partitions $\alpha \in LP_N$

Theorem

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is

the chordal SLE_{κ} in the random domain where it can live.

Kozdron & Lawler (2007); Lawler (2009); Miller & Sheffield (2016); P. & Wu [arXiv:1703.00898] and Beffara, P. & Wu [arXiv:1801.07699]

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists at most one probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is

the chordal SLE_{κ} in the random domain where it can live.

Idea of proof:

- sample curves according to conditional law
 - \Rightarrow Markov chain on space of curves
- prove that there is a coupling of two such Markov chains, started from *any* two initial configurations, such that they have a *uniformly positive chance to agree after a few steps* ⇒ there is *at most one* stationary measure

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists at most one probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

Remarks:

- the case of N = 2 was proved in Miller & Sheffield's Imaginary geometry II using the coupling of SLE with the Gaussian free field (GFF)
- BUT that proof does not generalize to *N* ≥ 3 curves since those *cannot* be coupled with the GFF
- our proof does not use the GFF in any way

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

How to find them?

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves such that conditionally on N-1 of the curves, the remaining one is the chordal SLE_k in the random domain where it can live.

1. From scaling limits of **multiple interfaces** in critical models: use convergence of one curve & RSW (works for $\kappa \in \{2, 3, 4, 16/3, 6\}$)

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

- 2. Global construction by Brownian loop measure (works for $\kappa \in (0, 4]$) [Kozdron & Lawler (2007–2009); P. & Wu (2017)]
- density w.r.t product measure of independent SLEs:

$$\frac{\mathrm{d}(N\mathrm{-}\mathrm{SLE}_{\kappa})}{\mathrm{d}(\otimes_{j=1}^{N}\mathrm{SLE}_{\kappa})} := \mathbf{1}_{\{\gamma_{j}\cap\gamma_{k}=\emptyset \ \forall \ j\neq k\}} \exp\left(\frac{(3\kappa-8)(6-\kappa)}{2\kappa} \ m_{\alpha}(\Omega;\gamma_{1},\ldots,\gamma_{N})\right)$$

*m*_α = combinatorial expression of Brownian loop measures
normalize to get a probability measure

Example

Density w.r.t product measure of independent SLEs:

$$\frac{\mathrm{d}(N\text{-}\mathrm{SLE}_{\kappa})}{\mathrm{d}(\otimes_{j=1}^{N}\mathrm{SLE}_{\kappa})} := \mathbf{1}_{\{\gamma_{j}\cap\gamma_{k}=\emptyset \ \forall \ j\neq k\}} \exp\left(\frac{(3\kappa-8)(6-\kappa)}{2\kappa} \ m_{\alpha}(\Omega;\gamma_{1},\ldots,\gamma_{N})\right)$$

• for
$$\alpha = \{\{1, 6\}, \{2, 5\}, \{3, 4\}\}$$
 we have:

 $m_{\alpha}(\Omega;\gamma_1,\gamma_2,\gamma_3) = \mu(\Omega;\gamma_1,\gamma_2) + \mu(\Omega;\gamma_2,\gamma_3)$

• for
$$\alpha = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}$$
 we have:

 $m_{\alpha}(\Omega;\gamma_{1},\gamma_{2},\gamma_{3}) = \mu(\Omega;\gamma_{1},\gamma_{2}) + \mu(\Omega;\gamma_{1},\gamma_{3})$ $+ \mu(\Omega;\gamma_{2},\gamma_{3}) - \mu(\Omega;\gamma_{1},\gamma_{2},\gamma_{3})$

where $\mu(\Omega; \gamma_1, \gamma_2, ...)$ is the measure of Brownian loops in Ω that intersect all curves $\gamma_1, \gamma_2, ...$

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is

the chordal SLE_{κ} in the random domain where it can live.

