Annulus SLE partition functions and martingale-observables

Joint work with Nam-Gyu Kang, Hee-Joon Tak

Sung-Soo Byun Seoul National University

Random Conformal Geometry and Related Fields

June 18, 2018

Outline

Annulus SLE partition functions

- Annulus $SLE(\kappa, \Lambda)$
- Null-vector equation

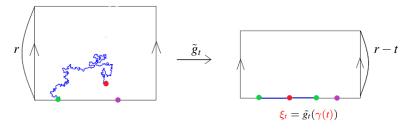
2 CFT of GFF in a doubly connected domain

- GFF with Dirichlet and Excursion-Reflected boundary conditions
- Eguchi-Ooguri and Ward's equations
- Coulomb gas formalism

3 Connection to SLE theory

- One-leg operator and Insertion
- Martingale-observables for annulus SLE
- Screening

4 Work in progress: Multiple SLEs in the annulus



- Loewner Flow: $\partial_t \tilde{g}_t(z) = H(r t, \tilde{g}_t(z) \xi_t), \quad H(r, z) := 2\partial_z \log \Theta(r, z)$
- Driving process: For $\kappa > 0$, $d\xi_t = \sqrt{\kappa} dB_t + \Lambda(r t, \xi_t \tilde{g}_t(q)) dt$.
- Annulus SLE partition function Z(r, x):

$$\Lambda(r,x) = \kappa \partial_x \log Z(r,x)$$

■ Null-vector equation (Zhan):

$$\partial_r Z = \frac{\kappa}{2} Z'' + H Z' + \left(\frac{3}{\kappa} - \frac{1}{2}\right) H' Z$$

The null-vector equation

■ Null-vector equation (Zhan):

$$\partial_r Z = \frac{\kappa}{2} Z'' + H Z' + \left(\frac{3}{\kappa} - \frac{1}{2}\right) H' Z$$

 Lawler used Brownian loop measures to define annulus SLE(κ, Λ) and proved that the SLE partition function (total mass) satisfies the null-vector equation.

• (B.-Kang-Tak) For each $\kappa > 0$,

$$Z(r,x) := \Theta(r,x)^{\frac{2}{\kappa}} \oint_{\gamma} \Theta(r,x-\zeta)^{-\frac{4}{\kappa}} \Theta(r,\zeta)^{-\frac{4}{\kappa}} d\zeta$$

solves the null-vector equation.

Examples

Outline

Annulus SLE partition functions

- Annulus $SLE(\kappa, \Lambda)$
- Null-vector equation

2 CFT of GFF in a doubly connected domain

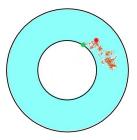
- GFF with Dirichlet and Excursion-Reflected boundary conditions
- Eguchi-Ooguri and Ward's equations
- Coulomb gas formalism

3 Connection to SLE theory

- One-leg operator and Insertion
- Martingale-observables for annulus SLE
- Screening

4 Work in progress: Multiple SLEs in the annulus

Green's functions in a doubly connected domain Dirichlet BM and ERBM



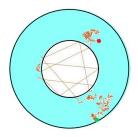


Figure: BM

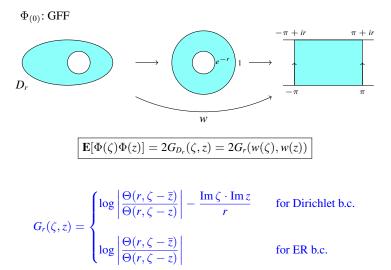
Figure: ERBM (Drenning, Lawler)

• In the cylinder $C_r := \{z : 0 < \text{Im } z < r\}/\langle z \mapsto z + 2\pi \rangle$, the Green's function G_r is represented as

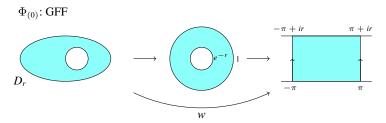
$$G_r(\zeta, z) = \begin{cases} \log \left| \frac{\Theta(r, \zeta - \overline{z})}{\Theta(r, \zeta - z)} \right| - \frac{\operatorname{Im} \zeta \cdot \operatorname{Im} z}{r} & \text{for Dirichlet b.c.} \\\\ \log \left| \frac{\Theta(r, \zeta - \overline{z})}{\Theta(r, \zeta - z)} \right| & \text{for ER b.c.} \end{cases}$$

GFF in a doubly connected domain

Dirichlet and ER boundary conditions



Central charge modification of GFF



Fix a real parameter $b (=\sqrt{\kappa/8} - \sqrt{2/\kappa})$ and define

 $\Phi_{(b)}(z) := \Phi_{(0)}(z) - 2b \arg w'(z).$

• The central charge is given as $c = 1 - 12b^2 = (6 - \kappa)(3\kappa - 8)/2\kappa$

■ The *Fock space fields* are obtained from the GFF by applying basic operations: 1. derivatives; 2. Wick's product ⊙; 3. multiplying by scalar functions and taking linear combinations.

