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Preview: Main Idea

Just heard from Peter Lin:

Embedding the CRT as a limit of embeddings of finite trees.

This talk:
+ Qriginally motivated by same question (embedding CRT)

+ Different approach: embed trees as growth processes
+ Use Loewner equation
+ Approach adds geometric difficulty
+ Benetfits:
- Links embedding problem to SLE
- Geometric and analytic properties of independent interest

- Hope: usetul for scaling limit of discrete processes?



Preview: Main Idea

Galton-Watson trees Chordal Loewner equation
Describe the genealogy of birth-
death processes. Growing hulls
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Preview: Main Idea

Question 1: Can we use the Loewner equation to construct embeddings
of Galton-Watson trees in the upper half plane (as growth processes)?

Question 2: Can we construct an embedding of the CRT as a limit of
these embeddings of finite Galton-Watson trees?




Preview: Main Idea

Answer to Q1:
Let u: be the evolving real measure:
* supp(us) is a particle system on the real line
* branching determined by a tree T
- “birth” in T: particle duplicates
- “death” in T: particle disappears
* repulsion ~ (z; —z;)™"

“Theorem”: Let K; = hull generated by the Loewner equation with

driving measure u above.
+ Ks is a graph embedding of the subtree of 7

o K5CK5’ 1fS<S,.




Contents

+ Background
- Plane trees

- Loewner equation and SLE
+ A specific tree embedding

+ Finding the scaling limit: tightness and an SPDE



The Continuum Random Tree

Definition: The continuum random tree (CRT) is the random metric tree
coded by the normalized Brownian excursion .

Uniform distribution on Dyck paths (length 2n) — e.
Uniform distribution on plane trees (n edges) — CRT.
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The Continuum Random Tree

Note: many different contour functions code the same metric tree.

CRT
e Limit of metric trees distributed according to the uniform distribution
on Dyck paths.

* A random metric space. Not directly a limit of random planar maps.

Goal: Take the scaling limit of embedded plane trees to get an
embedding of the CRT.



Plane trees as growth processes

e Our approach: think of trees as growth processes

e Graph distance from the root = time parameter:

branching processes < plane trees.




The Loewner Equation & SLE

Let v : (0, T] — H be a simple curve with y(0) € R.

Loewner (1920s): g satisfies the initial value problem

. .
gt(z) o gt(z) = u(t)7 gO( ) e




The Loewner Equation & SLE

Generalized version: Let ¢«(z) denote the solution to the initial value problem

w,(du)
R 8:(2) —u

81(z) = , 8o(z) =z

Let H;= {zeH] for which g«(z) eH is well defined.

Then g; is the unique conformal map from H; onto H with the hydrodynamic
normalization.

Hull generated by u: Ki= H\H..

Idea: The measure is supported on points that are escaping H.

Geometry of H;? Need to know fine properties of ;.



The Loewner Equation & SLE

We consider the generalized Loewner equation for discrete driving measures p:

[
g1(z) = e

go(z) = z.

Examples:
1) pt = du

2) t, = 0. /zp, generates SLE,.

N
3)u, = Z Ou,(r) produces the multislit equation:

i=1 N

i—1

Goal: Piece together simple curves in multislit equation. (N is varying.)



Tree Embedding: («, [3)-approach

+ Ui, ..., U, continuous functions U;: [0,T] - R
+ U;(0) = Uj+1 (0)
+ mutually nonintersecting: U; (t) < U1 (t),i=1,...,n, t€[0,T]

n
ty = ¢ Z 6Ui(t)
=1

Local behavior: want hulls pK; to converge in the Hausdorff metric to
Vo g inside the disc Dr centered at 0. (Call this property (a,3)-approach.)

(Motivated by
Schleissinger "12.)




