#### Limit theorems for determinantal point processes

Tomoyuki Shirai <sup>1 2</sup>

Kyushu University

May. 8, 2019

<sup>1</sup>Joint work with Makoto Katori (Chuo University)

<sup>2</sup>A Probability Conference "Random Matrices and Related Topics" @KIAS, Seoul, Korea, May 6–10, 2019.

Tomoyuki Shirai (Kyushu University) Limit theorems for determinantal point process

- Brief review on determinantal point processes (DPPs)
- L<sup>1</sup>-limit for generalized accumulated spectrograms
- Oircular Unitary Ensemble (CUE)
- Two DPPs on the 2-dimensional sphere and limit theorems
- S An extension to the *d*-dimensional sphere
- **o** An extension to compact Riemannian manifolds

### Reproducing kernel Hilbert space (RKHS)

- Let S be a set and H a Hilbert space of  $\mathbb{C}$ -valued functions on S.
- *H* is said to be a reproducing kernel Hilbert space (RKHS) if, for every  $y \in S$ , the point evaluation map  $L_y : H \to \mathbb{C}$

$$L_y(f) = f(y) \quad (f \in H)$$

is bounded (continuous).

• Since  $L_y$  is a bounded linear functional, by Riesz's theorem, we have  $K_y \in H$  such that

$$L_y(f) = (f, K_y)_{H^2}$$

K(x, y) := K<sub>y</sub>(x) is called a reproducing kernel in the sense that
 f(y) = (f, K(⋅, y))<sub>H</sub> ∀f ∈ H, ∀y ∈ S.

#### Theorem (Moore-Aronszain)

Let K be a Hermitian positive definite kernel  $K : S \times S \to \mathbb{C}$ . Then, there exists a unique Hilbert space  $H_K$  of  $\mathbb{C}$ -valued functions on S for which K is a reproducing kernel.

#### • Band limited functions:

$$PW_{a} = \{f \in L^{2}(\mathbb{R}) : \operatorname{supp} \widehat{f} \subset [-a, a]\},$$
  
where  $\widehat{f}(\omega) = \int_{\mathbb{R}} f(x)e^{-i\omega x}dx.$   
 $|f(x)| \leq \frac{1}{2\pi} \left| \int_{-a}^{a} \widehat{f}(\omega)e^{i\omega x}d\omega \right| \leq \sqrt{\frac{a}{\pi}} \|f\|.$ 

• Reproducing kernel:

$$\mathcal{K}_{a}(x,y) = rac{\sin a(x-y)}{\pi(x-y)} o \delta_{y}(x) \quad (a o \infty).$$

• RKHS  $(PW_a, K_a)$  is called the Paley-Wiener space.

## Determinantal point processes (DPPs)

We recall determinantal point processes (DPPs) on S.

- S: a base space (locally compact Polish space)
- $\lambda(ds)$ : Radon measure on S
- $\operatorname{Conf}(S) = \{\xi = \sum_i \delta_{x_i} : x_i \in S, \xi(K) < \infty \text{ for all bounded set } K\}:$ the set of  $\mathbb{Z}_{\geq 0}$ -valued Radon measures
- $H_{\mathcal{K}} \subset L^2(S, \lambda)$ : reproducing kernel Hilbert space (RKHS) with kernel  $\mathcal{K}(\cdot, \cdot) : S \times S \to \mathbb{C}$ .

#### Theorem (Determinantal point process with $(K, \lambda)$ or $H_K$ )

There exists a point process  $\xi = \xi(\omega)$  on S, i.e., a  $\operatorname{Conf}(S)$ -valued random variable such that the *n*th correlation function w.r.t.  $\lambda^{\otimes n}$  is given by

$$\rho_n(s_1,\ldots,s_n) = \det(K(s_i,s_j))_{i,j=1}^n.$$

#### DPP and Gaussian process - RKHS



### Determinantal point processes (DPPs) II

• Example. (Paley-Wiener Space):  $S = \mathbb{R}$ ,  $\lambda(dx) = dx$  and

$$K(x,y) = \frac{\sin a(x-y)}{x-y}$$

The RHKS  $H_K$  is  $PW_a$ , then the corresponding DPP is the limiting CUE (also GUE) eigenvalues process.

