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Matrix denoising model

Example: In image processing, we only observe S. What can be said
about the true data matrix S7

Other applications: principal component analysis, matrix completion,
community detection, etc.

Ke Wang (HKUST) May 7, 2019 2/ 23



Matrix denoising model

Signal: a real deterministic m x n matrix S with rank r < min{m, n}.
Singular values: di > dr>--->d, > 0.

Right and left singular vectors: v; and u;.
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Matrix denoising model

Signal: a real deterministic m x n matrix S with rank r < min{m, n}.
Singular values: di > dr>--->d, > 0.
Right and left singular vectors: v; and u;.

Matrix denoising model:

S= S + X
~— ~—
low-rank signal random noise

The (ordered) s.v.’s and s. vectors of Sare d;, v; and ;.
>Question: How does the noise X affect the key parameters of S?

Key parameters: ||S||2 = di, top s.v.'s, top singular vectors, singular subspaces.
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Previous results: matrix perturbation theory

S=S+X.
Classical matrix perturbation bounds:
o Weyl's inequality (1912): |d; — d;| < || X]2.
e Wedin sine theorem (1972): sin Z(vq,v1) <

2| X2
di—d> "
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Previous results: matrix perturbation theory

S=S5+X.
Classical matrix perturbation bounds:
o Weyl's inequality (1912): |d; — d;| < || X]2.

o Wedin sine theorem (1972): sin Z(v, V1) < 2 |C|,2.

Quite wasteful when S is low-rank and X is random!

Key observation: When S is low rank, what really matters is r, the rank of
S, rather than its size m or n.
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Non-asymptotic perturbation bounds

> Vu '10, O'Rourke-Vu-W. '13 & '18: verify u,-TXv,- is small and
IX|l2 < dr w.h.p. Improved classical bounds w.h.p.
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Non-asymptotic perturbation bounds

> Vu '10, O'Rourke-Vu-W. '13 & '18: verify u,-TXv,- is small and
IX|l2 < dr w.h.p. Improved classical bounds w.h.p.

E.g. X of size n X n, entries i.i.d. random signs +1. Assume di > n.
o Weyl's: |di — di| < Cy/nw.h.p. = |d; — d;| < C\/r whp.

e Wedin: sin Z(vi,v1) < df‘_{',; w.h.p. = sin Z(vi,v1) < dfl/; w.h.p.
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Non-asymptotic perturbation bounds

> Vu '10, O'Rourke-Vu-W. '13 & '18: verify u,-TXv,- is small and
IX|l2 < dr w.h.p. Improved classical bounds w.h.p.

E.g. X of size n X n, entries i.i.d. random signs +1. Assume di > n.
o Weyl's: |di — di| < Cy/nw.h.p. = |d; — d;| < C\/r whp.
e Wedin: sin Z(vi,v1) < df‘_{',; w.h.p. = sin Z(vi,v1) < dfl/; w.h.p.

Improve classical perturbation bounds for “low-rank 4+ random noise":

> Wang '12: non-asymptotic dist. of s. vectors when entries of X i.i.d. AN/(0,1).
> Allez-Bouchaud '13: eigenvector dynamics (symmetric case).

> Cai-Zhang "16: dimensions m, n differ significantly.

> Fan-Wang-Zhong '16: improve Wedin's for S incoherent.

> Zhong '17: entries of X are i.i.d. sub-gaussian.
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Previous results: low-rank deformation of random matrices

Deformation models:

> Low-rank deformed Wigner: P, fixed-rank Hermitian

W, + P, (additive).
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Previous results: low-rank deformation of random matrices

Deformation models:

> Low-rank deformed Wigner: P, fixed-rank Hermitian
W, + P, (additive).
> Spiked covariance matrix: Non-negative T =/ + R; R fixed-rank
TY2Xx*TY2  (multiplicative).
> Matrix denoising model: X + S with S fixed-rank
(X+S)"(X+S) (additive & multiplicative).

Deformation and random matrix are of the same order.
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Previous results: low-rank deformation of random matrices

BBP phase transition by Baik-Ben Arous-Péché '05 for extreme eigenvalues of
spiked complex Gaussian covariance matrix. Phase transition for e.vector: Paul
'07, Benaych-Georges-Nadakuditi '11 & "12.
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Previous results: low-rank deformation of random matrices

BBP phase transition by Baik-Ben Arous-Péché '05 for extreme eigenvalues of
spiked complex Gaussian covariance matrix. Phase transition for e.vector: Paul
'07, Benaych-Georges-Nadakuditi '11 & "12.

General picture: W, = W, + Auu™.

o (Supercritical): deformation strength bigger than a critical value c.

Picture source: “The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices”,
Benaych-Georges-Nadakuditi, Advances in Mathematics, 227(1):494-521,2011.
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Asymptotic behavior

> Extreme eigenvalues

@ Convergent limit: Bai-Yao '12, Baik-Silverstein '06, Benaych-Georges- Nadakuditi
'11 & '12, Capitaine-Donati-Martin '16, Ding '17, Knowles-Yin '13, Paul '07, etc.

