
Random Trees via Conformal Welding

Peter Lin

June 19 2018

University of Washington

1



• Joint work with Steffen Rohde
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Conformal embeddings of triangulations

Let G be a triangulation of S2.

Glue together equilateral triangles according to G to get a

Riemann surface S which is topologically equivalent to S2.

By uniformization, there is a unique(up to Möbius transformation)

conformal isomorphism ϕ : S → Ĉ.
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Conformal embeddings of triangulations

The previous procedure gives a canonical way to embed G into Ĉ.

The measure structure on G pushes forward to a measure structure

on Ĉ via this embedding.

Problem: Let G be a uniform random triangulation with n faces.

Prove that as n→∞ the measure converges (to LQG).

Obstacle: Prove that the diameter of embedded triangles goes to

0 as n→∞.
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Conformal embeddings of triangulations

The previous procedure gives a canonical way to embed G into Ĉ.

The measure structure on G pushes forward to a measure structure

on Ĉ via this embedding.

Problem: Let G be a uniform random triangulation with n faces.

Prove that as n→∞ the measure converges (to LQG).

Obstacle: Prove that the diameter of embedded triangles goes to

0 as n→∞.

Related: Gwynne, Miller, Sheffield (2017) have shown that Tutte

embedding of mated-CRT map converges to LQG.
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Conformal embedding of trees

For the rest of this talk: consider the case when G arises from a

large random tree.

Let Tn a plane tree with n edges.

We can view Tn as a random triangulation of S2.

Combining this with the previous procedure gives a way of

canonically embedding the tree in Ĉ.
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Examples of Conformal embedding of trees
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Examples of Conformal embedding of trees

Degree 6 star:
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Examples of Conformal embedding of trees

Degree 80 star:
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Examples of Conformal embedding of trees

Trinary tree of depth 2:
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Examples of Conformal embedding of trees

Trinary tree of depth 9:

Donald Marshall’s zipper software
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Examples of Conformal embedding of trees

Tree with 30 edges:

Donald Marshall’s zipper software
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Examples of Conformal embedding of trees

Tree with 13000 edges:

Donald Marshall’s zipper software
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Examples of Conformal embedding of trees

Tree with 50000 edges:

Donald Marshall’s zipper software
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Examples of Conformal embedding of trees

Tree with 30000 edges:

Donald Marshall’s zipper software
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Convergence of conformally embedded trees

Let Tn be a uniformly random tree with n edges.

Does the embedding converge as n→∞?
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Convergence of conformally embedded trees

Let ϕn :
⊔2n

i=1 ∆/ ∼→ Ĉ be the embedding of Tn into Ĉ,

normalized so that ϕn(∞) =∞ and ϕ′n(∞) = 1.

Let fn be the conformal map from Ĉ\D to Ĉ\ϕn(Tn), normalized

in the same way.

Theorem (L, Rohde)

As n→∞, fn converges in distribution with respect to the sup

norm on C (Ĉ\D).

In particular the size of the edges goes to 0 as n→∞.
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Convergence of conformally embedded trees

Proof sketch
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Proof Sketch

Want to show: Size of edges goes to 0.

We do this by showing that w.h.p, there are lots of thick annuli

surrounding the edge.
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How to construct the annuli

Fix λ > 1.

T = random tree equipped with graph distance.

Let Xk be the points on T which are distance λk from the root.

Join these points with geodesics in the complement of the tree.
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How to construct the annuli

Need to find lots of thick annuli to bound size of edge (blue).

Create annuli by joining points by geodesics (red).
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How to construct the annuli

Need to find lots of thick annuli to bound size of edge (blue).

Create annuli by joining points by geodesics (red).
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Wishlist to make thick annuli

Conditions to ensure annulus is thick after welding?
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Wishlist to make thick annuli

1. Need bounded number of rectangles.
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Wishlist to make thick annuli

2. Need bounded geometry for rectangles.
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Wishlist to make thick annuli

3. Need to know something about the welding map.
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How to ensure that rectangle is still thick after welding

3. Need to know something about the equivalence relation.

If we can control the quality of the equivalence relation on a large

subset of the edge then we get control on the modulus. 15



How to ensure that rectangle is still thick after welding

If we can control the quality of the equivalence relation on a large

subset of the edge then we get control on the modulus.