3?. Local construction by Loewner evolutions (should work $\forall \kappa \in (0, 8)$) [Dubédat (2006)]

 $dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z} \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N} \right) dt$ $dV_t^i = \frac{2dt}{V_t^i - W_t}, \quad W_0 = x_1; \quad V_0^i = x_i \text{ for } i \neq 1.$

- Problems:
 - How to find correct partition function \mathcal{Z} ?
 - Makes sense *locally*, but if curves touch...?

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves s.t. conditionally on N - 1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

Proposition

Let $\kappa \in (0, 4]$. The marginal law of the curve starting from x_1 is given by the Loewner chain with driving process

$$dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z}_\alpha \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N} \right) dt, \qquad W_0 = x_1$$
$$dV_t^i = \frac{2dt}{V_t^i - W_t}, \qquad V_0^i = x_i, \quad \text{for } i \neq 1$$

Therefore, **local** *N*-SLE_{κ} with partition function \mathcal{Z}_{α}

= global N-SLE_{κ} associated to connectivity α

What is \mathcal{Z}_{α} ? Recall global construction...

Global construction of multiple SLE by Brownian loop measure (works for $\kappa \in (0, 4]$) [Kozdron & Lawler (2007–2009); P. & Wu (2017)]

- fix connectivity pattern $\alpha \in LP_N$
- density w.r.t product measure of independent SLEs:

$$\frac{\mathrm{d}(N-\mathrm{SLE}_{\kappa})}{\mathrm{d}(\otimes_{j=1}^{N}\mathrm{SLE}_{\kappa})} := \mathbf{1}_{\{\gamma_{j}\cap\gamma_{k}=\emptyset \lor j\neq k\}} \exp\left(\frac{(3\kappa-8)(6-\kappa)}{2\kappa} m_{\alpha}(\Omega;\gamma_{1},\ldots,\gamma_{N})\right) =: R_{\alpha}(\Omega)$$

 m_{α} = combinatorial expression of Brownian loop measures

- normalize to get a probability measure
- total mass defines (pure) partition function

$$\mathcal{Z}_{\alpha}(x_1,\ldots,x_{2N}) := \mathbb{E}\left[\mathbf{R}_{\alpha}(\mathbb{H})(x_1,\ldots,x_{2N})\right] \times \prod_{(a,b)\in\alpha} \left((x_b - x_a)^{-2}\right)^{\frac{b-\kappa}{2\kappa}}$$

Remark: smoothness of Z_α problematic
 [Dubédat (2013); Lawler & Jahangoshahi (2017)]

Dubédat's commuting SLEs and

PURE PARTITION FUNCTIONS

DUBÉDAT'S COMMUTING SLES

A multiple SLE_{κ} partition function is a smooth positive function $\mathcal{Z}(x_1, \ldots, x_{2N})$ of 2N real variables $x_1 < \cdots < x_{2N}$ that satisfies

(PDE): system of 2N partial differential equations

$$\left\{\frac{\kappa}{2}\frac{\partial^2}{\partial x_j^2} + \sum_{i\neq j} \left(\frac{2}{x_i - x_j}\frac{\partial}{\partial x_i} - \frac{6/\kappa - 1}{(x_i - x_j)^2}\right)\right\} \mathcal{Z}(x_1, \dots, x_{2N}) = 0 \qquad \forall \ 1 \le j \le 2N$$

(COV): conformal covariance

$$\mathcal{Z}(f(x_1),\ldots,f(x_{2N})) = \prod_{j=1}^{2N} \left| f'(x_j) \right|^{\frac{\kappa-6}{2\kappa}} \times \mathcal{Z}(x_1,\ldots,x_{2N})$$

Theorem [Dubédat (2006)]

- Any partition function generates a **local** *N*-SLE_{κ} via "multiple Loewner evolution" $dW_t^{(j)} = \sqrt{\kappa} dB_t + \kappa \partial_j \log \mathcal{Z} dt$
- Conversely, any local N-SLE_{κ} has a partition function.

local N-SLE _K processes	⇔	partition functions
in $(\mathbb{H}; x_1,, x_{2N})$		$\mathcal{Z}(x_1,\ldots,x_{2N})$

