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The Ising model notation

» For a finite graph with a vertex set V, define the

State space: {o:V — +1};

» ... and the Hamiltonian

H(o) = — Z T50y.

zy
sum over edges of the graph = pairs of nearest neighbors;
» ...and the Gibbs-Boltsmann distribution

P(o) = e*ﬁH(”)/Z, where Z = Z e~ PH(o)
o:V—+1

and g = % is the inverse temperature.



The phase transition

The graph: finite subset Q% C 672 for small § approximating a fixed
domain :




The phase transition

The graph: finite subset Q% C 672 for small § approximating a fixed
domain :




The scaling limit

The graph: finite subset Q% C 672 for small § approximating a fixed
domain :
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We are interested in the correlations at criticality: 8 = 3. = log(v/2 + 1).



Spin correlations (Chelkak—Hongler—K. 1., 2015)

There is a function (o, ...0,, )q : 2*™ \ diag — R such that
Eqs (04, .. 0y,) ~ C™ - 65 - {0y, ...0, Vg as § — 0;

The correlation function (o, . ..o, )q is conformally covariant:

n

(o0, --0u 00 =[] ¢ (W)

i=1

ool

A (01) -+ Tip(wn) ) ()

In the upper half-plane H, there is an explicit formula:

. .

V; — U5

(o oo =[lmul5 | Y sis ]|
=1

se{£1}" i<j

Vi — Uj

Similar results hold for plus/Dobrushin/etc. boundary conditions.
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More general correlations

How about more general random variables (“lattice fields”)
Eos (O1(21) ... Op () ~ 3T F25(O (1) ... Op ()

where O;(z;) only depends on spins at distance O(d) from z; (finite
number of lattice steps)?
In general, we expect much more complicated covariance rules.



General fields: example

Example: it is natural to expect

Eos ((Gu 46 — Ov,) - Ouy -+ 00, ) ~ 0T8O, (00, ... 00, ).

Since
n

1
<le s UU7L>Q = H |90/(v1)‘ s - <U<p(v1) s Uap(vn)>tp(Q)

i=1

we get

1
O%evy (Tuy -« Op, ) = OReny (8 log [¢' (v1)] +10g (T (v, - - - a¢(vn)>¢(9)> .

1
: H |90/('Ui)| 8- <0'ga(v1) s Utp(vn)>tp(Q)

i=1



Primary fields

Primary fields are those for which the simplest possible covariance rule
holds:

(O1(z1) ... On(zn))o =

n n

[T/ @) []@ @) - (O1(p(a1)) - Onle(@n))) (-
i=1 i=1
We will focus on four primary fields in the Ising model:
> spins o, indexed by vertices of 2° (A’ = A" = %);

V2

> energies ¢, = 0., 0. — %2, indexed by edges of 2

(A’ = A = %)’
> disorders 4, indexed by faces of Q° (A" = A" = &);

» fermions 7)., indexed by corners of ¢ (A = %7 A" = 0) (and its
“conjugate” ¥} with A’=07A=%)_



Primary fields

We will focus on four primary fields in the Ising model:

> spins o, indexed by vertices of 7;

> energies ¢, = 0c, 0c_ — ?, indexed by edges of 9 ;

disorders /i, indexed by faces of Q9 ;

v

fermions 1., indexed by corners of 7.

v

€+



Convergence theorem

» As 6 — 0, one has

Eqs (O1(x1) ... On(xn)) ~ [[ Ci-0% 27 (O1(21) . .. On(2n)) s

i=1
where each O; can be any of o, €, u, 1.

» The correlation functions (O1(x1)...On(2zn))q are conformally
covariant:

<01($1) . (xn»

n

- H (@) [P @) - (01(p(21)) ... Oulp(@n)) o).

» In the upper half-plane or an annulus, the formulas are (in principle)
explicit.

» Boundary conditions: free, plus, minus, or combinations thereof.



General local fields

Gheissari-Hongler—Park, Hongler—Kyto6l3-Viklund: many (all?) local
fields can be expressed in terms of discrete contour integrals involving

E(0u, vtz - - Ysy,) and E(vy, ...%.,, ).

Therefore, when combined with their results, convergence of spin-fermion
correlation yields a more general result.



Conformal field theory

A. Belavin, A. Polyakov, A. Zamolodchikov (1984), ... :

» postulated existence and conformal invariance of the scaling limit;
» deduced PDE for the correlation functions (BPZ equations);

» deduced fusion rules (asymptotics as some of the points collide
together);

» derived many explicit formulae for the correlations.



