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Continuum Gaussian free �eld in 2D

D ⊂ C open (simply connected)
domain with non-polar boundary.

Φ continuum Gaussian free �eld in
D with zero boundary condition.

Informally, �eld with distribution:

Z−1 exp
(
− 1

4π

∫
D

‖∇ϕ‖2
)
D(ϕ),

with D(ϕ) "uniform measure on �elds" (which does not exist).

Rigorously:
Φ random Gaussian generalized function (in Sobolev space H−ε, ε > 0).
E[Φ] = 0, Cov((Φ, f1), (Φ, f2)) =

∫∫
D×D f1(x)GD(x , y)f2(y)dxdy .

GD = (−∆/2π)−1 Green's function.

Conformal invariance: Φ ◦ ψ (d)
= Φ, ψ : D → D conformal.

u : D → R harmonic. Φ + u GFF with non-zero b.c.



Markov property of the GFF

K closed subset of D.

H1
0 (D) = Harm(D\K )

⊥
⊕ H1

0 (D\K ), ‖f ‖2H1

0

=
∫
‖∇f ‖2,

Harm(D\K ) subspace of functions harmonic on D\K .

Weak Markov property: Φ = ΦK + ΦK , ΦK q ΦK ,
ΦK harmonic on D\K , ΦK 0 b.c. GFF on D\K .

Strong Markov property:
A stopping set: A closed, ∀U open, {A ⊂ U} measurable w.r.t. Φ1U .
Φ = ΦA + ΦA, ΦA q ΦA cond. on A,
ΦA harmonic on D\A (harmonic part hA),
cond. on A, ΦA 0 b.c. GFF on D\A.

Schramm-She�eld:
Local set of the GFF = a generalization of stopping sets.
Sets along which Φ has a Markovian decomposition.
Does not assume measurability w.r.t. Φ.



Thin and non-thin local sets

A local set: Φ = ΦA + ΦA.
ΦA q ΦA cond. on A,
ΦA harmonic on D\A (harmonic part hA),
cond. on A, ΦA 0 b.c. GFF on D\A.

Thin local set: ΦA = hA.

Non-thin local set: ΦA 6= hA.

Examples of thin local sets:

level lines - SLE4(ρ) processes (Schramm-She�eld 2006),
dim = 3/2;

�ow lines - SLEκ(ρ), 0 < κ < 8 (Miller-She�eld 2012),
dim = 1 + κ/8;

CLE4 gasket (Miller-She�eld coupling), dim = 15/8;

two-valued sets A−a,b, a + b ≥ 2λ (Aru-Sepúlveda-Werner 2016),
dim = 2− 2λ2/(a + b)2. Can be seen as points of ”Φ ∈ [−a, b]”
accessible from the boundary. Constructed by iterating level lines.



Example of thin local sets: level lines
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Level lines of Φ: SLE4(ρ1, ρ2) curves.
2λ = π: height gap (Schramm-She�eld, 2010).



Example of thin local sets: CLE4 gasket

Conformal Loop Ensemble CLE4.
Miller-She�eld coupling of CLE4 and GFF:
in each hole Γi an independent 0 b.c. GFF + σi2λ,
σi ∈ {−1, 1} i.i.d., P(σi = −1) = P(σi = 1) = 1/2.



Example of non-thin local set: First passage sets.
Trivial examples of non-thin local sets: A has non-empty interior.

More interesting example of non-thin local sets:
First passage sets (Aru, L., Sepúlveda, 2017).
−a < 0. A−a local set s.t.

hA−a = −a on D\A−a.
ΦA−a + a is a non-negative measure (supported on A−a).

A−a essentially the only local set to satis�es these properties.
Leb(A−a) = 0 a.s. In particular A−a has empty interior.

Informally:

A−a = ”{z ∈ D|∃γ path z
γ↔ ∂D,Φ ≥ −a on γ}”.

A−a cannot be thin:

E[(ΦA−a , f )] = E[(Φ, f )]− E[(ΦA−a , f )] = E[(Φ, f )] = 0

6= E[(hA−a , f )] = −a
∫
D

f .



A simulation of �rst passage sets

Computer simulation of A−λ,A−2λ,A−3λ and A−4λ.