OPE family of GFF

Fix a real parameter $b (=\sqrt{\kappa/8} - \sqrt{2/\kappa})$ and define

 $\Phi_{(b)}(z) := \Phi_{(0)}(z) - 2b \arg w'(z).$

• The central charge is given as $c = 1 - 12b^2 = (6 - \kappa)(3\kappa - 8)/2\kappa$

- The *Fock space fields* are obtained from the GFF by applying basic operations: 1. derivatives; 2. Wick's product ⊙; 3. multiplying by scalar functions and taking linear combinations.
- Operator product expansion (OPE) of two (holomorphic) fields $X(\zeta)$ and Y(z) are given as

 $X(\zeta)Y(z) = \sum C_n(z)(\zeta - z)^n, \quad \zeta \to z.$

In particular, the *OPE multiplication* $X * Y := C_0$.

• *OPE family* $\mathcal{F}_{(b)}$ of the $\Phi_{(b)}$:

the algebra (over \mathbb{C}) spanned by the generators 1, mixed derivatives of $\Phi_{(b)}$, those of OPE exponentials $e^{*\alpha\Phi_{(b)}}$ ($\alpha \in \mathbb{C}$)

Ward's equation in doubly connected domain

Stress energy tensor $A_{(b)}$:

$$A_{(b)} := -\frac{1}{2}J_{(0)} \odot J_{(0)} + (ib\partial - \mathbf{E}[J_{(b)}])J_{(0)}, \quad J_{(b)} = \partial \Phi_{(b)}.$$

Theorem (B.-Kang-Tak)

For any string \mathcal{X} of fields in the OPE family $\mathcal{F}_{(b)}$, we have

$$2\mathbf{E}\left[A_{(b)}(\zeta)\mathcal{X}\right] = \left(\mathcal{L}_{v_{\zeta}}^{+} + \mathcal{L}_{v_{\zeta}}^{-}\right)\mathbf{E}\left[\mathcal{X}\right] + \partial_{r}\mathbf{E}\left[\mathcal{X}\right],$$

where all fields are evaluated in the identity chart of C_r and the Loewner vector field v_{ζ} is given by

$$(v_{\zeta} \| \operatorname{id}_{\bar{\mathcal{C}}_r})(z) = H(r, \zeta - z) = 2 \frac{\Theta'(r, \zeta - z)}{\Theta(r, \zeta - z)}.$$

- Cf. On a complex torus of genus one, similar form of Ward's equation holds.
 - Eguchi-Ooguri: Conformal and current algebras on a general Riemann surface, Nuclear Phys. B, 282(2):308-328, 1987.
 - Kang-Makarov: Calculus of conformal fields on a compact Riemann surface, arXiv:1708.07361, 86 pp.

Lemma

For any string \mathcal{X} of fields in the OPE family $\mathcal{F}_{(b)}$, in \mathcal{C}_r ,

$$\frac{1}{\pi} \oint_{\left[-\pi+ir,\pi+ir\right]} \mathbf{E} \left[A(\zeta) \mathcal{X} \right] d\zeta = \partial_r \mathbf{E} \left[\mathcal{X} \right].$$

Ingredients of proof

Heat equation of Jacobi theta function:

$$\partial_r \Theta(r,z) = \Theta(r,z)''.$$

2 Frobenius-Stickelberger's pseudo-addition theorem for Weierstrass ζ -function:

$$(\zeta(z_1) + \zeta(z_2) + \zeta(z_3))^2 + \zeta'(z_1) + \zeta'(z_2) + \zeta'(z_3) = 0, \qquad (z_1 + z_2 + z_3 = 0).$$