What is i,

» Given an arbitrary collection v of dual edges, define
[y 1= 6_2’62(101/)07#0 Tz0y
> Define

E(ttuy - - BuppOoy - - Ov, ) 1= E(liy00, .. 0p,),

where ~ is any subset of edges with

{u,...,um}=0ymod2={u: #{e€vy:e~u}is odd}

» Note that up to sign, this does not depend on the choice of ~.



IE(tty, - - . 0y, )| does not depend on ~

Eqs (buy HugOuy - - - 0v, ) = Eqs (lty0y, - .. 0y,,)

1
= ? Z Oyy -+ Oy, €XP (—B Z Ox0y + ﬂ Z O’IUy>

o0 —{+1} (zy)Ny#0 (zy)Ny=0
1 B
== Z Oyy - - - Oy, €XP (2 Z O'$O'y>
T:,, uy—{E1} TRY

(A ¢ A -’ /
/i i i/ )
/e




Moreover, there is a natural way to track the signs as vy, ..., v, and
U1,. .., U, move around in the lattice:

> If v; moves to v} ~ v;, just lift the move to the double cover.

> If u; moves to ul ~ u;, replace v with v + (u;u}) mod 2.

With this choice,

E(tuy - fu,, vy -+ - On,) H(ul — ;)2

(]

is a well-defined function of (v1, ..., uy) € (2°)%" x (Q%*)*m,



What is 1.,

We define, formally,

Xz += Ozollze
P, = (2* — zo)_%ééxz

This is understood by inserting identities into correlations: any expression
of the form

E(wm s ka:u’ul s My, Ovy v - Jvn>
is well defined

> up to sign at any particular point;

> as a (multi-valued) function of z1,...v,, living on the Riemann
surface of

[TCi = w)? [JCzi = w2 T = vy)2.



Convergence theorem

» As § — 0, one has

Egs (O1(21) ... On(wn)) ~ [[ Co-d® 2701 (21) ... On(@n))e2,
=1
where each O; can be any of o, €, pu, 9.

» The correlation functions in the right-hand side are conformally
covariant:

(O1(21) - .. On(n))o

—Hso (:) H ()™ - (01 (p(21)) - - On ()

i=1
» In the upper half-plane or an annulus, the formulas are (in principle)
explicit.
» Boundary conditions: free, plus, minus, or combinations thereof.



Fusion rules (or Operator Product Expansions)

Fusion rules are a collection of asymptotic expansions of correlation
functions as marked point collide together.
Example:

1 1 R . .
0y = |v— 0|73 1+§ew|fu—v|+o(v—v) , U= 0.
This is understood as follows:

(0,050)q = v — 8|~ {0,050)q

1
+ §|v—f1|%<ev(9> +o(v—0)1, v— 0,

oo

where O is anything (containing spins, energies, disorders and fermions)
away from v.



The rules

Vot = 2(0 — w) ™' + O — w),
Yaphl, = —2iey, + O(W — w),

baew = i(w —w) MYy, + O(1),
bt = ¢~ F (i — w)~F (5 + O — w)),
VO = e%(u? — w)_% (o + O — w)) ,
OO = | —w| ™7 <1—|— %ew\w—w| +o(w—w)) ,

7N
—_

1- 26w|1b—w|—|—0(zi)—w)>,

[T = | — w]|7 (P15 + O — w)),
€pw = [0 —w| 72+ O(1),

1
€GOy = 5\111 —w| o, +O0(1),

P oy = |0 — w| ™ T

L . _
quw=—§|w—w\ Y, 4+ O(1).



Application to SLE3 variants

Spins configurations can be put in correspondence to loop configurations:

Configurations := {S C Edges((22°)*) : S = 0 mod 2}.
P(S) = %:Elsl, where £ = ¢ 2% = /2 — 1.



Application to SLE3 variants

» |t is natural to generalize this to:

Configurations := {S C Edges((Q°)*) : dS = uy, ..., u, mod 2}.

1
P(S) = !5
(5) =~
» Apart from loops, there are now interfaces connecting w1, ..., Uy, in
some order.
> If uy,...,u,, are on the boundary, then this corresponds to imposing

+/—/.../+ /— boundary conditions.