Tree Embedding: («, 3)-approach

Theorem (H, Menon, 2017): In the setting above, if

. U;(t) — U;(0)
}{% : o ] o ¢1(0‘7:8) _gbz(a,ﬁ)

lim Uj1(t) \—/ZU]-H(O) = ¢, (a,B) + ¢, (a, B),

N0

for p1(a, B) and ¢2(ar, B) given below, then the hulls K; approach R in
(o, B)-direction at U; (0).

(1 4+ x — 3a — 3bx)
a(1 —a) — 2abx + b(1 — b)x?

by (; =\f

(1 —a)?+2x a+b+ab—1)+x2(l—b)
@i \/_\/ a(1 —a) — 2abx + b(1 — b)x? :

where a=am, B=bm, and x=x(a,b) is the unique negative root of

—a+a° + 3ax — 3a°x — 3abx + 3a’bx + 3bx> — 3abx? — 3b%x? + 3ab’x* — bx> + b33,



Tree Embedding: («, 3)-approach

Balanced case: If 0 < a = § < 71/2, then ¢1 and ¢, simplify to

br(a,0) =0 and gya.a) = VI 22

Intuitively: Loewner scaling

oIf 1; generates hulls Ky, then puy 2 generates the hulls pK..

*So, expect to see vVt whenever a hull is preserved under dilation.

Advantage of explicit expressions for ¢1 and ¢o:

e Gives the precise angles.



Tree Embedding: («, [3)-approach

Proof idea:
Use estimates on conformal radius (comparable to Euclidean distance)
23(gy (w))
rad(w, H \ pK;) =
(g)! (w)]

0
Need to uniformly bound ‘ 9 (h(2)) — 8i (2)) |

(Show contribution of other driving points is negligible.)




A Specific Tree Embedding

Let 7 = {v, h(v)} be a marked plane tree.
< Think: h(v) = time of death of v

Let u: be supported on elements of 7 aliveatt: Y, =¢ Z Ou, (£)-
VEAtT

On time intervals without branching, how should the U, evolve?

+ Dyson Brownian motion? We’ll come back to this at the end.



A Specific Tree Embedding

Let 7 = {v, h(v)} be a marked plane tree.
< Think: h(v) = time of death of v

Let u: be supported on elements of 7 aliveatt: Y, =¢ Z Ou, (£)-
VéAtT

On time intervals without branching:

W= 0 Uv(t)—lun(t)'

V#HGAtT

Theorem (H, Menon, 2017) : Let 7 be a binary tree with h, = h,,.
Let {Ks} be the hulls generated by the Loewner equation driven by p.
Then each K;is a graph embedding of the subtree

T. = {veT:hpW) <s)

in H, with the image of the root on the real line, and K; C Ky if s <5’




A Specific Tree Embedding

Proof (idea):

The proof relies on analyzing the interacting particle system
C1

O

V#ﬂEAtT !

e Extend the solution backward to the initial condition U;(0) = U;+1(0).

e Show that the solution gives simple curves away from ¢ =0.
(Use Marshall & Rohde ’05, Lind 05, Schleissinger "13)

e Show that the generated hull approaches R in (a, a)-direction for

. 7C
s

[0



Application: Galton-Watson Trees

Resulting embedding of a sample of a binary Galton-Watson
tree with exponential lifetimes.

(Simulation courtesy of Brent Werness.)



Question 2 (geometric scaling limit):

e Let {7} be a sequence of random trees that (when appropriately
rescaled) converges in distribution to the CRT when 7 is conditioned
on having k edges.

e Does the law of the generated hulls converge to a scaling limit?

Question 2a (first step):

e Find the scaling limit of the corresponding sequence of measure-
valued processes.



Choosing a Sequence of Measures

Let {/x} be a sequence of random trees.
Let {c"} and {c/} be two sequences in R+. For each k, define
‘L[ItC ) Ck Z 6111,(1‘)7
VGAtﬁ

where the U,(t) evolve according to

S B et

vENEANTE

e Same setting as tree embedding theorem.

e Remains to choose random trees {7i} and constants {c*} and {c}}.



