First passage sets of the 2D GFF and Minkowski content (with Juhan Aru (ETHZ) and Avelio Sepùlveda (Lyon 1))

Titus Lupu

CNRS/Sorbonne Université

Random Conformal Geometry and Related Fields, KIAS, Seoul, June 18th, 2018

Continuum Gaussian free field in 2D

Informally, field with distribution:

 $D \subset \mathbb{C}$ open (simply connected) domain with non-polar boundary.

 Φ continuum Gaussian free field in D with zero boundary condition.

$$Z^{-1} \exp \Big(- \frac{1}{4\pi} \int_D \|\nabla \varphi\|^2 \Big) \mathcal{D}(\varphi),$$

with $\mathcal{D}(\varphi)$ "uniform measure on fields" (which does not exist).

Rigorously:

 Φ random Gaussian generalized function (in Sobolev space $H^{-\varepsilon}$, $\varepsilon>0$). $\mathbb{E}[\Phi]=0$, $\mathsf{Cov}((\Phi,f_1),(\Phi,f_2))=\iint_{D\times D}f_1(x)G_D(x,y)f_2(y)dxdy$. $G_D=(-\Delta/2\pi)^{-1}$ Green's function.

Conformal invariance: $\Phi \circ \psi \stackrel{(d)}{=} \Phi$, $\psi : D \to D$ conformal. $u : D \to \mathbb{R}$ harmonic. $\Phi + u$ GFF with non-zero b.c.

Markov property of the GFF

K closed subset of \overline{D} . $H_0^1(D) = \operatorname{Harm}(D \setminus K) \stackrel{\perp}{\oplus} H_0^1(D \setminus K), \qquad \|f\|_{H_0^1}^2 = \int \|\nabla f\|^2,$ $\operatorname{Harm}(D \setminus K)$ subspace of functions harmonic on $D \setminus K$.

Weak Markov property: $\Phi = \Phi_K + \Phi^K$, $\Phi_K \coprod \Phi^K$, $\Phi_K \coprod \Phi^K$, Φ_K harmonic on $D \setminus K$, Φ^K 0 b.c. GFF on $D \setminus K$.

Strong Markov property:

A stopping set: A closed, $\forall U$ open, $\{A \subset U\}$ measurable w.r.t. $\Phi 1_U$. $\Phi = \Phi_A + \Phi^A$, $\Phi_A \coprod \Phi^A$ cond. on A, Φ_A harmonic on $D \setminus A$ (harmonic part h_A), cond. on A, Φ^A 0 b.c. GFF on $D \setminus A$.

Schramm-Sheffield:

Local set of the GFF = a generalization of stopping sets. Sets along which Φ has a Markovian decomposition. Does not assume measurability w.r.t. $\Phi.$

Thin and non-thin local sets

A local set: $\Phi = \Phi_A + \Phi^A$. $\Phi_A \coprod \Phi^A$ cond. on A, Φ_A harmonic on $D \setminus A$ (harmonic part h_A), cond. on A, Φ^A 0 b.c. GFF on $D \setminus A$.

Thin local set: $\Phi_A = h_A$.

Non-thin local set: $\Phi_A \neq h_A$.

Examples of thin local sets:

- level lines $SLE_4(\underline{\rho})$ processes (Schramm-Sheffield 2006), $\dim = 3/2$;
- flow lines $SLE_{\kappa}(\underline{\rho})$, $0 < \kappa < 8$ (Miller-Sheffield 2012), $\dim = 1 + \kappa/8$;
- CLE₄ gasket (Miller-Sheffield coupling), dim = 15/8;
- two-valued sets $\mathbb{A}_{-a,b}$, $a+b \geq 2\lambda$ (Aru-Sepúlveda-Werner 2016), dim $= 2-2\lambda^2/(a+b)^2$. Can be seen as points of " $\Phi \in [-a,b]$ " accessible from the boundary. Constructed by iterating level lines.

Example of thin local sets: level lines

Level lines of Φ : $\mathsf{SLE}_4(\rho_1, \rho_2)$ curves.

 $2\lambda=\pi$: height gap (Schramm-Sheffield, 2010).

Example of thin local sets: CLE₄ gasket

Conformal Loop Ensemble CLE₄. Miller-Sheffield coupling of CLE₄ and GFF: in each hole Γ_i an independent 0 b.c. GFF + $\sigma_i 2\lambda$, $\sigma_i \in \{-1,1\}$ i.i.d., $\mathbb{P}(\sigma_i = -1) = \mathbb{P}(\sigma_i = 1) = 1/2$.