Later we will discuss a generalization of this procss.

• Example (Bargmann-Fock space):  $S = \mathbb{C}$  and  $\lambda(dz) = \pi^{-1} e^{-|z|^2} dz$ and

$$K(z,w)=e^{z\overline{w}}.$$

The RKHS  $H_K$  is the Bargmann-Fock space, i.e.,

$$H_{\mathcal{K}} := \{f \in L^2(\mathbb{C}, \lambda) : f \text{ is entire}\}$$

The DPP in this case is the Ginibre point process.

#### Determinantal point processes (DPPs) III

- Number of points: If K is of rank N, i.e., dim H<sub>K</sub> is N, then the number of points is N a.s.
- Density of points w.r.t.  $\lambda(dx)$  and negative correlation:

 $\rho_1(x) = K(x, x)$  $\rho_2(x, y) = K(x, x)K(y, y) - |K(x, y)|^2 \le \rho_1(x)\rho_1(y)$ 

• Gauge invariance: For u:S 
ightarrow U(1), a gauge transformation

$$K(s,t)\mapsto \widetilde{K}(s,t):=u(s)K(s,t)\overline{u(t)}$$

does not change the law of DPP.

• Scaling property: When  $S = \mathbb{R}^d$  and  $\lambda(dx) = dx$ , for a configuration  $\xi = \sum_i \delta_{x_i}$ , we define

$$S_c(\xi) = \sum_i \delta_{cx_i}.$$

If  $\xi(\omega)$  is DPP with K, then  $S_c(\xi(\omega))$  is also DPP with

$$K_c(x,y) = c^{-d} K(c^{-1}x,c^{-1}y)$$

#### DPP associated with partial isometry

• We say that  $\mathcal{W}: L^2(S_1, \lambda_1) \to L^2(S_2, \lambda_2)$  is partial isometry if  $\|\mathcal{W}f\|_{L^2(S_2, \lambda_2)} = \|f\|_{L^2(S_1, \lambda_1)}$  for all  $f \in (\ker \mathcal{W})^{\perp}$ 

• Let  $\mathcal{W} : L^2(S_1, \lambda_1) \to L^2(S_2, \lambda_2)$  and its dual  $\mathcal{W}^* : L^2(S_2, \lambda_2) \to L^2(S_1, \lambda_1)$  be partial isometries, or equivalently,  $\mathcal{K}_1 = \mathcal{W}^* \mathcal{W}, \quad \mathcal{K}_2 := \mathcal{W} \mathcal{W}^*$  (orthogonal projections)

• Suppose that both  $\mathcal{K}_1$  and  $\mathcal{K}_2$  are of locally trace class, i.e.,

 $\mathcal{P}_{\Lambda_1}\mathcal{K}_1\mathcal{P}_{\Lambda_1},\ \mathcal{P}_{\Lambda_2}\mathcal{K}_2\mathcal{P}_{\Lambda_2} \text{ are of trace class}$ 

for any bounded set  $\Lambda_i \subset S_i$  (i = 1, 2).

- Then K<sub>1</sub> and K<sub>2</sub> admit kernel K<sub>1</sub>(x, x') and K<sub>2</sub>(y, y'), which are reproducing kernels of (ker W)<sup>⊥</sup> and (ker W<sup>\*</sup>)<sup>⊥</sup>, respectively.
- Let Ξ<sub>i</sub> (i = 1, 2) be the DPPs associated with (K<sub>i</sub>, λ<sub>i</sub>) (i = 1, 2), respectively.