Continuum FPS and level lines of the GFF
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Construction of �rst passage set
A−λ.
First step: tree of level lines −λ, λ
(SLE4(−1,−1) curves).



Expected size of �rst passage sets

D simply connected. z ∈ D �xed. CR: conformal radius.
(ηt)t≥0 continuous growing family of local sets.
ut(z) harmonic extension to z of values of Φ induced by ηt . If

t = log(CR(z ,D)/CR(z ,D\ηt)),

then (ut(z))t≥0 is a standard Brownian motion.
Consequence:

log(CR(z ,D)/CR(z ,D\A−a))
(d)
= T−a,

T−a �rst time B.M. starting from 0 hits −a.

P(T−a > t) � t−
1

2 .

+ Koebe quarter theorem:

E[Area(A−a + B(0, r))] � | log(r)|− 1

2 .

dim(A−a) = 2 a.s.



Minkowksi content

Φ = νA−a − a + ΦA−a , νA−a positive measure supported on A−a.

Theorem (Aru, L., Sepúlveda, 2018)

νA−a is a Minkowski content measure in the gauge | log(r)| 12 r2. More
precisely, for all f ∈ Cc(D),

(νA−a , f ) = lim
r→0

√
π

2
| log(r)| 12

∫
d(z,A−a)<r

f (z)d |z |2.

The result extends to all local sets contained in some �rst passage set,
that is to say the restriction of the GFF to such local set is a Minkowski
content.

The result extends to multiply �nitely connected domains.



Main tool: Liouville Quantum Gravity measure.

γ ∈ (−2, 2). eγΦ exponential of the Gaussian free �eld,
Liouville Quantum Gravity measure (Kahane's Gaussian Multiplicative
Chaos 1985, Polyakov 80s, Duplantier-She�eld 2011).

eγΦ = lim
ε→0

ε
γ2

2 eγΦε ,

Φε regularization by circle average.

Aru, Powell, Sepúlveda, 2017: For all γ ∈ [0, 2),

e−γΦ = eγae−γΦA−a
,

Uses that Φ is a positive measure on A−a and that Leb(A−a) = 0.

In particular,

E[e−γΦ|A−a] = eγaE[e−γΦA−a |A−a] = eγa CR(z ,D\A−a)
γ2

2 d |z |2.



Intermediate description of the measure

Let f ∈ Cc(D). γ 7→ (eγΦ, f ) is a.s. analytic on (−
√
2,
√
2) (and has a

holomorphic extension to B(0,
√
2)). For instance,

eγΦ = CR(z ,D)
γ2

2 (1 + γΦ +
∑
n≥2

γn

n!
: Φn :).

Moreover,
d

dγ
(eγΦ, f )|γ=0 = (Φ, f ).

Di�erentiation in γ and conditional expectation commute:

E
[ d

dγ
(eγΦ, f )|A−a

]
=

d

dγ
E[(eγΦ, f )|A−a].

E
[ d

dγ
(eγΦ, f )|γ=0|A−a

]
= (νA−a , f )− a

∫
D

f .

(νA−a , f ) = lim
γ→0+

γ

∫
D

(− log(CR(z ,D\A−a)))CR(z ,D\A−a)
γ2

2 f (z)d |z |2

= lim
γ→0+

γ

∫
D

| log(d(z ,A−a)) ∧ 0|d(z ,A−a)
γ2

2 f (z)d |z |2

The density tends to 0, but the total mass does not. The mass
concentrates around A−a.



Scaling

Fγ(x) = γ| log(x) ∧ 0|x
γ2

2 .

Ir (x) = | log(r)| 12 10<x<r , r ∈ (0, 1).

Want:

lim
γ→0

∫
D

Fγ(d(z ,A−a))f (z)d |z |2 = cste lim
r→0

∫
D

Ir (d(z ,A−a))f (z)d |z |2.

Fγ′(x) = β−
1

2Fγ(xβ), with β = γ′2/γ2.

Ir ′(x) = β−
1

2 Ir (x
β), with β = | log(r)|/| log(r ′)|.

Same scaling in both cases.

