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Coulomb gas in C 2

▶ Background potential Q. Smooth, strictly subharmonic with growth
Q(z ) ≥ (1 + ϵ) log |z |+ O(1) at infinity.

▶ Equal point charges z1, . . . , zn ∈ C, in external field 2nQ has energy

Hm(z1, . . . , zn ) =
∑

1≤i ̸=j≤n

log 1

|zi − zj |
+ 2m

∑
1≤j≤n

Q(zj ).

▶ The Coulomb gas is the random point process determined by the Gibbs
measure

dPn =
1

Zn
e−

β
2
Hn dAn.

Interested in large n behaviour.

▶ Fekete points (β = ∞), Ginibre ensemble, RNM ensembles etc (β = 2),
Kähler-Einstein metrics (β → 0).



Macroscopic behaviour – potential theory 3

▶ Empirical measure µn = 1
n
∑n

j=1 δzj . Write the energy

Hn(z1, . . . , zn ) = n2
{∫

z̸=w
log 1

|z − w |dµn(z )dµn(w ) + 2

∫
Q(z ) dµn.

}
▶ Logarithmic energy problem with external field: Minimize

I(µ ) =

∫
C2

log 1

|z − w | dµ(z )dµ(w ) + 2

∫
C

Q(z ) dµ(z ).

Unique Frostman equilibrium measure µQ.

Theorem (Hedenmalm–Makarov, 2004)
The empirical measures converge to µQ as n → ∞.
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Sample of Ginibre ensemble, Q(z ) = |z |2/2, β = 2, with n = 1700.



The equilibrium measure µQ 5

▶ Euler-Lagrange equation:{
UµQ(z ) = Q(z ) + c, z ∈ S = suppµQ,

UµQ(z ) ≤ Q(z ) + c, z ∈ C.

▶ Explicit equilibrium measure difficult to find. If we can find the
support S, then

dµQ(z ) = 2∆Q(z ) 1S(z ) dA(z ).

▶ If Q is real-analytic with ∆Q > 0, then ∂S is piecewise real-analytic.
Only singularities are cusps, double points (Sakai, 1993).



Singular points 6

Figure. Illustration of the possible types of singular points.



Uniform distribution on ellipse 7

The density of the Coulomb gas with β = 2 and Q(z ) = 1
2
|z |2 + 1

5
Re(z 2 ).



The determinantal case β = 2. 8

▶ Correlation kernel given by ONP’s Pj

Kn(z,w ) =

n−1∑
j=0

Pj(z )Pj(w )e−n(Q(z )+Q(w )).

▶ The law is given by

dPn =
1

n! det(Kn(zi, zj))1≤i,j≤ndAn.

▶ The k-point functions Rn,k(z1, . . . , zk ) obtained by integrating out
variables zn, zn−1, . . . , zk+1

Rn,k(z1, . . . , zk) = det(Kn(zi, zj))1≤i,j≤k.



Fine scale behaviour 9

What do we see in blowup at microscopic scale around z0 in the bulk?

▶ Ginibre: at scale 1√
n , a determinantal random point process

G∞(z,w ) = ezw̄− 1
2
(|z |2+|w |2).

▶ For z0 a bulk point we have universal blow-up G∞(z,w )
(Ameur–Hedenmalm–Makarov, 2008).

▶ Asymptotic expansion of full Bergman kernel Kn,∞ of (Tian, 1990.
Refined by Zelditch, Catlin):

Kn,∞(z, z ) = 2n∆Q(z ) + b0(z ) +
1

nb1(z ) + . . . .

... but what about boundary points?



Some solvable cases 10

Rescaling around boundary point z0 with normal n:

k(ξ, η) = 1

2n∆Q(z0 )
Kn

(
z0 + n ξ√

2n∆Q(z0 )
, z0 + n η√

2n∆Q(z0 )

)
.

▶ Ginibre ensemble: explicit computations give

kn(ξ, η) → erfc (ξ + η̄ )eξη̄− 1
2
(|ξ |2+|η |2).

▶ Similar for Q(z) = |z |2 + t Re (z 2 ) (Lee and Riser, 2015) and
Q(z) = |z |2 + c log |z − a | (Balogh–Bertola–Lee–McLaughlin, 2012).

▶ Partial Bergman kernels with S1-invariance (Ross–Singer, 2015).
Spectral Bergman kernels (Zelditch–Zhou, 2018)

▶ A priori assumption of translation invariance (Ameur–Kang–Makarov,
2014, also AKMW, 2015).



Main result 11

Theorem (Hedenmalm–W., 2018)
Assume that S is simply connected, with no singular points, and that
Uµ < Q + c outside S. Then, the rescaled boundary kernel converges

kn(ξ, η) → erfc (ξ + η̄ )eξη̄− 1
2
(|ξ |2+|η |2).



Wighted polynomials and the obstacle problem 12

Define the subharmonic envelopes

Q̂τ (z ) = sup
{

u(z ) : u subharm., u(z ) ≤ Q(z ), lim sup
|z |→∞

u(z )
log |z | ≤ τ

}
.

Contact set Sτ .
▶ Compare u with 1

n log |P |. We have the fundamental bound

|P(z )|2e−2nQ(z ) ≤ Cn e−2n(Q−Q̂τ )(z )∥P ∥2n, P ∈ Pk+1, τ =
k
n .

▶ C 1,1-regularity of Q̂ . S1 is the support of the equilibrium measure
(Obst. problem ↔ EL-eqn.).



A zoo of functions 13

▶ ϕτ – conformal mapping Sc
τ → De.