M.Katori-T.Shirai, Partial Isometry, Duality, and Determinantal Point Processes, available at https://arxiv.org/abs/1903.04945

## Orthogonal polynomial ensemble

#### (1) Orthogonal polynomial ensemble.

$$\mathcal{W}: L^2(\mathbb{R},\lambda) \to \ell^2(\mathbb{Z}_{\geq 0})$$

defined by the kernel

$$(\mathcal{W}f)(n) = \int_{R} \overline{\varphi_n(x)} f(x) \lambda(dx)$$

where  $\{\varphi_n(x)\}_{n\in\mathbb{Z}_{\geq 0}}$  are orthonormal polynomials for  $L^2(\mathbb{R},\lambda)$ .

$$\begin{aligned} & \mathcal{K}_1^{\{0,1,\dots,N-1\}}(x,y) = \sum_{j=0}^{N-1} \varphi_j(x) \overline{\varphi_j(y)} \Longrightarrow \mathsf{DPP} \ \Xi_1 \text{ on } \mathbb{R}. \\ & \mathcal{K}_2^{[r,\infty)}(n,m) = \int_r^\infty \overline{\varphi_n(x)} \varphi_m(x) \lambda(dx) \Longrightarrow \mathsf{DPP} \ \Xi_2 \text{ on } \mathbb{Z}_{\geq 0}. \end{aligned}$$

Duality relation: for any  $m = 0, 1, \ldots$ ,

$$\mathbb{P}\Big(\Xi_1([r,\infty))=m\Big)=\mathbb{P}\Big(\Xi_2(\{0,1,\ldots,N-1\})=m\Big)$$

# Weyl-Heisenberg ensemble

(2) Weyl-Heisenberg ensemble (Abreu-Pereira-Romero-Torquato('17)):

W: L<sup>2</sup>(ℝ<sup>d</sup>) → L<sup>2</sup>(ℝ<sup>d</sup> × ℝ<sup>d</sup>) is the short-time Fourier transform defined by

$$\mathcal{W}f(z) = \int_{\mathbb{R}^d} f(t)g(t-x)e^{2\pi i\xi t}dt, \quad z := (x,\xi) \in \mathbb{R}^d \times \mathbb{R}^d,$$

where g is a window function such that  $\|g\|_{L^2(\mathbb{R}^d)} = 1$ .

It is easy to see that

 $\mathcal{W}^*\mathcal{W} = I_{L^2(\mathbb{R}^d)}, \quad \mathcal{K} = \mathcal{W}\mathcal{W}^*(\text{orthogonal proj. on } L^2(\mathbb{R}^d \times \mathbb{R}^d)).$ 

• DPP on  $\mathbb{R}^d \times \mathbb{R}^d$  associated with  $\mathcal{K}$  is called Weyl-Heisenberg ensemble.

Example: When d = 1,  $g(t) = 2^{1/4}e^{-\pi t^2}$ , by identifying  $\mathbb{R} \times \mathbb{R}$  with  $\mathbb{C}$ , we have

$$\mathcal{K}_2(z,w) = \frac{e^{i\pi\operatorname{\mathsf{Re}} z\operatorname{\mathrm{Im}} z}}{e^{i\pi\operatorname{\mathsf{Re}} w\operatorname{\mathrm{Im}} w}}e^{\pi\{z\overline{w}-\frac{1}{2}(|z|^2+|w|^2)\}} \quad (z,w\in\mathbb{C}).$$

The corresponding Weyl-Heisenberg ensemble is the Ginibre point process. Tomoyuki Shirai (Kyushu University) Limit theorems for determinantal point process May. 8, 2019 11 / 37 We focus on a generalized framework of Weyl-Heisenberg ensembles.

• Let  $\mathcal{W}: L^2(S_1, \lambda_1) \to L^2(S_2, \lambda_2)$  be an isometry and its dual  $\mathcal{W}^*: L^2(S_2, \lambda_2) \to L^2(S_1, \lambda_1)$  be a partial isometry, i.e.,

$$\mathcal{W}^*\mathcal{W} = I_{L^2(S_1,\lambda_1)},$$
  
 $\mathcal{W}\mathcal{W}^* =: \mathcal{K}_2(\text{orthogonal projection on }(\ker \mathcal{W}^*)^{\perp}$ 

- Suppose that  $\mathcal{K}_2$  is of locally trace class, i.e.,  $\mathcal{K}_2$  admits a kernel  $\mathcal{K}_2(y, y')$ .
- Let  $\Xi_2$  the DPP on  $S_2$  associated with  $(K_2, \lambda_2)$ .