Example of non-thin local set: First passage sets.

Trivial examples of non-thin local sets: A has non-empty interior.

More interesting example of non-thin local sets:

First passage sets (Aru, L., Sepúlveda, 2017).

- -a < 0. \mathbb{A}_{-a} local set s.t.
 - $h_{\mathbb{A}_{-a}} = -a$ on $D \setminus \mathbb{A}_{-a}$.
 - $\Phi_{\mathbb{A}_{-a}} + a$ is a non-negative measure (supported on \mathbb{A}_{-a}).

 \mathbb{A}_{-a} essentially the only local set to satisfies these properties. Leb $(\mathbb{A}_{-a})=0$ a.s. In particular \mathbb{A}_{-a} has empty interior.

Informally:

$$\mathbb{A}_{-a} = \text{``}\{z \in \overline{D} | \exists \gamma \text{ path } z \overset{\gamma}{\leftrightarrow} \partial D, \Phi \geq -a \text{ on } \gamma\}\text{''}.$$

 \mathbb{A}_{-a} cannot be thin:

$$\begin{split} \mathbb{E}[(\Phi_{\mathbb{A}_{-s}},f)] &= \mathbb{E}[(\Phi,f)] - \mathbb{E}[(\Phi^{\mathbb{A}_{-s}},f)] = \mathbb{E}[(\Phi,f)] = 0 \\ &\neq \mathbb{E}[(h_{\mathbb{A}_{-s}},f)] = -a \int_{D} f. \end{split}$$

A simulation of first passage sets

Computer simulation of $\mathbb{A}_{-\lambda}, \mathbb{A}_{-2\lambda}, \mathbb{A}_{-3\lambda}$ and $\mathbb{A}_{-4\lambda}$.

Continuum FPS and level lines of the GFF

Construction of first passage set $\mathbb{A}_{-\lambda}$. First step: tree of level lines $-\lambda,\lambda$

 $(SLE_4(-1,-1) \text{ curves}).$

Expected size of first passage sets

D simply connected. $z \in D$ fixed. CR: conformal radius. $(\eta_t)_{t \geq 0}$ continuous growing family of local sets. $u_t(z)$ harmonic extension to z of values of Φ induced by η_t . If

$$t = \log(\mathsf{CR}(z, D) / \mathsf{CR}(z, D \backslash \eta_t)),$$

then $(u_t(z))_{t\geq 0}$ is a standard Brownian motion. Consequence:

$$\log(\operatorname{CR}(z,D)/\operatorname{CR}(z,D\backslash \mathbb{A}_{-a}))\stackrel{(d)}{=} T_{-a},$$

 T_{-a} first time B.M. starting from 0 hits -a.

$$\mathbb{P}(T_{-a} > t) \asymp t^{-\frac{1}{2}}.$$

+ Koebe quarter theorem:

$$\mathbb{E}[\mathsf{Area}(\mathbb{A}_{-a} + B(0,r))] \asymp |\log(r)|^{-\frac{1}{2}}.$$

$$\dim(\mathbb{A}_{-a})=2 \text{ a.s.}$$

Minkowksi content

 $\Phi=
u_{\mathbb{A}_{-a}}-a+\Phi^{\mathbb{A}_{-a}}$, $u_{\mathbb{A}_{-a}}$ positive measure supported on \mathbb{A}_{-a} .

Theorem (Aru, L., Sepúlveda, 2018)

 $\nu_{\mathbb{A}_{-a}}$ is a Minkowski content measure in the gauge $|\log(r)|^{\frac{1}{2}}r^2$. More precisely, for all $f \in \mathcal{C}_c(D)$,

$$(
u_{\mathbb{A}_{-a}}, f) = \lim_{r \to 0} \sqrt{\frac{\pi}{2}} |\log(r)|^{\frac{1}{2}} \int_{d(z, \mathbb{A}_{-a}) < r} f(z) d|z|^{2}.$$

The result extends to all local sets contained in some first passage set, that is to say the restriction of the GFF to such local set is a Minkowski content.

The result extends to multiply finitely connected domains.

Main tool: Liouville Quantum Gravity measure.