To show that the Minkowski content converges, approximate I1/2 by

linear combinations
∑N

i=1 aiFγi and use the scaling.



Boundedness of the Minkowski content
Denote

M(F ) = 1D\A−a
F (d(z ,A−a))dz .

Let qr (x) = 1x∈(0,1)
| log(r∨x)|
| log r |1/2 . Then, for all f continuous compactly

supported in D, (M(qr ), f ) stays bounded as r → 0.

Let γ0 > 0. There is C > 0 such that

1x∈(1/4,1/2) ≤ CFγ0(x) and 1x∈(1/2,1)| log x | ≤ CFγ0(x).

Thus, by the scaling of Fγ ,

1(2−2k+1 ,2−2k )(x) = 1(1/4,1/2)(x
2−k

) ≤ CFγ0(x2
−k

) = C2−
k
2F

2−
k
2 γ0

(x).

q1/2 ≤ C
+∞∑
k=1

2−
k
2F

2−
k
2 γ0

.

As qr satis�es the scaling qr (x) = β−
1

2 q1/2(xβ) with β = log 2
| log r | ,

qr ≤ C
+∞∑
k=1

2−
k
2F

2−
k
2 βγ0

.



Existence of the Minkowski content

I1/2,ρ smooth function with values in [0, (log 2)1/2], which coincides with
I1/2 on [ρ, 1/2− ρ] and is 0 on [0, ρ/2] ∪ [1/2− ρ/2, 1].

Ir ,ρ(x) = β−
1

2 I1/2,ρ(xβ) with β =
log 2

| log r |
.

The convergence of M(Ir ,ρ) for all ρ > 0 implies the convergence of
M(Ir ) as r → 0.

Uniform approximation |I1/2,ρ −
∑N

i=1 aiFγi | ≤ εq1/2.

Comes from approximation of | log(x)|−1I1/2,ρ(x) by polynomials.



Computing the constant

Given that the Minkoski content exists, how to show that

lim
γ→0

∫
D

Fγ(d(z ,A−a))f (z)d |z |2 = cste lim
r→0

∫
D

Ir (d(z ,A−a))f (z)d |z |2

and identify the constant?

Fγ(x) = −
∫ 1

0

F ′γ(r)10<x<rdr

= −
∫ 1

0

F ′γ(r)| log(r)|− 1

2 Ir (x)dr

=

∫ 1

0

γr
γ2

2
−1(1 + γ2 log(r)/2)| log(r)|− 1

2 Ir (x)dr

=

∫ +∞

0

√
2e−t(1− t)t−

1

2 Ie−2t/γ2 (x)dt.

cste =

∫ +∞

0

√
2e−t(1− t)t−

1

2 dt =

√
π

2
.



Le Jan's isomorphism

Framework: G = (V ,E ) undirected graph. C (e) > 0 conductances on
edges. Boundary ∂G ⊆ V . Continuous time Markov jump process on G,
jump rates = conductances.

Measure on loops:

µGloop(·) :=
∑

x∈V\∂G

∫ +∞

0

Pt
x,x(·, t < T∂G)pt(x , x)

dt

t
.

Essentially same measure that appears in Symanzik and in Brydges,
Frölich, Spencer. Loop-soup: Lα P.P.P. with intensity αµGloop.

Le Jan's isomorphism, 2007:

L(L1/2) :=
∑

γ∈L1/2

Lγ
(d)
=

1

2
φ20, φ0 DGFF, b.c. 0 on ∂G.

An extension of Dynkin's isomorphism (1984).



A version with positive b.c.

u ≥ 0 on ∂G. Eu P.P.P of boundary-to-boundary excursions with
intensity:

1

2

∑
(x,y)∈∂G

u(x)u(y)HG(x , y)Pexc
x,y .

HG(x , y) boundary Poisson kernel = an e�ective conductance.
Eu q L1/2. Then:

L(L1/2 ∪ Eu)
(d)
=

1

2
φ2u, φu DGFF, b.c. u on ∂G.



In continuum 2D: Wick square and measures on Brownian
loops and excursions

Φ continuum GFF on D ⊂ C, 0 b.c. u harmonic on D. Wick square:

: Φ2 := lim
ε→0

Φ2
ε − E[Φ2

ε], : (Φ + u)2 :=: Φ2 : +2uΦ.