Neutrality condition and multi-vertex field

Given divisors
$$\boldsymbol{\sigma} = \sum_{j=1}^{n} \sigma_j \cdot z_j, \, \boldsymbol{\sigma}_* = \sum_{j=1}^{n} \sigma_{j*} \cdot z_j$$
, we set

$$\Phi_{(b)}[\boldsymbol{\sigma}, \boldsymbol{\sigma}_*] := \sum_{j=1}^n \sigma_j \Phi_{(b)}^+(z_j) - \sigma_{*j} \Phi_{(b)}^-(z_j),$$

where $\Phi_{(b)} = \Phi_{(b)}^+ + \Phi_{(b)}^-, \Phi_{(b)}^- = \overline{\Phi_{(b)}^+}.$

Then Φ_(b)[σ, σ_{*}] is a well-defined Fock space field if and only if the following *neutrality condition* (NC₀) holds:

$$\sum_{j=1}^n \left(\sigma_j + \sigma_{*j}\right) = 0$$

• We define the *multi-vertex field* $\mathcal{O}[\boldsymbol{\sigma}, \boldsymbol{\sigma}_*] \equiv \mathcal{O}_{(b)}[\boldsymbol{\sigma}, \boldsymbol{\sigma}_*]$ by

$$\mathcal{O}_{(b)}[\boldsymbol{\sigma}, \boldsymbol{\sigma_*}] = C_{(b)}[\boldsymbol{\sigma}, \boldsymbol{\sigma_*}] e^{\odot i \Phi_{(0)}[\boldsymbol{\sigma}, \boldsymbol{\sigma_*}]}$$

where $C_{(b)}[\boldsymbol{\sigma}, \boldsymbol{\sigma}_*]$ is Coulomb gas correlation function.

Outline

Annulus SLE partition functions

- Annulus $SLE(\kappa, \Lambda)$
- Null-vector equation

2 CFT of GFF in a doubly connected domain

- GFF with Dirichlet and Excursion-Reflected boundary conditions
- Eguchi-Ooguri and Ward's equations
- Coulomb gas formalism

3 Connection to SLE theory

- One-leg operator and Insertion
- Martingale-observables for annulus SLE
- Screening

4 Work in progress: Multiple SLEs in the annulus

One-leg operator

• We choose real parameters a and b in terms of SLE parameter κ as

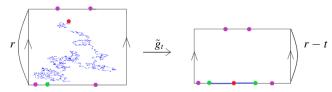
$$a = \sqrt{2/\kappa}, \qquad b = \sqrt{\kappa/8} - \sqrt{2/\kappa}.$$

Given a divisor $\beta = \sum_{j=1}^{N} \beta_j \cdot q_j$ define the one-leg operator $\Psi \equiv \Psi_{\beta}$ by $\Psi_{\beta}(\mathbf{p}, q) := \mathcal{O}[\mathbf{a} \cdot \mathbf{p} + \beta, \mathbf{0}].$

• Now we consider SLE(κ, Λ), where Λ is given by

$$\Lambda(r, \mathbf{p}, \mathbf{q}) := \kappa \,\partial_{\xi} \big|_{\xi=p} \log \mathbf{E} \left[\Psi(\boldsymbol{\xi}, \mathbf{q}) \right]$$

i.e., $d\xi_t = \sqrt{\kappa} \, dB_t + \Lambda(r - t, \xi_t - \tilde{g}_t(q_1), \cdots, \xi_t - \tilde{g}_t(q_N)) dt.$



Insertion

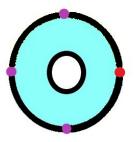
Using Ψ as an insertion field, set

$$\widehat{\mathbf{E}}[\mathcal{X}] := \frac{\mathbf{E}[\Psi(p,q)\mathcal{X}]}{\mathbf{E}[\Psi(p,q)]} = \mathbf{E}\Big[e^{\odot ia\Phi^+_{(0)}(p) + i\sum\beta_j \Phi^+_{(0)}(q_j)}\mathcal{X}\Big].$$

Example. Suppose that q_j 's are on the outer boundary component.

■ In the cylinder C_r ,

 $\mathbf{E}[\Phi_{(b)}](z) = 0$



Insertion

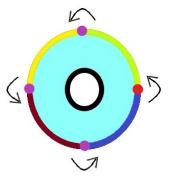
Using Ψ as an insertion field, set

$$\widehat{\mathbf{E}}[\mathcal{X}] := \frac{\mathbf{E}[\Psi(p,q)\mathcal{X}]}{\mathbf{E}[\Psi(p,q)]} = \mathbf{E}\Big[e^{\odot ia\Phi^+_{(0)}(p) + i\sum\beta_j\Phi^+_{(0)}(q_j)}\mathcal{X}\Big].$$

Example. Suppose that q_j 's are on the outer boundary component.