 $\gamma \in (-2,2)$. $e^{\gamma \Phi}$ exponential of the Gaussian free field, Liouville Quantum Gravity measure (Kahane's Gaussian Multiplicative Chaos 1985, Polyakov 80s, Duplantier-Sheffield 2011).

$$e^{\gamma \Phi} = \lim_{\varepsilon o 0} arepsilon^{rac{\gamma^2}{2}} e^{\gamma \Phi_{arepsilon}},$$

 Φ_{ε} regularization by circle average.

Aru, Powell, Sepúlveda, 2017: For all $\gamma \in [0, 2)$,

$$e^{-\gamma\Phi}=e^{\gamma a}e^{-\gamma\Phi^{\mathbb{A}_{-a}}},$$

Uses that Φ is a positive measure on \mathbb{A}_{-a} and that $\mathsf{Leb}(\mathbb{A}_{-a})=0$. In particular,

$$\mathbb{E}[e^{-\gamma\Phi}|\mathbb{A}_{-a}] = e^{\gamma a}\mathbb{E}[e^{-\gamma\Phi^{\mathbb{A}_{-a}}}|\mathbb{A}_{-a}] = e^{\gamma a}\operatorname{CR}(z,D\backslash\mathbb{A}_{-a})^{\frac{\gamma^2}{2}}d|z|^2.$$

Intermediate description of the measure

Let $f \in \mathcal{C}_c(D)$. $\gamma \mapsto (e^{\gamma \Phi}, f)$ is a.s. analytic on $(-\sqrt{2}, \sqrt{2})$ (and has a holomorphic extension to $B(0, \sqrt{2})$). For instance,

$$e^{\gamma \Phi} = CR(z, D)^{\frac{\gamma^2}{2}} (1 + \gamma \Phi + \sum_{n \geq 2} \frac{\gamma^n}{n!} : \Phi^n :).$$

Moreover,
$$\frac{d}{d\gamma}(e^{\gamma\Phi}, f)_{|\gamma=0} = (\Phi, f).$$

Differentiation in γ and conditional expectation commute:

$$\mathbb{E}\left[\frac{d}{d\gamma}(e^{\gamma\Phi},f)|\mathbb{A}_{-a}\right] = \frac{d}{d\gamma}\mathbb{E}[(e^{\gamma\Phi},f)|\mathbb{A}_{-a}].$$

$$\mathbb{E}\left[\frac{d}{d\gamma}(e^{\gamma\Phi},f)_{|\gamma=0}|\mathbb{A}_{-a}\right]=(\nu_{\mathbb{A}_{-a}},f)-a\int_{D}f.$$

$$(\nu_{\mathbb{A}_{-a}}, f) = \lim_{\gamma \to 0^{+}} \gamma \int_{D} (-\log(\operatorname{CR}(z, D \setminus \mathbb{A}_{-a}))) \operatorname{CR}(z, D \setminus \mathbb{A}_{-a})^{\frac{\gamma^{2}}{2}} f(z) d|z|^{2}$$

$$= \lim_{\gamma \to 0^{+}} \gamma \int_{\mathbb{A}_{-a}} |\log(d(z, \mathbb{A}_{-a})) \wedge 0| d(z, \mathbb{A}_{-a})^{\frac{\gamma^{2}}{2}} f(z) d|z|^{2}$$

The density tends to 0, but the total mass does not. The mass concentrates around \mathbb{A}_{-a} .

Scaling

$$F_{\gamma}(x) = \gamma |\log(x) \wedge 0| x^{\frac{\gamma^2}{2}}.$$

$$I_{r}(x) = |\log(r)|^{\frac{1}{2}} 1_{0 < x < r}, \ r \in (0, 1).$$

Want:

$$\lim_{\gamma \to 0} \int_D F_{\gamma}(d(z, \mathbb{A}_{-a})) f(z) d|z|^2 = \operatorname{cste} \lim_{r \to 0} \int_D I_r(d(z, \mathbb{A}_{-a})) f(z) d|z|^2.$$

$$F_{\gamma'}(x) = \beta^{-\frac{1}{2}} F_{\gamma}(x^{\beta})$$
, with $\beta = \gamma'^2/\gamma^2$. $I_{r'}(x) = \beta^{-\frac{1}{2}} I_r(x^{\beta})$, with $\beta = |\log(r)|/|\log(r')|$. Same scaling in both cases.

To show that the Minkowski content converges, approximate $I_{1/2}$ by linear combinations $\sum_{i=1}^{N} a_i F_{\gamma_i}$ and use the scaling.