PURE PARTITION FUNCTIONS

(PDE):	system of 2N PDEs
(COV):	conformal covariance
(POS):	positivity $\mathcal{Z}(x_1, \ldots, x_{2N}) >$
(C^{∞}) :	smoothness

Theorem [Dubédat (2006)]

Any partition function \mathcal{Z} generates a **local** *N*-SLE_{κ} (with dW^(j)_t = $\sqrt{\kappa} dB_t + \kappa \partial_j \log \mathcal{Z} dt$)

Pure partition functions are certain basis $\{\mathcal{Z}_{\alpha}\}_{\alpha \in LP_N}$.

Proposition

- P. & Wu [arXiv:1703.00898] Let $\kappa \in (0, 4]$.
 - The local *N*-SLE_{κ}'s with partition functions $\{Z_{\alpha}\}_{\alpha \in LP_N}$ are the **extremal measures** in a convex set of local *N*-SLE_{κ}'s.
 - These extremal measures are
 "localizations of" global N-SLE_κ's with connectivities α ∈ LP_N.

Plan

- Motivation
 - critical models in statistical physics, scaling limits
 - conformal invariance of interfaces & correlations
- / 🛛 🖉 Multiple SLEs: classification
 - global multiple SLEs
 - local multiple SLEs (i.e., commuting SLEs)
 - partition functions of multiple SLEs
 - local \Leftrightarrow global ???
 - 8 Relation to connection probabilities
 - multichordal loop-erased random walks
 - level lines of the Gaussian free field
 - double-dimer pairings
 - Ising model crossing probabilities
 - More on partition functions?

CONNECTION PROBABILITIES

Application: Connection probabilities

Idea: discrete connection probabilities $\stackrel{\delta \to 0}{\longrightarrow}$ partition functions: $\lim_{\delta \to 0} \mathbb{P}[\text{interfaces form connectivity } \alpha] = \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{\sum_{\beta} \mathcal{Z}_{\beta}(x_1, \dots, x_{2N})}$

- Gaussian free field ($\kappa = 4$) with alternating boundary data $+\lambda, -\lambda, +\lambda, -\lambda, \dots$ P. & Wu [arXiv:1703.00898]
- boundary touching branches in the **uniform spanning tree** $(\kappa = 2)$ with wired boundary Karrila, Kytölä, P. [arXiv:1702.03261]

Todo: critical Ising model with alternating boundary conditions

Multiple level lines of GFF: multiple SLE_4

 $-\lambda \xrightarrow{x_1} + \lambda \xrightarrow{x_2} - \lambda \xrightarrow{x_3} + \lambda \xrightarrow{x_4} - \lambda \xrightarrow{x_5} + \lambda \xrightarrow{x_6} - \lambda$

- level lines form some connectivity $\vartheta = \vartheta^{\text{GFF}} \in \text{LP}_N$
- exact solvability of $\mathcal{Z}_{\alpha}^{(\kappa=4)}$ and $\mathbb{P}[\vartheta = \alpha]$ (neat combinatorics)
- Proof: the ratio is bounded martingale, use optional stopping

Theorem

$$\mathbb{P}\left[\vartheta^{\text{GFF}} = \alpha\right] = \frac{\mathcal{Z}_{\alpha}^{(\kappa=4)}(x_1, \dots, x_{2N})}{\sum_{\beta \in \text{LP}_N} \mathcal{Z}_{\beta}^{(\kappa=4)}(x_1, \dots, x_{2N})} > 0 \quad \text{for all } \alpha \in \text{LP}_N$$

For the double-dimer model (with certain b.c.), the connection probabilities converge in the scaling limit to the same expressions: $\mathbb{P}\left[\vartheta_{\delta}^{\text{dd}} = \alpha\right] \xrightarrow{\delta \to 0} \mathbb{P}\left[\vartheta^{\text{GFF}} = \alpha\right] \quad \text{for all } \alpha \in \text{LP}_{N}$