▶ Vτ – bounded holomorphic function in exterior domain with real part
Q on ∂Sτ .

▶ Q̆ τ – harmonic continuation of Q̂ τ

∣∣
Sc inwards. We have

ReVτ + log |ϕτ | = Q̆ τ .

Figure: Q (black), Q̂ τ (green) and Q̆ τ (blue) near ∂Sτ



The asymptotic expansion 14

Theorem (Hedenmalm–W., 2018)
There exist bounded holomorphic Bj,τ such that for any κ ∈ N we have that

Pk(z ) = n
1
4

√
ϕ′
τ (z )[ϕτ (z )]kenVτ (z )(B0,τ (z ) + . . .+ n−κBκ,τ (z ) + O(n−κ−1 )

)
as n → ∞. The expansion holds uniformly for d(z,Sc ) ≤ C

√
n−1 log n.

Dominant behaviour |Pk(z )|2e−2nQ(z ) ∼ e−2n(Q−Q̆ τ )(z ) – a Gaussian ridge
around the boundary ∂Sτ .



Plot of |Pk(z )|2e−2nQ(z ), with (k,n) = (25, 20), Q(z ) = 1
2
|z |2 + 1

5
Re(z 2 ).



Plot of |Pk(z)|2e−2nQ for several k.



Constructing F with ONP-like properties 17

▶ Ansatz for Pn = Pn,n:

Fn(z ) = n
1
4 ϕ′(z )[ϕ(z )]nenV(z )fn(ϕ(z ) ),

where fn is an asymptotic expansion of bounded holomorphic functions

fn(z ) = B0(z ) + n−1B1(z ) + n−2B2(z ) + . . . , z ∈ De(0, ρ ).

▶ Use conformal mapping to pull back to more radial setting:∫
C\K

FnQ e−2nQdA =

∫
De(0,ρ)

fngQ e−2nRdA

where
R(z ) = (Q − log |ϕ | − ReV )(φ(z ))

is of quadratic growth around T. Here, gQ = Q
ϕ′ ϕnenV ◦ φ.



The orthogonal foliation I. 18

▶ Foliation γt,n, normal velocity ν (scalar field ). Then we have∫
f ḡ e−2nRdA =

∫
|t|≤δn

(∫
γt,n

f ḡ e−2nRνdσ
)

dt + O(n−∞∥g ∥ )

We aim to construct fn and (γt,n ) simultaneously such that∫
γt

f ḡ e−2nRνdσ ∼ 0.

▶ In terms of conformal mappings φt,n : D → ext (γt,n ) we have∫
γt

f ḡ e−2nRνdσ

=

∫
T

ḡ
f̄n
(φt,n ) |fn(φt,n ) |2 e−2nR(φt,n )Re

{
ζ̄ ∂tφt,n(ζ )φ′

t,n(ζ )
}

dσ(ζ ) dt.



The orthogonal foliation II. 19

Lemma (Existence of orthogonal foliation)
There exist bounded holomorphic functions Bj and φ̂j,k, such that

φt,n(z ) ∼
∑

j,k≥0

n−jtkφ̂j,k(z ), |t | ≤ n− 1
2 log n

defines a family of conformal mappings which foliates the n− 1
2 log m-band

around T, and such that with f =
∑

j≤κ n−jBj we have

| f (φt,n(ζ ) )|2e−2nR(φt,n(ζ ) )ℜ{ζ̄ φ̇t,n(ζ )φ′
t,n(ζ )} = e−nt2(1 + O(n−κ−1 )

)
.

▶ In other words, there is a substitute for the polar coordinates, up to
O(n−κ)-error! The choice of fn determined by the foliation.



What is this flow? 20

A droplet Ω0 of incompressible fluid between two plates. in a medium with
permeability κ = ω−1. Fluid is injected at z0 ∈ Ω0, producing a Hele-Shaw
flow (Ωt)t.

▶ Normalized conformal mappings φt : De → Ωt, with ∞ 7→ z0 satisfies

ω(φt(ζ ))ℜ
{
ζ̄ ∂tφt(ζ )φ′

t(ζ )
}
= 1, ζ ∈ T

▶ The flow (φt,n)t is a Hele-Shaw flow (approx.), with weight

wn(z ) = | fn(z ) |2e−2nR(z ),

and injection at infinity.

▶ Reformulation of Theorem
Once can choose fn, such that the flow exists to prescribed accuracy,
long enough to cover δn-neighbourhood of T.



∂̄-techniques and localization I. 21

How close to a polynomial is Fn?
▶ Analytic in C \ K for some compact. Cut-off function χ vanishes on K.

▶ Correction χF − v, where ∂̄v = ∂̄(χF ) = F ∂̄χ.

▶ Hörmander’s estimate: smooth strictly s.h. weight V on C: The
equation ∂̄u = f has a solution u which satisfies∫

|u |2e−VdA ≤
∫

|f |2 e−V

∆V dA.

▶ Now χF − v is holomorphic, and v is small. Growth might be more
than polynomial!



∂̄-techniques and localization II. 22

▶ Apply estimate to V = 2nQ̂ . Then∫
|v |2e−2nQ ≤

∫
|v |2e−2nQ̂ ≤ 1

2n

∫
S
|∂̄χ |2 |F |2 e−2nQ

∆Q

and with our ansatz, |P |2e−2nQ is very small away from ∂S.

▶ The key: the support of ∇χ cannot intersect Sc, if we want to localize
in polynomial space.

▶ Bergman kernel asymptotics – boundary localization not possible.



Thank you for listening!