It’s not enough that the sets on each side are large.

The equivalence relation should also behave nicely.

We know that quasisymmetry is good enough, however, in this

random setting, there is no hope of getting quasisymmetry. Need

something more flexible.
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Wishlist to make thick annuli

To get thick annuli, want

1. Bounded number of rectangles

2. Bounded geometry rectangles

3. Control over ∼ on interface
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Recap: how we show that an edge is small

For each edge, we

• Construct annuli by drawing circles of radius λk .

• Hope that many of the annuli we encounter satisfies the
following wishlist:

1. Bounded number of rectangles

2. Bounded geometry rectangles

3. Control over regularity of ∼ on the interface

To analyze this process and get the desired probabilistic bounds, it

is helpful to translate everything to the excursion picture.
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Excursions ↔ tree
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Translating to excursion picture:

Construct annuli by drawing circles of radius λk ↔ Construct

annuli by exploring upwards from y = 0: Look at excursions away

from height λk .

1. Bounded number of rectangles ↔ Bounded number of

excursions away from λk .

2. Bounded geometry rectangles ↔ Bounded ratios for excursion

interval lengths.

3. Control over regularity of ∼ on the interface ↔ control over

Hölder regularity of excursion.
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Translating to excursion picture:

Construct annuli by exploring upwards from y = 0: Look at

excursions away from λk that reach λk+1.

1. Bounded number of rectangles ↔ Bounded number of

[excursions away from λk that reach λk+1].

2. Bounded geometry rectangles ↔ Bounded ratios for excursion

interval lengths.

3. Control over regularity of ∼ on the interface ↔ control over

Hölder regularity of excursion.
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Translating to excursion picture:

Construct annuli by exploring upwards from y = 0: Look at

excursions away from λk that reach λk+1.

1. Bounded number of rectangles ↔ Bounded number of

[excursions away from λk that reach λk+1].

2. Bounded geometry rectangles ↔ Bounded ratios for excursion

interval lengths.

3. Control over regularity of ∼ on the interface ↔ control over

Hölder regularity of excursion.

This exploration process is a Markov chain.

The ’wishlist’ corresponds to a subset of the state space.

In the rest of the proof, we get large deviations estimates on the

amount of time that the Markov chain spends in the good part of

the state space. 21



Modulus and Gluing of rectangles

Lemma

We have

L . inf
µ−,µ+

E(µ−) + E(µ+).

• µ− ranges over probability measures on I− ∩ supp(∼)

• µ+ ranges over probability measures on I+ ∩ supp(∼)

• µ− and µ+ must be be equivalent with respect to ∼.

• Energy:

E(µ) =

∫∫
log

1

|x − y |
dµ(x)dµ(y).
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How to use this lemma for our problem:

Consider a toy model where we glue two squares together using the

equivalence relation from a random excursion.

What should we take for µ− and µ+?

23



How to use this lemma for our problem:

Consider a toy model where we glue two squares together using the

equivalence relation from a random excursion.

What should we take for µ− and µ+?

Notice that the support of ∼ is exactly the images of the left sided

and right sided inverse map of the excursion e on [0, e(1/2)]. 23



How to use this lemma for our problem:

Consider a toy model where we glue two squares together using the

equivalence relation from a random excursion.

What should we take for µ− and µ+?

Notice that the support of ∼ is exactly the images of the left-sided

and right-sided inverse map of the excursion e on [0, e(1/2)]. 23



How to use this lemma for our problem:

Thus we should take µ−, µ+ to be pullback of Lebesgue measure

on [0, e(1/2)] via e.

This demonstrates that the modulus L is controlled by the Hölder

regularity of e.
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Thank you!
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