@ Fluctuation: Bai-Yao '08, Bao-Pan-Zhou '15, Benaych-Georges-Guionnet-Maida
'11, Bloemendal-Knowles-Yau-Yin '16, Bloemendal-Virag '13 & '16,
Capitaine-Donati-Martin-Féral '09, Knowles-Yin '13, Renfrew-Soshnikov '12, etc.

> Extreme eigenvectors

@ Convergent limit: Benaych-Georges-Nadakuditi '11 & '12, Capitaine '17, Ding '17,
Paul '07.

@ Fluctuation: Paul '07, Bloemendal-Knowles-Yau-Yin '16, Capitaine-Donati-Martin
"18. Not fully studied for matrix denoising model!
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New results: matrix denoising model

Consider the m x n matrix

min{m,n}
S=S+X= §:dwv—hx— > diav
i=1 i=1

Assumptions:
e m/n—y € (0,400) as n — oo.
e Entries of /nX i.i.d. with mean 0, var. 1, bounded high moments.
@ (Supercritical condition) There exists § > 0 such that

di>dy>--->d >y"* 445 and min_|d; — dj| > 0.
1<jAI<r
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New results: matrix denoising model

Consider the m x n matrix

min{m,n}
S=S+X= Zdu,v +X= Y duv.
i=1 i=1

Assumptions:
e m/n—y € (0,400) as n — oo.
e Entries of /nX i.i.d. with mean 0, var. 1, bounded high moments.
@ (Supercritical condition) There exists § > 0 such that

dh>dy>-->d>yY* 45 and min |di —d;| > 4.
1<jAi<r

New results: Fluctuations of |{v;, v;}|? and singular subspace statistics.
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New results: right singular vectors

. . d* + 2yd2 +y
=gy D= ey

Theorem (Bao, Ding and W., 2018)

Foreach1 < <r,

\/ﬁ (‘(V,', V,>|2 = a(d,-)) ~ A+ Z;.

e A; and Z; are independent.
o A,’ = —2ﬁ9(d,-)u,-TXv,- and Z,' NN(M,’,V,’)
(M, V; depend on s.vectors uj, v; and cumulants k3, k4 of \/nX11).
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For a vector w, denote sx(w) := >, w(i)k.

o) = T B
V() i= g 2ty + Doey? - YO Do)
N (d4d43r({l)2(f;);y)2 5(d) + m ‘
Zi ~ N (M;, Vi), where
My= 200 (R u)sr(w).
Vi = VE(d) = S0d)i(e) L ss(w)sa(v)
+ iH(d;)zj%sl(u;)S3(v;) + w(;;)z kasa(uj) + 2 HEI‘I_Z")2,<4S4(V,-).
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Special examples

Non-universality: fluctuation depends on “structure of signal” and
“distribution of noise”.
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Special examples
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Assume r = 1. S=duw’ +X.
@ The entries of \/nX are i.i.d. N(0,1).

A+ Z~N(0,V(d)).

Ke Wang (HKUST) May 7, 2019 12 / 23



Special examples

Non-universality: fluctuation depends on “structure of signal” and
“distribution of noise”.

Assume r = 1. S=duw’ +X.
@ The entries of \/nX are i.i.d. N(0,1).

A+Z~N(0,V(d)).
o [lufloc = o(1) and [|v]joc = o(1).
A+ Z~N(M(d,u,v),V(d)).

M(d, u,v) = =2XA (ma [ ()] - [ v(i)]).
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Special examples

@ Only |lul|ec = o(1).

A+ Z =N (M(d,u,v),V(d)+ Vi(d, u,v))
Vi(d,u,v) = 40(d (SB02 u(] - 132 v(i)?]) +y9‘;’22n4[2,- v(i)*].
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Special examples

@ Only |lul|ec = o(1).

A+ Z =N (M(d,u,v),V(d)+ Vi(d, u,v))
Vi(d,u,v) = 40(d (SB02 u(] - 132 v(i)?]) +y9‘;’22n4[2,- v(i)*].

@ u=-¢e; and v = e.

A+ 2~ =20(d)VnXu + N (o, VE(d) + mw(dy j2y0(d)2> .
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Related results

In the supercritical regime for deformed Wigner (W, + P,):

@ Knowles-Yin '13: limiting dist. of the outlier eigenvalues of deformed
Wigner in full generality. The fluctuation depends on the “structure
of deformation” and “distribution of random noise”.
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Related results

In the supercritical regime for deformed Wigner (W, + P,):

@ Knowles-Yin '13: limiting dist. of the outlier eigenvalues of deformed
Wigner in full generality. The fluctuation depends on the “structure
of deformation” and “distribution of random noise”.

o Capitaine-Donati-Martin '18: fluctuation of outlier eigenvectors where
P, is diagonal and entries of Wigner have symmetric dist. and satisfy
Poincaré inequality.