• In the cylinder
$$C_r$$
,
 $\widehat{\mathbf{E}}[\Phi_{(b)}](z) = 2a \arg \Theta(r, p - z)$
 $+ \sum 2\beta_j \arg \Theta(r, q_j - z)$

- $\widehat{\mathbf{E}}[\Phi_{(b)}]$ has piecewise Dirichlet boundary condition with jump $2a\pi$ at p, $2\pi\beta_j$ at q_j and by NC₀ all jumps add up to 0.
- Izyurov-Kytölä: Hadamard's formula and couplings of SLEs with free field. Probab. Theory Related Fields, 155(1-2):35-69, 2013.



By definition, a non-random field *M* is a *martingale-observable* for annulus $SLE(\kappa, \Lambda)$ if for any z_1, \dots, z_n , the process

$$M_t(z_1,\cdots,z_n):=\left(M\| ilde w_t^{-1}
ight)(z_1,\cdots,z_n),\quad ilde w_t= ilde g_t-\xi_t$$

is a local martingale on the SLE probability space.

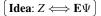
Theorem (B-Kang-Tak)

For any string \mathcal{X} of fields in the OPE family $\mathcal{F}_{(b)}$ of $\Phi_{(b)}$, the non-random fields $M = \widehat{\mathbf{E}}\mathcal{X}$ are martingale-observables for SLE(κ, Λ).

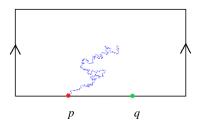
Idea of proof

Ward's equation + level 2 degeneracy equation for $\Psi \Rightarrow$ BPZ-Cardy equation $\Leftrightarrow M_t$ is driftless.

Goal To find explicit solutions of Zhan's PDE for Z



Consider an chordal type annulus $SLE(\kappa, \Lambda)$ in cylinder from p to q.



Goal To find explicit solutions of Zhan's PDE for Z

 $\left[\text{Idea: } Z \Longleftrightarrow \mathbf{E} \Psi \right]$

- The conformal dim λ_z at z with charge σ is given as $\lambda_z = \sigma^2/2 - \sigma b$.
- To satisfy level-2 degeneracy eq., $\lambda_p = a^2/2 - ab.$

$$\Psi(p,q) = \mathcal{O}[? \cdot p + ? \cdot q]$$

	Candidate 1	Candidate 2
p	а	2b-a

Idea:
$$Z \iff \mathbf{E}\Psi$$

- The conformal dim λ_z at z with charge σ is given as $\lambda_z = \sigma^2/2 - \sigma b$.
- To satisfy level-2 degeneracy eq., $\lambda_p = a^2/2 - ab.$
- Due to reversibility, $\lambda_p = \lambda_q$.

$$\Psi(p,q) = \mathcal{O}[? \cdot p + ? \cdot q]$$

	Candidate 1	Candidate 2
p	а	2b-a
q	а	2b-a

Idea:
$$Z \iff \mathbf{E}\Psi$$

- The conformal dim λ_z at z with charge σ is given as $\lambda_z = \sigma^2/2 - \sigma b$.
- To satisfy level-2 degeneracy eq., $\lambda_p = a^2/2 - ab.$
- Due to reversibility, $\lambda_p = \lambda_q$.
- Due to NC₀, total sum of charge should vanish.

$$\Psi(p,q) = \mathcal{O}[? \cdot p + ? \cdot q]$$

	Candidate 1	Candidate 2
p	а	2b-a
q	а	2b-a

Goal To find explicit solutions of Zhan's PDE for Z

Idea:
$$Z \iff \mathbf{E}\Psi$$

- The conformal dim λ_z at z with charge σ is given as $\lambda_z = \sigma^2/2 - \sigma b$.
- To satisfy level-2 degeneracy eq., $\lambda_p = a^2/2 - ab.$
- Due to reversibility, $\lambda_p = \lambda_q$.
- Due to NC₀, total sum of charge should vanish.

$$\Psi(p,q) = \mathcal{O}[\boldsymbol{a} \cdot \boldsymbol{p} - \boldsymbol{a} \cdot \boldsymbol{q}]$$

