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Continuum Gaussian free field in 2D

D C C open (simply connected)
domain with non-polar boundary.

® continuum Gaussian free field in
D with zero boundary condition.

Informally, field with distribution:

1
-1 = 2
Z7exp (= 4 / IVel?)Dip),

with D(p) "uniform measure on fields" (which does not exist).

Rigorously:
® random Gaussian generalized function (in Sobolev space H™¢, ¢ > 0).
E[¢] =0, Cov((®, A), (P, %)) = [/pp fi(x)Gp(x, y)fa(y)dxdy.

Gp = (—A/27)~! Green's function.

Conformal invariance: ¢ o) @ ®, ¢ : D — D conformal.
u: D — R harmonic.  + v GFF with non-zero b.c.



Markov property of the GFF

K closed subset of D. .
Hy (D) = Harm(D\K) & Hg(D\K),  [Ifll}s = [ IIVFII?,
Harm(D\K) subspace of functions harmonic on D\K.

Weak Markov property: ® = &, + &K &, 11 0K,
®y harmonic on D\K, ®¥ 0 b.c. GFF on D\K.

Strong Markov property:

A stopping set: A closed, YU open, {A C U} measurable w.r.t. ®1.
O =4+ DA, dLHITPA cond. on A,

® 4 harmonic on D\ A (harmonic part ha),

cond. on A, ®* 0 b.c. GFF on D\A.

Schramm-Sheffield:

Local set of the GFF = a generalization of stopping sets.
Sets along which ® has a Markovian decomposition.
Does not assume measurability w.r.t. .



Thin and non-thin local sets

A local set: ® = &, + dA.

®4 11 A cond. on A,

® 4 harmonic on D\A (harmonic part ha),
cond. on A, ®4 0 b.c. GFF on D\A.

Thin local set: 4 = ha.
Non-thin local set: 4 # hp.

Examples of thin local sets:
o level lines - SLE4(p) processes (Schramm-Sheffield 2006),

dim = 3/2;
o flow lines - SLE.(p), 0 < x < 8 (Miller-Sheffield 2012),
dim =1+ k/8;

o CLE, gasket (Miller-Sheffield coupling), dim = 15/8;

o two-valued sets A_, p, a+ b > 2\ (Aru-Sepilveda-Werner 2016),
dim =2 — 2)2/(a + b)2. Can be seen as points of "® € [—a, b]"
accessible from the boundary. Constructed by iterating level lines.



Example of thin local sets: level lines

Level lines of ®: SLE4(p1, p2) curves.
2\ = 7 height gap (Schramm-Sheffield, 2010).



Example of thin local sets: CLE, gasket

Iy

Conformal Loop Ensemble CLE,.

Miller-Sheffield coupling of CLE4 and GFF:

in each hole I'; an independent 0 b.c. GFF + ¢,2),
o; € {—1, 1} i.i.d., P(O’,‘ = —1) = ]P(U,' = 1) = 1/2



Example of non-thin local set: First passage sets.

Trivial examples of non-thin local sets: A has non-empty interior.

More interesting example of non-thin local sets:
First passage sets (Aru, L., Sepulveda, 2017).
—a<0. A_, local set s.t.

@ hy ,=—aon D\A_,.
e &, _ + ais a non-negative measure (supported on A_,).

A _, essentially the only local set to satisfies these properties.
Leb(A_,) =0 a.s. In particular A_, has empty interior.

Informally:

A_, ="{z € D|3y path z & 8D, > —aon v}".

A_, cannot be thin:
E[(®4_,, f)] = E[(®, f)] — E[(®*~, )] = E[(®,f)] =0
#E[(h 1)) =2 |

D



A simulatio first passage sets

Computer simulation of A_,A_»y,A_3) and A_4,.




Continuum FPS and level lines of the GFF

Construction of first passage set
A_,.

First step: tree of level lines —\, \
(SLE4(—1, —1) curves).




Expected size of first passage sets

D simply connected. z € D fixed. CR: conformal radius.
(n¢)e>0 continuous growing family of local sets.
ut(z) harmonic extension to z of values of ® induced by 7;. If

t = log(CR(z, D)/ CR(z, D\n:)),

then (u(z))e>0 is a standard Brownian motion.
Consequence:

log(CR(z, D)/ CR(z, D\A_,)) 2 T_,,

T_, first time B.M. starting from 0 hits —a.
P(T_,>t)=<t 2.

+ Koebe quarter theorem:

E[Area(A_, + B(0,r))] = |log(r)|"%.

dim(A_,;)=2as.