Ke Wang (HKUST) May 7, 2019 14 / 23



New results: right singular subspace

V=(w--,v) and V,=(n, - ).

Consider

r

Ri= 5" (W)l

ij=1

Theorem (Bao, Ding and W., 2018)

r

Vn(R - Z a(d)) ~A+ Z.

i=1

A and Z are independent; analogous definitions to the previous result.
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Sketch of proof

Knowles and Yin's approach (extreme e.v. of deformed Wigner), based on
a two-step comparison. W = W + P.

@ Derive results when for W is Gaussian.

o Compare the Gaussian case with a partially Gaussian matrix W
(depending on the structure of P; large entries cause trouble).

o Compare W with the general Wigner W.

Ke Wang (HKUST) May 7, 2019 16 / 23



Sketch of proof

Knowles and Yin's approach (extreme e.v. of deformed Wigner), based on

a two-step comparison. W = W + P.

@ Derive results when for W is Gaussian.

o Compare the Gaussian case with a partially Gaussian matrix W
(depending on the structure of P; large entries cause trouble).

o Compare W with the general Wigner W.

Our approach is different and more direct.
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Sketch of proof for individual singular vector
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Sketch of proof for individual singular vector

S=duw + X.
The empirical spectral distributions (ESD) of the matrices XX and X7 X
1 m
Al =) 1noaxnsg: ()= Z Lon(xTx)<-
i=1
The Marchenko-Pastur (MP) law:

Fl(X) — FMP71(X), F2(X) — FMP,2(X).

The Stieltjes’s transforms:

m1(2) ::/ ! dFump 1(x), my(2) ::/XizdFMp,z(x).

X —Z
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Sketch of proof: linearization

S=duw’ +X.
Linearization technique: Work with

Y:=UDU" +H
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Sketch of proof: linearization

S=duw’ +X.
Linearization technique: Work with
Y:=upu' +H

where

u=(" ) p@=vi(, 7). Ha=vi( e X))

The Green function of H is
whose approximation is
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Sketch of proof: Green function representation

Green function representation of |(v, v)|?: by residue theorem,

dz

_ —1
v,V D+ UTG(2)U) )117

1
P = sy )

By resolvent expansion,
V(|{v,7)|? = a(d)) = Vn (Tr(G — MA+Tr(6" —)B) ,

where A, B are explicit fixed-rank and bounded matrices.
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Sketch of proof: further reduction

Derive the law of

Q=+n(Tr(G-MA+Tr(G' -M)B).

Ke Wang (HKUST) May 7, 2019 20 / 23



Sketch of proof: further reduction

Derive the law of
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Construct

A= \Ul + \U2

random part: linear combination of Xj's deterministic part: centralization
w.r.t. large components of u and v
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Sketch of proof: further reduction

Derive the law of
Q=+/n(Tr(G—MA+Tr(G'—N")B).
Construct

A= \Ul + \U2

random part: linear combination of Xj's deterministic part: centralization
w.r.t. large components of u and v

Goals:
@ The Gaussianity of Q — A.
@ Independence between Q — A and A.

Ke Wang (HKUST) May 7, 2019 20 /23



Sketch of proof: recursive estimates

Our strategy is to establish the recursive estimates

E(Q — A)fe*t® = (k — 1)VE(Q — A)F2eA 4 o(1).
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Sketch of proof: recursive estimates

Our strategy is to establish the recursive estimates
E(Q — A)fe*t® = (k — 1)VE(Q — A)F2eA 4 o(1).
The goals are achieved simultaneously.
@ Gaussianity follows by taking t = 0.

@ Independence follows from the consequence of recursive estimates:

Reis(Q-A)+itA _ [ais(Q-A)peitd o(1).
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Sketch of proof: key technical inputs

Two key ingredients in the proof of recursive estimates.

o Cumulant expansion formula: For f € C/*1(R) and ¢ a centered
random variable with finite / + 2 moments,

l
B(ef(©) = Y2 " R(F0(6)) + Bleo(er(e).

k=1

Applications in RMT: Khorunzhy-Khoruzhenko-Pastur '96, Lytova-Pastur
09’, Lee-Schnelli '16, He-Knowles '16.
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Sketch of proof: key technical inputs

Two key ingredients in the proof of recursive estimates.

o Cumulant expansion formula: For f € C/*1(R) and ¢ a centered
random variable with finite / + 2 moments,

¢

Eer©) = 3 g0 0)) 1 B(eer ().

k!
k=1

Applications in RMT: Khorunzhy-Khoruzhenko-Pastur '96, Lytova-Pastur
09’, Lee-Schnelli '16, He-Knowles '16.

@ Isotropic local laws: large deviation bounds of
(u, (GD =Ny for I € N.

Established in Bloemendal-Erdds-Knowles-Yau-Yin '14, Knowles-Yin '17.

Ke Wang (HKUST) May 7, 2019 22 /23



THANK YQU!
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