### Generalized accumulated spectrogram

•  $\Xi_2$  is the DPP on  $S_2$  associated with  $(K_2, \lambda_2)$ .

• For  $\Lambda \subset S_2$  such that  $\mathbb{E}[\Xi_2(\Lambda)] < \infty$ , we define the restriction

$$(\mathcal{K}_2)_\Lambda := \mathcal{P}_\Lambda \mathcal{K}_2 \mathcal{P}_\Lambda \quad (\text{trace class})$$

and consider the eigenvalue problem

$$(\mathcal{K}_2)_{\Lambda} \Phi_j^{(\Lambda)} = \mu_j^{(\Lambda)} \Phi_j^{(\Lambda)} \quad (j = 1, 2, \dots)$$

such that

$$1 \ge \mu_1^{(\Lambda)} \ge \mu_2^{(\Lambda)} \ge \cdots \ge 0$$

and Φ<sub>j</sub><sup>(Λ)</sup> is the normalized eigenfunction for μ<sub>j</sub><sup>(Λ)</sup>.
Set N<sub>Λ</sub> = [E[Ξ<sub>2</sub>(Λ)]] and define a generalized accumulated spectrogram

$$ho_\Lambda(y):=\sum_{j=1}^{N_\Lambda}|\Phi_j^{(\Lambda)}(y)|^2\quad(y\in S_2).$$

Weyl-Heisenberg case (Ginibre case):

• For  $\Lambda \subset \mathbb{R} \times \mathbb{R} \simeq \mathbb{C}$ , we set  $N_{\Lambda} = \lceil \mathbb{E}[\Xi(\Lambda)] \rceil$  and define

$$ho_{\Lambda}(z):=\sum_{j=1}^{N_{\Lambda}}rac{(\pi z)^{j}}{j!}|z|^{2j}e^{-\pi|z|^{2}}$$
 (accumulated spectrogram),

where  $N_{\Lambda} = \lceil \mathbb{E}[\Xi(\Lambda)] \rceil$ .

 (Corresponding to Circular law for Ginibre) Let D<sub>1</sub> = {(x, ξ) ∈ R<sup>2</sup> : x<sup>2</sup> + ξ<sup>2</sup> ≤ 1} ⊂ C. As R → ∞,

$$\rho_{R\mathbb{D}_1}(R\cdot) \to \mathbf{1}_{\mathbb{D}_1} \quad \text{in } L^1(\mathbb{C}),$$

where  $N_{R\mathbb{D}_1} \approx \pi R^2$ .

Weyl-Heisenberg case (Ginibre case):

• For  $\Lambda =$  star, we have the following figure.

In the talk, I used here the figure 3 in the following paper.

L. D. Abreu, K. Gröchenig, and J. L. Romero, On accumulated spectrograms, Trans. Amer. Math. Soc **368** (2016), 3629-3649.

Weyl-Heisenberg case:

• For 
$$\Lambda \subset \mathbb{R}^d \times \mathbb{R}^d (\simeq \mathbb{C}^d)$$
, we set  $N_{\Lambda} = \lceil \mathbb{E}[\Xi_2(\Lambda)] \rceil$  and define

$$ho_{\Lambda}(z):=\sum_{j=1}^{N_{\Lambda}}|\Phi_{j}^{(\Lambda)}(z)|^{2},\quad z=(x,\xi)\in\mathbb{R}^{d} imes\mathbb{R}^{d}.$$

#### Theorem (Abreu-Gröchenig-Romero ('16))

Under a mild condition for  $\Lambda \subset \mathbb{R}^d \times \mathbb{R}^d$ , for Weyl-Heisenberg ensemble on  $\mathbb{R}^d \times \mathbb{R}^d$ , as  $R \to \infty$ ,

$$\rho_{R\Lambda}(R\cdot) \to \mathbf{1}_{\Lambda} \quad \text{in } L^1(\mathbb{R}^d \times \mathbb{R}^d).$$

## CUE eigenvalues and Poisson point process

 CUE (circular unitary ensemble) is the group 𝔐(N) of N × N unitary matrices with Haar measure.