Minkowksi content

P=vy ,—a+ A2, va_, positive measure supported on A_,

Theorem (Aru, L., Sepulveda, 2018)

va_, is a Minkowski content measure in the gauge |log(r)|2 r?. More
precisely, for all f € C.(D),

(va_,.f) = lim [Hog( H f(z)d|z|>.
d(zA_a)<r

The result extends to all local sets contained in some first passage set,
that is to say the restriction of the GFF to such local set is a Minkowski
content.

The result extends to multiply finitely connected domains.



Main tool: Liouville Quantum Gravity measure.

v € (—2,2). e’® exponential of the Gaussian free field,
Liouville Quantum Gravity measure (Kahane's Gaussian Multiplicative
Chaos 1985, Polyakov 80s, Duplantier-Sheffield 2011).

o _ o 2 0
e’ =limeze’™e,
e—0

&, regularization by circle average.

Aru, Powell, Sepilveda, 2017: For all v € [0,2),
e 7P = grag—et e

)

Uses that ¢ is a positive measure on A_, and that Leb(A_,;) = 0.

In particular,

E[67V¢|A—a] = e'V‘S']E[eiﬂyq)Aia ‘A—a] =e" CR(Z7 D\A_a)%C”ZIQ.



Intermediate description of the measure

Let f € C(D). v+ (e7®,f) is a.s. analytic on (—v/2,v/2) (and has a
holomorphic extension to B(0,+/2)). For instance,

® = CR(z D) ¥ (1470 + Y T o)

n>2
Moreover, d—’y(e yF)ly=0 = (¥, ).
Differentiation in v and conditional expectation commute:

E[d%(ew, FlA_l] = d%E[(e“’, FIA_.

d
E[d—’y(ew,f)hzom,a] = (va_,,f) —a/Df.
(nf) = Jim 5 [ (~108(CR(z, DVA.)) CR(z, DA ) ¥ (2}l

= lim fy/ |Iog(d(z,A_a))/\O|d(z,A_a)§f(z)d|z|2

y—0+t

The density tends to 0, but the total mass does not. The mass
concentrates around A _ ..



F (x) = 7/ log(x) A O} |
1
l(x) = |log(r)|zlo<x<r r € (0,1).

; 2 — cste lim z,A_ z)d|z|%.
im, [ @z, (@)l = cste lim, [ 1(d(z A-u))f(2)lz

Fy(x) = 5_%F7(x6), with 3 = ~2 /2.
I (x) = B2 1,(x7), with 8 = |log(r)|/|log(r')|.
Same scaling in both cases.

To show that the Minkowski content converges, approximate / ;, by
linear combinations vazl a;iF,, and use the scaling.



Boundedness of the Minkowski content

Denote
M(F) = lD\AﬁF(d(z7 A_,))dz.

Let g,(x) = lec(o,) l‘lﬁ)gg(:lvl’/‘l‘. Then, for all f continuous compactly

supported in D, (9(q,), f) stays bounded as r — 0.

Let 7o > 0. There is C > 0 such that
1X€(1/471/2) < CF‘YO(X) and 1X€(1/271)| |OgX| < CF‘YO(X)'

Thus, by the scaling of F,,

—k

—k k
Lp-akt p-a)(X) = Laja1/2) (%) < CRo () = C272F, 4 (x).

“+00
_k
G2 < C E 2 2F2_§%.
k=1

As g, satisfies the scaling g,(x) = 6*%q1/2(x5) with 8 = “g%,

+o0o

_k
q,SC 2 2F2_§/3'y°'
k=1



Existence of the Minkowski content

h 2., smooth function with values in [0, (log 2)1/2], which coincides with
> on [p,1/2 —p] and is 0 on [0, p/2] U [1/2 — p/2,1].

log 2

I p(x) = B2l o ,(x7) with 8 = Tog |

The convergence of M(/, ,) for all p > 0 implies the convergence of
M(/,) as r — 0.

Uniform approximation |/ /5 , — SV aiF,| < £q1)2.

Comes from approximation of | log(x)|~*/ 2 ,(x) by polynomials.



Computing the constant

Given that the Minkoski content exists, how to show that

lim / Fv(d(z,A_a))f(z)d|z|2:csterli_rPO/DI,(d(z,A_a))f(z)d\zF

=0 Jp

and identify the constant?

1
Flx) = — /0 F/(P)Locxerdr

- [ Pt og(r)H e

/0 5 (1442 log(r)/2)]log(r)| =2 (x)dr

+0o0o .
V2™ 1 — t)t7 2 2 (x)dt.

