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Preview: Main Idea

Just heard from Peter Lin:
Embedding the CRT as a limit of embeddings of finite trees.

This talk: 
✤ Originally motivated by same question (embedding CRT)
✤ Different approach: embed trees as growth processes
✤ Use Loewner equation
✤ Approach adds geometric difficulty
✤ Benefits:

• Links embedding problem to SLE
• Geometric and analytic properties of independent interest
• Hope: useful for scaling limit of discrete processes?



Galton-Watson trees 
Describe the genealogy of birth-
death processes.

Preview: Main Idea

Continuum Random Tree 
scaling limit of GW trees, 
conditioned to be large

Chordal Loewner equation 

Growing hulls 

Evolving real measures
()



Preview: Main Idea

Question 1: Can we use the Loewner equation to construct embeddings 
of Galton-Watson trees in the upper half plane (as growth processes)?

Question 2: Can we construct an embedding of the CRT as a limit of 
these embeddings of finite Galton-Watson trees?



Preview: Main Idea

Answer to Q1:
Let μt be the evolving real measure:

• supp(μt) is a particle system on the real line
• branching determined by a tree T 

- “birth” in T: particle duplicates 
- “death” in T: particle disappears 

• repulsion ~ (xi � xj)
�1

“Theorem”: Let Ks = hull generated by the Loewner equation with 
driving measure μ above.
✤ Ks  is a graph embedding of the subtree of Ts 

✤ Ks ⊂ Ks’ if s < s’. 



Contents

✤ Background
• Plane trees
• Loewner equation and SLE

✤ A specific tree embedding

✤ Finding the scaling limit: tightness and an SPDE



The Continuum Random Tree
Definition: The continuum random tree (CRT) is the random metric tree 
coded by the normalized Brownian excursion   . 
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The Continuum Random Tree
Note: many different contour functions code the same metric tree.

Goal: Take the scaling limit of embedded plane trees to get an 
embedding of the CRT.

CRT
•Limit of metric trees distributed according to the uniform distribution 

on Dyck paths.
•A random metric space. Not directly a limit of random planar maps.



• Graph distance from the root = time parameter:
branching processes         plane trees.

Plane trees as growth processes

tim
e 
→

• Our approach: think of trees as growth processes

()
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Let γ : (0, T] → ℍ be a simple curve with γ(0) ∈ ℝ. 

Loewner (1920s): gt satisfies the initial value problem

ġt(z) =
ḃ(t)

gt(z) � U(t) , g0(z) = z.

The Loewner Equation & SLE



Generalized version: Let gt(z) denote the solution to the initial value problem

ġt(z) =

�

R

μt(du)

gt(z) � u , g0(z) = z.

Geometry of Ht?  Need to know fine properties of μt.

Then gt is the unique conformal map from Ht onto ℍ with the hydrodynamic 
normalization.

Let  Ht = {z ∈ ℍ} for which gt(z) ∈ ℍ is well defined.

Idea: The measure is supported on points that are escaping ℍ.

Hull generated by μt: Kt =  ℍ∖Ht.

The Loewner Equation & SLE



3)                          produces the multislit equation:

ġt(z) =
N�

i=1

1
gt(z) � Ui(t)

.

μt =
N�

i=1
δUi(t)

The Loewner Equation & SLE

Goal: Piece together simple curves in multislit equation. (N is varying.)

We consider the generalized Loewner equation for discrete driving measures μt:

ġt(z) =

�

R

μt(du)

gt(z) � u , g0(z) = z.

2)                    generates SLEκ.μt = δ�
κBt

Examples:
1) μt = δU(t)



Tree Embedding: (α, β)-approach
Setup:
✤ U1, . . . , Un continuous functions Ui : [0,T] → ℝ 
✤ Uj (0) = Uj+1 (0)
✤ mutually nonintersecting: Ui (t) < Ui+1 (t), i = 1, . . . , n,  t ∈ [0,T]

μt = c
n�

i=1
δUi(t)

(Motivated by 
Schleissinger ’12.)

Local behavior: want hulls ρKt to converge in the Hausdorff metric to 
Vα,β inside the disc DR centered at 0. (Call this property (α,β)-approach.)