Application to SLE3 variants

v

D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kemppainen, S.
Smirnov, 2007-2013: interface with 4+/— boundary conditions
converges to SLEj;

v

C. Hongler, K. Kytdla, 2013: interface with +/ — /free boundary
contitions converges to dipolar SLEg;

v

S. Benoist, C. Hongler, 2016 (based on Hongler-Kyt6l3): the whole
collection of loops converges to CLE;5.

v

K. I., 2013-2017: any number of boundary arcs with +, — and free
boundary conditions, multiply connected domains, radial SLE's, ....

V. Beffara, E. Peltola, H. Wu, 2017: axiomatic approach.

v



Application to SLE3 variants

U2

Uy

Bold: a random condiguration S with 95 = {u1,uz}.
Dashed: a non-random “disorder line” v with 9y = {u1,uz}.
S/~ gives rise to a spin configuration with Ising probability measure

tilted by
My = 672’8 Z(wy)ﬁ"f#@ Tx0y



Martingale observables

Let B, be the initial segment of the interface starting from ;.
Then,

EQ‘S\B[n] (OM’YAB[n])
Eqs\g,,, (yap,)

= EQ‘S\[}[”],tiltcd(O) = Esz5,tiltcd(o|§(5[n]))

is a martingale with respect to §(S},)).

This is enough to characterize the scaling limit of ~

Usually, the most convenient choice is O = 1,1, with w ~ u; for some
j#1 (as is the case for the original Smirnov’s observable for chordal SLE)



Limits of the interfaces

This is enough to characterize the scaling limit of ~

bs + + +
gt

free N
+
bo
ree
by d
3/2 3/2 3/2

D=0 a =0 at) — by

43 (a(t) _ bivbs —ba + bav/bs _b1>_1dt
Vb3 — b+ v/b3 — b .

dt

da(t) = V/3dB, — -




Overview of the proof

> It suffices to consider E(¢, ... 1., 04, ... 04, ):
e E (2* = 2°) T E0% 00 e = e = (20— 2°) 207 20,000

7/)z7f1w = Z'(z°fzo)710woazo672BUW°"Z° = ’IZ(Z.*ZO)il (1 - \/ﬁgwogzo) .

> "“Ising model is a free fermion™: pfaffian structure of the correlations

E(y o 02,00, .. 0y,) _pt E(¢., 42,00, ... 00,)
E(oy, -..00,) E(oy, -..00,)

(caveat: z; is allowed to be one lattice step away from z; or v;.)



Overview of the proof: properties of 1,

» Discrete holomorphicity: E(1,.O) is discrete holomoprhic in z (away
from other marked points)

= (any subsequential) limit < ¥, > is holomorphic.

» Boundary conditions: (any subsequential) limit satisfies

3R, fixed b. c.
<0 e {7’ ixed b. ¢

7. 2 iR, freeb. c.

=

(7, € C is the unit tangent vector at z to the boundary.)

» Tractable behaviour at singularities: (any subsequential) limit
satisfies the OPEs
Yothw =20 — w) ™' + O — w);
Yatby, = O(1);
Yoo = e (i —w) "3 (py + O —w));



Convergence of discrete holomoprhic functions

» When points are apart, we deduce

1Eqs (Y000, - .. 00,)

5
Eqs(0p, .- 00,) (00, - Ou, )0

where the RHS is a holomoprhic spinor solving a well-posed,
conformally covariant boundary-value problem, with singularities of
the type

(z—w)™t and e™a;(z —vy) 3, aj € R.
» When z is adjacent to v; (that is, at distance ¢ from v;), we expect

an additional factor of §=2. This turns out to be is indeed true:

671(2 v )% ]EQ5 (wzwwavl ce Uvn) N C/ . <7/}w,ufv1 ce UUT,,>Q
! Eqs(oy, .. .00,) (Oyy -+ -0v, )0

where the fraction in the RHS is equal to «. Similarly when w ~ v;
and/or w ~ z.



Pure spin correlations

» Let ¥; be adjacent to vy, and take z,w as follows:

EQ5 (¢z¢w0v1 e

EQJ (O’v1 e

» This allows one to compute the limits of ratios

EQ&(U{}I ...O'{,n) <0’{,1...0'@n>9
— .
Eqs(oy, -..00,) (Opy 00, )02

» Finally, we use that
Eqs (le s UU%) ~ Ecs (Jvl 01}2) o Egs (Uvzn—l O—U2n)

as V1 —> V2,...,02p—-1 — V2pn.



Thank you!