Figure: CUE eigenvalues (left) and Poisson (right) (N = 100)

# Cirucular Unitary Ensemble (CUE)

- Let  $\mathscr{U}(N)$  be the group of  $N \times N$  unitary matrices with Haar measure.
- The probability distribution of eigenvalues  $\{e^{\sqrt{-1} heta_j}\}_{j=1}^N$  is

$$\frac{1}{n!(2\pi)^N}\prod_{1\leq j< k\leq N}|e^{\sqrt{-1}\theta_j}-e^{\sqrt{-1}\theta_k}|^2d\theta_1\dots d\theta_N|$$

• They form a DPP on  $\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}$  with  $\lambda(d heta)=d heta/(2\pi)$  on  $\mathbb{T}$  and

$$egin{aligned} \mathcal{K}_{\mathcal{N}}( heta,arphi) &= \sum_{k=0}^{N-1} e^{\sqrt{-1}k heta} \overline{e^{\sqrt{-1}karphi}} \ &= u( heta) \underbrace{rac{\sin N( heta-arphi)/2}{\sin( heta-arphi)/2}}_{:= ilde{\mathcal{K}}_{\mathcal{N}}( heta,arphi)} \overline{u(arphi)}, \end{aligned}$$

where  $u(\theta) = e^{\sqrt{-1}(N-1)\theta/2}$ . • RKHS:  $H_K = \operatorname{span}\{e^{\sqrt{-1}k\theta}, k = 0, 1, \dots, N-1\} \subset L^2(\mathbb{T}, d\theta)$ .

# Limiting DPP for CUE eigenvalues

• CUE eigenvalues form an *N*-points DPP on  $\mathbb{T}^1 = \mathbb{R}/2\pi\mathbb{Z}$  with

$$ilde{K}_N( heta, heta') = rac{\sin N( heta - heta')/2}{\sin( heta - heta')/2}$$

- ρ<sub>1</sub>(θ) = K̃<sub>N</sub>(θ, θ) = N and the empirical dist. of points converges to the uniform dist. on T<sup>1</sup>.
- Scaling  $\xi = \sum_{i} \delta_{\theta_i} \mapsto S_N(\xi) = \sum_{i} \delta_{x_i}$  where  $x_i = N\theta_i$ ,

$$\frac{1}{N}\tilde{K}_N(\frac{\theta}{N},\frac{\theta'}{N}) = \frac{1}{N}\frac{\sin(x-y)/2}{\sin(\frac{x}{N}-\frac{y}{N})/2} \rightarrow \frac{\sin(x-y)/2}{(x-y)/2} =: K_{\rm sinc}(x,y).$$

From this observation, we can see that

# Fact: *N*-point DPP on $\mathbb{T}^1 \stackrel{d}{\Rightarrow}$ the DPP on $\mathbb{R}^1$ with $\mathcal{K}_{\text{sinc}}$ (PW-space) Tomovuki Shirai (Kyushu University) Limit theorems for determinantal point proces May, 8, 2019 19/37

### Two ways of generalizations of CUE

We have two generalizations of CUE on  $\mathbb{T} \simeq \mathbb{S}^1$  to the sphere  $\mathbb{S}^2$ .

Vandermonde determinant of distances:

$$\prod_{1 \leq j < k \leq n} |e^{i\theta_j} - e^{i\theta_k}|^2 = \prod_{1 \leq j < k \leq n} \|z_j - z_k\|_{\mathbb{R}^2}^2 \quad (z_j \in \mathbb{S}^1)$$

OPP with the projection kernel onto an eigenspace:

$$\mathcal{K}_{\mathcal{N}}( heta,arphi) = \sum_{k=0}^{\mathcal{N}-1} e^{ik heta} \overline{e^{ikarphi}}$$

with  $\lambda(d\theta) = d\theta/(2\pi)$  on  $\mathbb{S}^1$ . Here  $e^{ik\theta}$  is an eigenfunction of the Laplacian  $\Delta_{\mathbb{S}^1} = \frac{d^2}{d\theta^2}$ :

$$-\Delta_{\mathbb{S}^1}e^{ik\theta}=k^2e^{ik\theta}.$$

 $L^2(\mathbb{S}^1)$  is spanned by  $\{e^{ik\theta}\}_k$ .