Tree Embedding: (α, β)-approach
Theorem (H, Menon, 2017): In the setting above, if 

for φ1(α, β) and φ2(α, β) given below, then the hulls Kt approach ℝ in     
(α, β)-direction at Uj (0).

lim
t�0

Uj(t) � Uj(0)�
t

= φ1(α, β) � φ2(α, β)

lim
t�0

Uj+1(t) � Uj+1(0)�
t

= φ1(α, β) + φ2(α, β),

φ1(α, β) =
�
c (1+ x � 3a � 3bx)�

a(1� a) � 2abx + b(1� b)x2

φ2(α, β) =
�
c
�

(1� a)2 + 2x(a + b + ab � 1) + x2(1� b)2
a(1� a) � 2abx + b(1� b)x2 ,

where α=aπ,  β=bπ, and x=x(a,b) is the unique negative root of
�a + a3 + 3ax � 3a2x � 3abx + 3a2bx + 3bx2 � 3abx2 � 3b2x2 + 3ab2x2 � bx3 + b3x3.



Tree Embedding: (α, β)-approach
Balanced case: If 0 < α = β < π/2, then φ1 and φ2 simplify to

φ1(α, α) = 0 and φ2(α, α) =
�
2c

�
π � 2α

α .

Intuitively: Loewner scaling

•If μt generates hulls Kt, then ρμt/ρ2 generates the hulls ρKt. 

•So, expect to see √t whenever a hull is preserved under dilation.

Advantage of explicit expressions for φ1 and φ2:

• Gives the precise angles. 



Tree Embedding: (α, β)-approach
Proof idea:
Use estimates on conformal radius (comparable to Euclidean distance)

Need to uniformly bound 

(Show contribution of other driving points is negligible.)                             

rad(w,H \ ⇢Kt) =
2=(g⇢t (w))��(g⇢t )0(w)

��

Kt ρKt

���
�

�z (ht(z)) � gρt (z))
���.
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On time intervals without branching, how should the Uν evolve?
✤ Dyson Brownian motion? We’ll come back to this at the end.

Let T = {ν, h(ν)} be a marked plane tree. 
✤ Think: h(ν) = time of death of ν

μt = c
�

ν�ΔtT
δUν(t).Let μt be supported on elements of T alive at t:

A Specific Tree Embedding



Let T = {ν, h(ν)} be a marked plane tree. 
✤ Think: h(ν) = time of death of ν

Theorem (H, Menon, 2017) : Let T  be a binary tree with hν ≠ hη.
Let {Ks} be the hulls generated by the Loewner equation driven by μ. 
Then each Ks is a graph embedding of the subtree

Ts = {ν � T : h(p(ν)) < s}

in ℍ, with the image of the root on the real line, and Ks ⊂ Ks’ if s < s’.

On time intervals without branching:

μt = c
�

ν�ΔtT
δUν(t).

U̇ν(t) =
�

ν �=η�ΔtT

c1
Uν(t) � Uη(t)

.

Let μt be supported on elements of T alive at t:

A Specific Tree Embedding



The proof relies on analyzing the interacting particle system

U̇ν(t) =
�

ν �=η�ΔtT

c1
Uν(t) � Uη(t)

.

• Extend the solution backward to the initial condition Uj (0) = Uj+1(0).

• Show that the solution gives simple curves away from t = 0.
(Use Marshall & Rohde ’05, Lind ’05, Schleissinger ’13)

• Show that the generated hull approaches ℝ in (α, α)-direction for 

α =
π

2+ c1
2c

.

Proof (idea):

□

A Specific Tree Embedding



Application: Galton-Watson Trees

(Simulation courtesy of Brent Werness.)

Resulting embedding of a sample of a binary Galton-Watson 
tree with exponential lifetimes.



Scaling Limit?

Question 2 (geometric scaling limit):  

• Let {Tk} be a sequence of random trees that (when appropriately 
rescaled) converges in distribution to the CRT when Tk is conditioned 
on having k edges. 

• Does the law of the generated hulls converge to a scaling limit?

Question 2a (first step): 

• Find the scaling limit of the corresponding sequence of measure-
valued processes.



Choosing a Sequence of Measures

where the Uν(t) evolve according to

• Remains to choose random trees {Tk} and constants         and        .

• Same setting as tree embedding theorem.

Let {Tk} be a sequence of random trees.
Let         and         be two sequences in ℝ+. For each k, define

μk
t = ck

�

ν�ΔtTk

δUν(t),

U̇ν(t) =
�

ν �=η�ΔtTk

ck1
Uν(t) � Uη(t)

.

{ck} {ck1}

{ck} {ck1}



Theorem (Aldous ’91): Tk converges in distribution to the CRT as k→∞.