The Scaling Limit

Choose: 7T distributed as a critical binary Galton-Watson tree with
1

exponential lifetimes of mean 7z, conditioned to have k edges.

Theorem (Aldous '91): Tk converges in distribution to the CRT as k—c.




The Scaling Limit

Theorem (H, Menon ’17): For each k, let 7k be distributed as a cr1t1ca1
binary Galton-Watson tree with exponential lifetimes of mean 2{ T
conditioned to have k edges, and let {uf} be the corresponding sequence
of measures.

[f the scaling constants are

L 1

then the sequence {u*} is tight in D M(R) 0, 00).

e Choose ¢* = ¢!, since the ratio ¢! /c* determines the branching angle.

o * = 1/Vk is the rescaling for which the total population process of
Tr converges to L., the local time at level t of the normalized

Brownian excursion.



The Scaling Limit

Contour function

L
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Galton-Watson
E 5 process

! |

Normalized Brownian Local time at level f of

excursion (®)o<t<1 normalized Brownian
excursion: L. (Pitman)



The Flow of the Stieltjes Transform

e To understand the limit, reframe problem in terms of the evolution of
the Stieltjes transform:

fit.2) = [ il

T e 00

Setup:

* N; be a critical binary Galton-Watson process with exponential lifetimes.
e 7 is the genealogical tree of Ny, so that Ny=1A:T1.

* 1t be defined as before, with indexing tree 7.

¢ f(t, z) denotes the Stieltjes transform of p.

Theorem (H, Menon "17):

Then £ (¢, z) has the distribution of the solution to the equation
C1 C1 A2 C
= e Doty N,
el 10 e SO Z—Ytat t
Hy— .
- |

where Y, ~




The Flow of the Stieltjes Transform

1 .
For the sequence of constants ¢* = ¢ = —, we have equations

vk

K
Ot fk = —f Oz Jx \/— O | —1Yk \Z\/];;

Question 3: Can we identify a limiting equation?




Conjectural Limiting Equation

Conjecture (H, Menon): In the unconditioned case, the limit

i = I fk:/R ~— 15 (da)

k— 00

exists, and there is a real constant o >0 such that f has the same
distribution as the solution to the equation

O f = —fO,f + oh(z, 1),

where h(z,t) is the Gaussian analytic function with covariance kernel

E (h(z, h(m, ') = 5(¢t — ) / L e

R4 X

Motivation: jumps happen very quickly compared to the diffusion of u.




Conjectural Limiting Equation

Further evidence: Let p(x,t) denote the density of the limiting measure.
(We don’t know a density exists, but suppose it does.)

Dawson-Watanabe superprocess (superbrownian motion)
Scaling limit of branching Brownian motion.

The limiting density p satisfies

%p(x,) —82 —|—\/(72 X )

motlon term branchmg term

where W is space-time white noise. [Dawson 75, LeGall '99]

Motion term is time derivative of density of particle motion.
(Density of Brownian motion satisfies the heat equation.)



Conjectural Limiting Equation

Dawson-Watanabe superprocess:

0 _1 2 y) /
ap(x, I — 2(‘ix,o(x, t)—l—\/a o(x,t) - W,
e e

motion term branching term

Our case: Motion given by the complex Burgers equation:

0f = ~fuf

where f(z,t) is the Stieltjes transform, from which we can derive

0 :
L - : 2 :
—p(x,t) = —0x (p- Hp) + 1/ 0p(x, 1) - W.

where Hp is the Hilbert transform of p. (H,o(x, el / - : é,o(ci, t)dé)
-

Tt

Exactly the boundary limit of the equation in the conjecture!




Geometric limit of these embeddings

Repulsion force = deterministic part ot
Dyson Brownian motion.
Dyson BM with branching?

Applications to growth processes that
exhibit branching behavior?

Scaling limit of discrete models?

dl; = dB; + Z
i

dt

;-




Thank you!

Simulation for Dyson Brownian motion



Thank you!

Questions?