Boundedness of the Minkowski content

Denote

$$\mathfrak{M}(F)=1_{D\setminus\mathbb{A}_{-a}}F(d(z,\mathbb{A}_{-a}))dz.$$

Let $q_r(x) = 1_{x \in (0,1)} \frac{|\log(r \vee x)|}{|\log r|^{1/2}}$. Then, for all f continuous compactly supported in D, $(\mathfrak{M}(q_r), f)$ stays bounded as $r \to 0$.

Let $\gamma_0 > 0$. There is C > 0 such that

$$1_{x \in (1/4,1/2)} \leq \mathit{CF}_{\gamma_0}(x) \ \ \text{and} \ \ 1_{x \in (1/2,1)} |\log x| \leq \mathit{CF}_{\gamma_0}(x).$$

Thus, by the scaling of F_{γ} ,

$$1_{(2^{-2^{k+1}},2^{-2^k})}(x) = 1_{(1/4,1/2)}(x^{2^{-k}}) \le CF_{\gamma_0}(x^{2^{-k}}) = C2^{-\frac{k}{2}}F_{2^{-\frac{k}{2}}\gamma_0}(x).$$

$$q_{1/2} \le C \sum_{k=1}^{+\infty} 2^{-\frac{k}{2}} F_{2^{-\frac{k}{2}}\gamma_0}.$$

As q_r satisfies the scaling $q_r(x)=eta^{-rac{1}{2}}q_{1/2}(x^eta)$ with $eta=rac{\log 2}{|\log r|}$,

$$q_r \le C \sum_{k=0}^{+\infty} 2^{-\frac{k}{2}} F_{2^{-\frac{k}{2}}\beta\gamma_0}.$$

Existence of the Minkowski content

 $I_{1/2,\rho}$ smooth function with values in $[0,(\log 2)^{1/2}]$, which coincides with $I_{1/2}$ on $[\rho,1/2-\rho]$ and is 0 on $[0,\rho/2]\cup[1/2-\rho/2,1]$.

$$I_{r,\rho}(x) = \beta^{-\frac{1}{2}} I_{1/2,\rho}(x^{\beta}) \text{ with } \beta = \frac{\log 2}{|\log r|}.$$

The convergence of $\mathfrak{M}(I_{r,\rho})$ for all $\rho > 0$ implies the convergence of $\mathfrak{M}(I_r)$ as $r \to 0$.

Uniform approximation $|I_{1/2,\rho} - \sum_{i=1}^{N} a_i F_{\gamma_i}| \leq \varepsilon q_{1/2}$.

Comes from approximation of $|\log(x)|^{-1}l_{1/2,\rho}(x)$ by polynomials.

Computing the constant

Given that the Minkoski content exists, how to show that

$$\lim_{\gamma \to 0} \int_D F_{\gamma}(d(z, \mathbb{A}_{-a})) f(z) d|z|^2 = \operatorname{cste} \lim_{r \to 0} \int_D I_r(d(z, \mathbb{A}_{-a})) f(z) d|z|^2$$

and identify the constant?

$$F_{\gamma}(x) = -\int_{0}^{1} F_{\gamma}'(r) 1_{0 < x < r} dr$$

$$= -\int_{0}^{1} F_{\gamma}'(r) |\log(r)|^{-\frac{1}{2}} I_{r}(x) dr$$

$$= \int_{0}^{1} \gamma r^{\frac{\gamma^{2}}{2} - 1} (1 + \gamma^{2} \log(r) / 2) |\log(r)|^{-\frac{1}{2}} I_{r}(x) dr$$

$$= \int_{0}^{+\infty} \sqrt{2} e^{-t} (1 - t) t^{-\frac{1}{2}} I_{e^{-2t/\gamma^{2}}}(x) dt.$$

$$cste = \int_{0}^{+\infty} \sqrt{2} e^{-t} (1 - t) t^{-\frac{1}{2}} dt = \sqrt{\frac{\pi}{2}}.$$

Le Jan's isomorphism

Framework: $\mathcal{G}=(V,E)$ undirected graph. C(e)>0 conductances on edges. Boundary $\partial \mathcal{G}\subseteq V$. Continuous time Markov jump process on \mathcal{G} , jump rates = conductances.