0

+o00o T

cste = V2e t(1— t)t idt = >
0



Le Jan's isomorphism

Framework: G = (V/, E) undirected graph. C(e) > 0 conductances on
edges. Boundary 9G C V. Continuous time Markov jump process on G,
jump rates = conductances.

Measure on loops:
+°° dt
iu‘loop Z / ot < Tag)pe(x, x)— £
xeV\oG

Essentially same measure that appears in Symanzik and in Brydges,
Frolich, Spencer. Loop-soup: £, P.P.P. with intensity Oélh%op-

Le Jan’'s isomorphism, 2007:

L(L1) = Y Ly ¢0, $o DGFF, b.c. 0 on 9G.

~ELy 2

An extension of Dynkin's isomorphism (1984).



A version with positive b.c.

u>0on dG. E, P.P.P of boundary-to-boundary excursions with
intensity:

Y ulx)uly)Hg(x, y)PS.

(x,y)€0G

N =

Hg(x,y) boundary Poisson kernel = an effective conductance.
Eu I ,C]_/Q. Then:

1
(L1, UE,) Y 5% 64 DGFF, b, u on 0G.

—



In continuum 2D: Wick square and measures on Brownian

loops and excursions

® continuum GFF on D C C, 0 b.c. u harmonic on D. Wick square:

:d? = lim 92 — E[¢?], (D4 u)? = 0% 2ud.
e—0
Brownian loop measure and excursion measure (for u > 0):
+oo dt
o= [ [ Bt < Toodouz ) Sl

p2u() = // u(x)u(y)Hp(x, y)PE5 (-)dxdy,
oD x oD

Hp(x,y) = 0n,0n,Gp(x, y) boundary Poisson kernel.



Isomorphism for continuum GFF

2 indep. P.P.P.: critical Brownian loop-soup £, , (intensity 1/2:“1%0;))
and E, (intensity p2:4).

Occupation measure L(Ly/>) not locally finite.
Centred occupation measure:

L (L1/2) = lim L({y € L1/2]diam(y) > £})~EIL({ € L12] diam(7) > £})].

Isomorphism:

L (L15) + L(E,)

LCtr(['l/Z) + Lctr(Eu) (:)



The GFF on a metric graph

G = (V, E) undirected graph. C(e) > 0 conductances on edges.

G metric graph associated to G: each edge e € E is replaced by a
continuous line of length C(e)™!
Discrete resistor — continuous conducting wire.

Metric graph GFF ¢: interpolate the discrete GFF ¢ with independent
Brownian bridges inside edges.

Why do we like metric graph GFF?

| o Gaussian.
J @ Markov.
/ / / / o Satisfies the intermediate
/ / J/ % / value property.




Signed isomorphism on metric graph

$u metric graph GFF with b.c. u > 0 on 9G.

Metric graph Brownian motion. Metric graph loop measure.
Metric graph measure on boundary-to-boundary excursions.
Restriction to vertices: measures on discrete-graph paths.

2 indep. P.P.P: metric graph loop-soup Zl/Q and excursions E,.
Occupation field L(Zl/z U E,): sum of local times.

Signed isomorphism (L. 2014):
@ Sample 21/2 and Eu.

e Sample o¢ € {—1,1} for C cluster of Zl/z UE,.

oc = 1 if C contains an excursion (E,).
If not, o¢ independent, P(o¢ = —1) =P(o¢ =1) = 1/2.

~ ~ d ~
® (oc(x)\/2L(L1/2 U Eu)),cq @ o

Clusters of E]_/Q UE, exactly connected components of {(Z)u #0}.



First passage sets (FPS) of a metric graph GFF

qNSO metric graph GFF on gwith b.c. 0 on 9G.
First passage set of level —a <inf u:

A_, = {x € G|3y path x <> 8G, dy > —a on ~}.
Stopping set. Analogue of a first passage bridge of a Brownian motion.

In the signed isomorphism of ¢ with 51/2 U Ea,
Ag is the union of topological closures C of clusters C of L2 UE,
that contain at least an excursion (E,).



Metric graph approximation and isomorphism

Proposition

Metric graph FPS converge in the fine mesh limit to continuum FPS.

Corollary

a>0. 2indep. P.P.P of 2D Brownian loops and excursions: Ly, and
E,. One can couple ® and L, U E, on the same probability space such
that
1 1
o L(Lysp)+ L(Es) = = d2: +ad + 532,
@ The FPS A_, is the union of topological closures of all clusters of
Ly > U E, that contain at least an excursion (E;).

The clusters in a critical 2D Brownian loop-soup Ly, have a non-trivial
2

Minkowski content in gauge | log(r)|2r

The gauge for clusters of a subcritical Brownian loop-soup is .unknown.



Thank you for your attention!