	Candidate 1	Candidate 2
p	a	2b-a
q	а	2b-a

Works in \mathbb{H} with *background charge 2b* at *q*. Cf. $Z_{\mathbb{H}}(x) = x^{1-6/\kappa}$

Idea:
$$Z \iff \mathbf{E}\Psi$$

- The conformal dim λ_z at z with charge σ is given as $\lambda_z = \sigma^2/2 - \sigma b$.
- To satisfy level-2 degeneracy eq., $\lambda_p = a^2/2 - ab.$
- Due to reversibility, $\lambda_p = \lambda_q$.
- Due to NC₀, total sum of charge should vanish.

$$\Psi(p,q) = O[\stackrel{?}{\cdot} p + \stackrel{?}{\cdot} q]$$

	Candidate 1	Candidate 2
p	а	2b-a
q	а	2b-a

Does not Work in the annulus

$$\left[\text{Idea: } Z \iff \mathbf{E} \Psi \right]$$

- The conformal dim λ_z at z with charge σ is given as $\lambda_z = \sigma^2/2 - \sigma b$.
- To satisfy level-2 degeneracy eq., $\lambda_p = a^2/2 - ab.$
- Due to reversibility, $\lambda_p = \lambda_q$.
- Due to NC₀, total sum of charge should vanish.
- Consider additional node ζ s.t.
 λ_ζ = 1 and integrate out ζ along the proper contour γ.

$$\Psi(p,q) = \oint_{\gamma} \mathcal{O}[? \cdot p + ? \cdot q + ? \cdot \zeta] d\zeta$$

	Candidate 1	Candidate 2
p	а	2b-a
q	а	2b-a
ζ	2a + 2b	-2a

$$\left[\text{Idea: } Z \iff \mathbf{E} \Psi \right]$$

- The conformal dim λ_z at z with charge σ is given as $\lambda_z = \sigma^2/2 - \sigma b$.
- To satisfy level-2 degeneracy eq., $\lambda_p = a^2/2 - ab.$
- Due to reversibility, $\lambda_p = \lambda_q$.
- Due to NC₀, total sum of charge should vanish.
- Consider additional node ζ s.t.
 λ_ζ = 1 and integrate out ζ along the proper contour γ.

$$\Psi(p,q) = \oint_{\gamma} \mathcal{O}[a \cdot p + a \cdot q - 2a \cdot \zeta] d\zeta$$

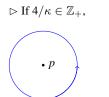
	Candidate 1	Candidate 2
р	а	2b-a
q	а	2b-a
ζ	2a + 2b	-2a

Screening: Integration contour ER boundary conditions

$$\partial_r Z = \frac{\kappa}{2} Z'' + H Z' + \left(\frac{3}{\kappa} - \frac{1}{2}\right) H' Z$$

$$Z(r,p-q) := \Theta(r,p-q)^{\frac{2}{\kappa}} \oint_{\gamma} \Theta(r,p-\zeta)^{-\frac{4}{\kappa}} \Theta(r,\zeta-q)^{-\frac{4}{\kappa}} d\zeta$$

Examples of integration contour γ



$$q$$
 .

κ	$Z(r, \cdot)$
4	$\Theta^{-1/2}$
2	$\Theta^{-1}H$
4/3	$\Theta^{-3/2}\left(3H^2-2H'+4\frac{\zeta_r(\pi)}{\pi}\right)$
1	$\Theta^{-2}\left(4H^3 - 6HH' + H'' + 12\frac{\pi \zeta_r(\pi)}{\pi}H\right)$

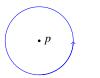
Screening: Integration contour ER boundary conditions

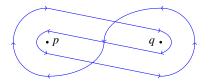
$$\partial_r Z = \frac{\kappa}{2} Z^{\prime\prime} + H Z^\prime + \left(\frac{3}{\kappa} - \frac{1}{2}\right) H^\prime Z$$

$$Z(r,p-q) := \Theta(r,p-q)^{\frac{2}{\kappa}} \oint_{\gamma} \Theta(r,p-\zeta)^{-\frac{4}{\kappa}} \Theta(r,\zeta-q)^{-\frac{4}{\kappa}} d\zeta$$