Brownian loop measure and excursion measure (for u ≥ 0):

µD
loop(·) :=

∫
D

∫ +∞

0

Pt
z,z(·, t < T∂D)pt(z , z)

dt

t
d |z |2.

µD,u
exc (·) :=

1

2

∫∫
∂D×∂D

u(x)u(y)HD(x , y)Pexc
x,y (·)dxdy ,

HD(x , y) = ∂nx∂nyGD(x , y) boundary Poisson kernel.



Isomorphism for continuum GFF

2 indep. P.P.P.: critical Brownian loop-soup L1/2 (intensity 1/2µD
loop)

and Eu (intensity µD,u
exc ).

Occupation measure L(L1/2) not locally �nite.
Centred occupation measure:

Lctr(L1/2) = lim
ε→0

L({γ ∈ L1/2| diam(γ) ≥ ε})−E[L({γ ∈ L1/2| diam(γ) ≥ ε})].

Isomorphism:

Lctr(L1/2) + L(Eu)
(d)
=

1

2
: Φ2 : +uΦ +

1

2
u2,

Lctr(L1/2) + Lctr(Eu)
(d)
=

1

2
: (Φ + u)2 : .



The GFF on a metric graph

G = (V ,E ) undirected graph. C (e) > 0 conductances on edges.

G̃ metric graph associated to G: each edge e ∈ E is replaced by a
continuous line of length C (e)−1.
Discrete resistor −→ continuous conducting wire.

Metric graph GFF φ̃: interpolate the discrete GFF φ with independent
Brownian bridges inside edges.

Why do we like metric graph GFF?

Gaussian.

Markov.

Satis�es the intermediate
value property.



Signed isomorphism on metric graph

φ̃u metric graph GFF with b.c. u ≥ 0 on ∂G.

Metric graph Brownian motion. Metric graph loop measure.
Metric graph measure on boundary-to-boundary excursions.
Restriction to vertices: measures on discrete-graph paths.

2 indep. P.P.P: metric graph loop-soup L̃1/2 and excursions Ẽu.

Occupation �eld L(L̃1/2 ∪ Ẽu): sum of local times.

Signed isomorphism (L. 2014):

Sample L̃1/2 and Ẽu.

Sample σC ∈ {−1, 1} for C cluster of L̃1/2 ∪ Ẽu.

σC = 1 if C contains an excursion (Ẽu).
If not, σC independent, P(σC = −1) = P(σC = 1) = 1/2.

(σC(x)

√
2L(L̃1/2 ∪ Ẽu))x∈G̃

(d)
= φ̃u.

Clusters of L̃1/2 ∪ Ẽu exactly connected components of {φ̃u 6= 0}.



First passage sets (FPS) of a metric graph GFF

φ̃0 metric graph GFF on G̃ with b.c. 0 on ∂G.

First passage set of level −a ≤ inf u:

Ã−a := {x ∈ G̃|∃γ path x
γ↔ ∂G, φ̃0 ≥ −a on γ}.

Stopping set. Analogue of a �rst passage bridge of a Brownian motion.

In the signed isomorphism of φ̃0 with L̃1/2 ∪ Ẽa,

Ã0 is the union of topological closures C of clusters C of L̃1/2 ∪ Ẽa

that contain at least an excursion (Ẽa).



Metric graph approximation and isomorphism

Proposition

Metric graph FPS converge in the �ne mesh limit to continuum FPS.

Corollary

a > 0. 2 indep. P.P.P of 2D Brownian loops and excursions: L1/2 and
Ea. One can couple Φ and L1/2 ∪ Ea on the same probability space such
that

Lctr(L1/2) + L(Ea) =
1

2
: Φ2 : +aΦ +

1

2
a2,

The FPS A−a is the union of topological closures of all clusters of
L1/2 ∪ Ea that contain at least an excursion (Ea).

Corollary

The clusters in a critical 2D Brownian loop-soup L1/2 have a non-trivial

Minkowski content in gauge | log(r)| 12 r2

The gauge for clusters of a subcritical Brownian loop-soup is unknown.



Thank you for your attention!