Measure on loops:

$$\mu_{\mathrm{loop}}^{\mathcal{G}}(\cdot) := \sum_{x \in V \setminus \partial \mathcal{G}} \int_0^{+\infty} \mathbb{P}_{x,x}^t(\cdot, t < \mathcal{T}_{\partial \mathcal{G}}) \rho_t(x, x) \frac{dt}{t}.$$

Essentially same measure that appears in Symanzik and in Brydges, Frölich, Spencer. Loop-soup: \mathcal{L}_{α} P.P.P. with intensity $\alpha\mu_{\mathrm{loop}}^{\mathcal{G}}$.

Le Jan's isomorphism, 2007:

$$L(\mathcal{L}_{1/2}) := \sum_{\gamma \in \mathcal{L}_{1/2}} L_{\gamma} \stackrel{(d)}{=} \frac{1}{2} \phi_0^2, \ \phi_0 \ \mathsf{DGFF}, \ \mathsf{b.c.} \ 0 \ \mathsf{on} \ \partial \mathcal{G}.$$

An extension of Dynkin's isomorphism (1984).

A version with positive b.c.

 $u \geq 0$ on $\partial \mathcal{G}$. E_u P.P.P of boundary-to-boundary excursions with intensity:

$$\frac{1}{2} \sum_{(x,y) \in \partial \mathcal{G}} u(x) u(y) H_{\mathcal{G}}(x,y) \mathbb{P}^{\mathrm{exc}}_{x,y}.$$

 $H_{\mathcal{G}}(x,y)$ boundary Poisson kernel = an effective conductance. $E_u \coprod \mathcal{L}_{1/2}$. Then:

$$L(\mathcal{L}_{1/2} \cup E_u) \stackrel{(d)}{=} \frac{1}{2} \phi_u^2, \ \phi_u \ \mathsf{DGFF}, \ \mathsf{b.c.} \ \mathsf{u} \ \mathsf{on} \ \partial \mathcal{G}.$$

In continuum 2D: Wick square and measures on Brownian loops and excursions

 Φ continuum GFF on $D \subset \mathbb{C}$, 0 b.c. u harmonic on D. Wick square:

$$:\Phi^2:=\lim_{\varepsilon\to 0}\Phi^2_\varepsilon-\mathbb{E}[\Phi^2_\varepsilon],\qquad :(\Phi+u)^2:=:\Phi^2:+2u\Phi.$$

Brownian loop measure and excursion measure (for $u \ge 0$):

$$\mu_{\mathrm{loop}}^D(\cdot) := \int_D \int_0^{+\infty} \mathbb{P}_{z,z}^t(\cdot,t < T_{\partial D}) \rho_t(z,z) \frac{dt}{t} d|z|^2.$$

$$\mu_{\mathrm{exc}}^{D,u}(\cdot) := \frac{1}{2} \iint_{\partial D \times \partial D} u(x) u(y) H_D(x,y) \mathbb{P}_{x,y}^{\mathrm{exc}}(\cdot) dx dy,$$

 $H_D(x,y) = \partial_{n_x} \partial_{n_y} G_D(x,y)$ boundary Poisson kernel.

Isomorphism for continuum GFF

2 indep. P.P.P.: critical Brownian loop-soup $\mathcal{L}_{1/2}$ (intensity $1/2\mu_{\mathrm{loop}}^D$) and E_u (intensity $\mu_{\mathrm{exc}}^{D,u}$).

Occupation measure $L(\mathcal{L}_{1/2})$ not locally finite. Centred occupation measure:

$$L^{\operatorname{ctr}}(\mathcal{L}_{1/2}) = \lim_{\varepsilon \to 0} L(\{\gamma \in \mathcal{L}_{1/2} | \operatorname{diam}(\gamma) \ge \varepsilon\}) - \mathbb{E}[L(\{\gamma \in \mathcal{L}_{1/2} | \operatorname{diam}(\gamma) \ge \varepsilon\})].$$

Isom orphism:

$$\begin{split} L^{\mathrm{ctr}}(\mathcal{L}_{1/2}) + L(E_u) &\stackrel{(d)}{=} \frac{1}{2} : \Phi^2 : + u\Phi + \frac{1}{2}u^2, \\ L^{\mathrm{ctr}}(\mathcal{L}_{1/2}) + L^{\mathrm{ctr}}(E_u) &\stackrel{(d)}{=} \frac{1}{2} : (\Phi + u)^2 :. \end{split}$$

The GFF on a metric graph

 $\mathcal{G} = (V, E)$ undirected graph. C(e) > 0 conductances on edges.

 $\widetilde{\mathcal{G}}$ metric graph associated to \mathcal{G} : each edge $e \in E$ is replaced by a continuous line of length $C(e)^{-1}$.