Kenyon & Wilson (2011) and P. & Wu [arXiv:1703.00898]

MULTICHORDAL LERW: MULTIPLE SLE₂

Theorem

$$\frac{1}{\delta^{2N}} \mathbb{P}[\text{ UST connectivity } \alpha \text{ between edges } e_1, \dots, e_{2N}]$$
$$\xrightarrow[\delta \to 0]{} \mathcal{Z}_{\alpha}^{(\kappa=2)}(x_1, \dots, x_{2N})$$

Kenyon & Wilson (2011) and Karrila, Kytölä & P. [arXiv:1702.03261]

Proof: use explicit formula & conv. of discrete harmonic functions

- boundary branches in uniform spanning tree
 - = loop-erased random walks
- condition on the event that branches connect given 2N points pairwise
- exact solvability of Z_α^(κ=2) (neat combinatorics again)

Plan

- 🗸 🌒 Motivation
 - critical models in statistical physics, scaling limits
 - conformal invariance of interfaces & correlations
- Ø Multiple SLEs: classification
 - global multiple SLEs
 - local multiple SLEs (i.e., commuting SLEs)
 - partition functions of multiple SLEs
 - local \Leftrightarrow global ???
 - 8 Relation to connection probabilities
 - multichordal loop-erased random walks
 - level lines of the Gaussian free field
 - double-dimer pairings
 - Ising model crossing probabilities
 - More on partition functions?

Construction of pure partition functions \mathcal{Z}_{lpha}

- (PDE): system of 2N PDEs
- (COV): conformal covariance
- (POS): positivity $\mathcal{Z}(x_1, \ldots, x_{2N}) > 0$
- (C^{∞}) : smoothness

Theorem [Dubédat (2006)]

Any partition function \mathcal{Z}

generates a local N-SLE_{κ}.

- Flores & Kleban (2015): construction for $\kappa \in (0, 8)$
 - algorithm to find formulas via Coulomb gas integrals
- Kytölä & P. (2016): construction for $\kappa \in (0, 8) \setminus \mathbb{Q}$
 - algorithm to find formulas via Coulomb gas integrals
 - representation theory of quantum group $U_q(\mathfrak{sl}_2)$
 - natural fusion structure and asymptotic properties

Formulas look like:

$$\mathcal{Z}_{\alpha}(\boldsymbol{x}) = \prod_{i < j} (x_i - x_j)^{2/\kappa} \int_{\Gamma_{\alpha}} \prod_r \prod_j (w_r - x_j)^{-4/\kappa} \prod_{r < s} (w_r - w_s)^{8/\kappa} \mathrm{d}\boldsymbol{w},$$

where Γ_{α} are certain integration surfaces (complicated)

In this approach:

• (PDE), (COV), (C^{∞}) readily follow; *fail to check (POS)*

Construction of pure partition functions \mathcal{Z}_{lpha}

- (PDE): system of 2N PDEs
- (COV): conformal covariance
- (POS): positivity $\mathcal{Z}(x_1, \ldots, x_{2N}) > 0$
- (C^{∞}) : smoothness

Theorem [Dubédat (2006)]

Any partition function \mathcal{Z}

generates a local N-SLE_{κ}.

- P. & Wu (2017): construction for κ ∈ (0, 4]
 via Brownian loop measure á la Kozdron & Lawler (2007-2009)
 - (COV), (POS) immediate; (PDE) from Itô calculus
 - (C^{∞}) problematic:

use hypoelliptic PDE theory [Dubédat (2013); P. & Wu (2017)]

or SLE estimates [Lawler & Jahangoshahi (2017)]

- Wu (2018): construction for $\kappa \in (0, 6]$
 - (COV), (POS) immediate
 - (PDE) using properties of hSLE
 - (C^{∞}) problematic as before

• <u>Remark:</u> By an uniqueness result [from Flores & Kleban (2015)], all these constructions give the *same* functions!

THANKS