The Scaling Limit

Choose: Tk distributed as a critical binary Galton-Watson tree with 
exponential lifetimes of mean      , conditioned to have k edges.

1
2
�
k



The Scaling Limit

Theorem (H, Menon ’17): For each k, let Tk be distributed as a critical 
binary Galton-Watson tree with exponential lifetimes of mean      , 
conditioned to have k edges, and let {μk} be the corresponding sequence 
of measures. 
If the scaling constants are

ck = ck1 =
1�
k

• Choose             , since the ratio           determines the branching angle.
•                    is the rescaling for which the total population process of 

Tk  converges to      , the local time at level t of the normalized 
Brownian excursion.

Lt
ck = 1/

�
k

ck1/ckck = ck1

1
2
�
k

then the sequence {μk} is tight in                    DMf(R̂)[0, �).



The Scaling Limit

Local time at level t of
normalized Brownian 

 excursion:       (Pitman)Lt

Normalized Brownian 
 excursion ( )0�t�1

tim
e 
→

Contour function

Galton-Watson 
process



The Flow of the Stieltjes Transform

Theorem (H, Menon ’17):
Then f (t, z) has the distribution of the solution to the equation

�t f = �c1
c f �z f �

c1
2 �2z f +

c
z � Yt

�tNt,

f (t, z) =

�

R

1
z � xμt(dx).

where Yt �
μt�

|μt� | .

Setup:
•Nt be a critical binary Galton-Watson process with exponential lifetimes. 
•T is the genealogical tree of Nt, so that Nt =|∆tT|.
•μt be defined as before, with indexing tree T. 
• f (t, z) denotes the Stieltjes transform of μt.

• To understand the limit, reframe problem in terms of the evolution of 
the Stieltjes transform:



The Flow of the Stieltjes Transform

Question 3: Can we identify a limiting equation?

For the sequence of constants                       , we have equations

�t fk = �fk �z fk � 1
2
�
k

�2z fk +
1

z � Yk
t
�t

Nk
t�
k
.

ck = ck1 =
1�
k



Conjecture (H, Menon): In the unconditioned case, the limit                             

Conjectural Limiting Equation

exists, and there is a real constant σ > 0 such that f has the same 
distribution as the solution to the equation

where h(z,t) is the Gaussian analytic function with covariance kernel

Motivation: jumps happen very quickly compared to the diffusion of μt. 

E (h(z, t)h(w̄, t�)) = δ(t � t�)
�

R

1
z � x

1
w̄ � xμ

�
t (dx).

�t f = �f �z f + σh(z, t),

f = lim
k!1

fk =

Z

R

1

z � x

µ

1
t (dx)



Further evidence: Let ρ(x,t) denote the density of the limiting measure.
(We don’t know a density exists, but suppose it does.)

Conjectural Limiting Equation

Dawson-Watanabe superprocess (superbrownian motion)
Scaling limit of branching Brownian motion. 
The limiting density ρ satisfies

where      is space-time white noise. [Dawson ’75, LeGall ’99]Ẇ

�

�tρ(x, t) =
1
2�2

xρ(x, t)
� �� �
motion term

+
�
σ2ρ(x, t) · Ẇ

� �� �
branching term

,

Motion term is time derivative of density of particle motion. 
(Density of Brownian motion satisfies the heat equation.)



Dawson-Watanabe superprocess:

Conjectural Limiting Equation

�

�tρ(x, t) =
1
2�2

xρ(x, t)
� �� �
motion term

+
�
σ2ρ(x, t) · Ẇ

� �� �
branching term

,

Our case: Motion given by the complex Burgers equation:

�

�tρ(x, t) = ��x (ρ · Hρ) +
�
σ2ρ(x, t) · Ẇ,

where f (z,t) is the Stieltjes transform, from which we can derive

�t f = �f �z f,

where        is the Hilbert transform of ρ.Hρ

Exactly the boundary limit of the equation in the conjecture!

�
Hρ(x, t) =

p.v.
π

�

R

1
x � ξρ(ξ, t)dξ

�



Open Problems and Applications

dUi = dBi +
�

j �=i

dt
Ui � Uj

✤ Repulsion force = deterministic part of 
Dyson Brownian motion.                 
Dyson BM with branching?

✤ Geometric limit of these embeddings

✤ Scaling limit of discrete models?

✤ Applications to growth processes that 
exhibit branching behavior?          



Thank you!

Simulation for Dyson Brownian motion



Thank you!

Questions?