Discrete resistor \longrightarrow continuous conducting wire.

Metric graph GFF $\tilde{\phi}$: interpolate the discrete GFF ϕ with independent Brownian bridges inside edges.

Why do we like metric graph GFF?

- Gaussian
- Markov.
- Satisfies the intermediate value property.

Signed isomorphism on metric graph

 $\widetilde{\phi}_u$ metric graph GFF with b.c. $u \geq 0$ on $\partial \mathcal{G}$.

Metric graph Brownian motion. Metric graph loop measure. Metric graph measure on boundary-to-boundary excursions. Restriction to vertices: measures on discrete-graph paths.

2 indep. P.P.P: metric graph loop-soup $\widetilde{\mathcal{L}}_{1/2}$ and excursions \widetilde{E}_u . Occupation field $L(\widetilde{\mathcal{L}}_{1/2} \cup \widetilde{E}_u)$: sum of local times.

Signed isomorphism (L. 2014):

- ullet Sample $\widetilde{\mathcal{L}}_{1/2}$ and \widetilde{E}_u .
- Sample $\sigma_{\mathcal{C}} \in \{-1,1\}$ for \mathcal{C} cluster of $\widetilde{\mathcal{L}}_{1/2} \cup \widetilde{\mathcal{E}}_u$. $\sigma_{\mathcal{C}} = 1$ if \mathcal{C} contains an excursion $(\widetilde{\mathcal{E}}_u)$. If not, $\sigma_{\mathcal{C}}$ independent, $\mathbb{P}(\sigma_{\mathcal{C}} = -1) = \mathbb{P}(\sigma_{\mathcal{C}} = 1) = 1/2$.
- $\bullet \ (\sigma_{\mathcal{C}(x)} \sqrt{2L(\widetilde{\mathcal{L}}_{1/2} \cup \widetilde{E}_u)})_{x \in \widetilde{\mathcal{G}}} \stackrel{(d)}{=} \widetilde{\phi}_u.$

Clusters of $\widetilde{\mathcal{L}}_{1/2} \cup \widetilde{\mathcal{E}}_u$ exactly connected components of $\{\widetilde{\phi}_u \neq 0\}$.

First passage sets (FPS) of a metric graph GFF

 $ilde{\phi}_0$ metric graph GFF on $\widetilde{\mathcal{G}}$ with b.c. 0 on $\partial \mathcal{G}$.

First passage set of level $-a \le \inf u$:

$$\widetilde{\mathbb{A}}_{-a} := \{ x \in \widetilde{\mathcal{G}} | \exists \gamma \text{ path } x \overset{\gamma}{\leftrightarrow} \partial \mathcal{G}, \widetilde{\phi}_0 \geq -a \text{ on } \gamma \}.$$

Stopping set. Analogue of a first passage bridge of a Brownian motion.

In the signed isomorphism of $\widetilde{\phi}_0$ with $\widetilde{\mathcal{L}}_{1/2} \cup \widetilde{E}_a$, $\widetilde{\mathbb{A}}_0$ is the union of topological closures $\overline{\mathcal{C}}$ of clusters \mathcal{C} of $\widetilde{\mathcal{L}}_{1/2} \cup \widetilde{E}_a$ that contain at least an excursion (\widetilde{E}_a) .

Metric graph approximation and isomorphism

Proposition

Metric graph FPS converge in the fine mesh limit to continuum FPS.

Corollary

a>0. 2 indep. P.P.P of 2D Brownian loops and excursions: $\mathcal{L}_{1/2}$ and E_a . One can couple Φ and $\mathcal{L}_{1/2}\cup E_a$ on the same probability space such that

- $L^{\text{ctr}}(\mathcal{L}_{1/2}) + L(E_a) = \frac{1}{2} : \Phi^2 : +a\Phi + \frac{1}{2}a^2$,
- The FPS \mathbb{A}_{-a} is the union of topological closures of all clusters of $\mathcal{L}_{1/2} \cup \mathcal{E}_a$ that contain at least an excursion (\mathcal{E}_a) .

Corollary

The clusters in a critical 2D Brownian loop-soup $\mathcal{L}_{1/2}$ have a non-trivial Minkowski content in gauge $|\log(r)|^{\frac{1}{2}}r^2$

The gauge for clusters of a subcritical Brownian loop-soup is unknown.

Thank you for your attention!