Examples of integration contour γ

 \triangleright For general κ ,



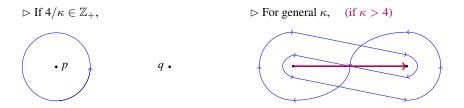


Screening: Integration contour ER boundary conditions

$$\partial_r Z = \frac{\kappa}{2} Z^{\prime\prime} + H Z^\prime + \left(\frac{3}{\kappa} - \frac{1}{2}\right) H^\prime Z$$

$$Z(r,p-q) := \Theta(r,p-q)^{\frac{2}{\kappa}} \oint_{\gamma} \Theta(r,p-\zeta)^{-\frac{4}{\kappa}} \Theta(r,\zeta-q)^{-\frac{4}{\kappa}} d\zeta$$

Examples of integration contour γ



Theorem (B-Kang-Tak)

For $p, q \in \mathbb{R}$, let γ be a Pochhammer contour entwining p and q. Then

$$Z(r, p-q) = \mathbf{E}\Psi(p, q) := C(\kappa) \oint_{\gamma} \mathbf{E}\mathcal{O}[a \cdot p + a \cdot q - 2a \cdot \zeta] d\zeta$$

is a non-trivial solution of the null-vector equation

$$\partial_r Z = \frac{\kappa}{2} Z'' + H Z' + \left(\frac{3}{\kappa} - \frac{1}{2}\right) H' Z.$$

Moreover, for any string \mathcal{X} of fields in the OPE family $\mathcal{F}_{(b)}$, a non-random field

$$M = \widehat{\mathbf{E}}\mathcal{X} := \frac{\mathbf{E}\Psi(p,q)\mathcal{X}}{\mathbf{E}\Psi(p,q)}$$

is a martingale-observable for chordal type $SLE(\kappa, \Lambda)$.

Outline

Annulus SLE partition functions

- Annulus $SLE(\kappa, \Lambda)$
- Null-vector equation

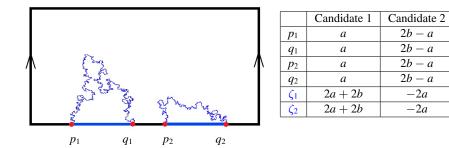
2 CFT of GFF in a doubly connected domain

- GFF with Dirichlet and Excursion-Reflected boundary conditions
- Eguchi-Ooguri and Ward's equations
- Coulomb gas formalism

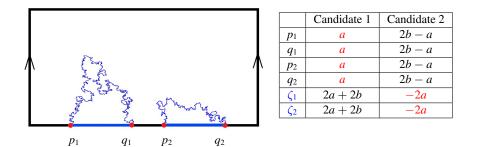
3 Connection to SLE theory

- One-leg operator and Insertion
- Martingale-observables for annulus SLE
- Screening

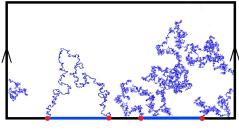
4 Work in progress: Multiple SLEs in the annulus



$$Z = \oint \oint \mathbf{E}\mathcal{O}[? \cdot p_1 + ? \cdot q_1 + ? \cdot p_2 + ? \cdot q_2 + ? \cdot \zeta_1 + ? \cdot \zeta_2] d\zeta_1 d\zeta_2$$



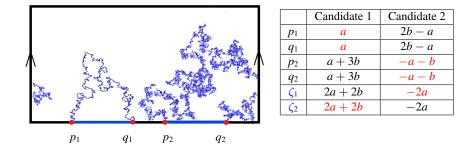
$$Z = \oint \oint \mathbf{E}\mathcal{O}[a \cdot p_1 + a \cdot q_1 + a \cdot p_2 + a \cdot q_2 - 2a \cdot \zeta_1 - 2a \cdot \zeta_2] d\zeta_1 d\zeta_2$$



	Candidate 1	Candidate 2
p_1	а	2b-a
q_1	а	2b-a
p_2	a+3b	-a-b
q_2	a+3b	-a-b
ζ_1	2a + 2b	-2a
ζ_2	2a + 2b	-2a

 p_1 q_1 p_2 q_2

$$Z = \oint \oint \mathbf{E}\mathcal{O}[? \cdot p_1 + ? \cdot q_1 + ? \cdot p_2 + ? \cdot q_2 + ? \cdot \zeta_1 + ? \cdot \zeta_2] d\zeta_1 d\zeta_2$$



$$Z = \oint \oint \mathbf{E}\mathcal{O}[a \cdot p_1 + a \cdot q_1 - (a+b) \cdot p_2 - (a+b) \cdot q_2 - 2a \cdot \zeta_1 + (2a+2b) \cdot \zeta_2] d\zeta_1 d\zeta_2$$

Thank you for your attention!