• Ginibre random matrix:

 $G \sim Ginibre(N) \iff \{G_{ij}\}_{i,j=1}^N$  are i.i.d. and  $G_{ij} \sim N_{\mathbb{C}}(0,1)$ .

- Let  $A, B \sim Ginibre(N)$  be independent.
- (Krishnapur '09) The eigenvalues of  $A^{-1}B$  forms a DPP on  $\mathbb C$  with

$$egin{aligned} &\mathcal{K}_{\mathcal{N}}(z,w) = (1+z\overline{w})^{\mathcal{N}-1} \ &\lambda(dz) = rac{\mathcal{N}}{\pi(1+|z|^2)^{\mathcal{N}+1}} dm(z) \end{aligned}$$

- Density of points:  $K_N(z,z)\lambda(dz) = \frac{N}{\pi(1+|z|^2)^2}dm(z).$
- The reproducing kernel Hilbert space (RKHS) is the space of polynomials:

$$H_{K_N} = \operatorname{span}\{z^n : n = 0, 1, \dots, N-1\}$$

## Spherical ensemble

- Through the stereographic projection, it is considered as a point process on the Riemann sphere Ĉ = C ∪ {∞}.
- The distribution w.r.t. the surface measure is given by



Figure: Pullback of eigenvalues of  $A^{-1}B$  by the stereographic projection (N = 500)

(const.) 
$$\prod_{1 \leq j < k \leq N} \|P_j - P_k\|_{\mathbb{R}^3}^2$$
 on  $\widehat{\mathbb{C}} \simeq \mathbb{S}^2$ ,

- This DPP is O(3)-invariant, and uniformly distributed with density  $N/4\pi$ .
- This may be considered as a spherical version of CUE eigenvalues.
- It has been studied as u 2D one-component plasma/2D Coulomb gas on S<sup>2</sup>.
- The correlation kernel is given by

$$\begin{split} \mathcal{K}(\boldsymbol{p},\boldsymbol{p}') &= \mathcal{K}((\theta,\varphi),(\theta',\varphi')) \\ &= \frac{N}{4\pi} \Big( e^{\sqrt{-1}(\varphi-\varphi')} \sin(\theta/2) \sin(\theta'/2) + \cos(\theta/2) \cos(\theta'/2) \Big)^{N-1} \end{split}$$

where  $p = (\theta, \varphi)$  is the polar coordinates of  $\mathbb{S}^2$ .

#### Point process on the tangent space at the north-pole

- As  $N \to \infty$ , the empirical measure  $\frac{1}{N} \sum_{i=1}^{N} \delta_{P_i}$  converges weakly to the uniform measure on  $\mathbb{S}^2$  almost surely.
- We consider the pullback of points on the sphere by the exponential map exp : T<sub>e3</sub>(S<sup>2</sup>) → S<sup>2</sup>, i.e., using the polar coordinates (θ, φ),

 $\mathcal{T}_{e_3}(\mathbb{S}^2) \ni (\theta \cos \varphi, \theta \sin \varphi) \mapsto (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) \in \mathbb{S}^2.$ 



# Limiting point process for spherical ensembles

- $\tilde{\xi}_N$ : spherical ensemble, which is the eigenvalues process of  $A^{-1}B$  for  $A, B \sim Ginibre(N)$ . (*N*-point process on  $\mathbb{S}^2$ )
- Let  $e_3 = (0,0,1)$  be the north pole and  $T_{e_3}(\mathbb{S}^2)$  be the tangent space at  $e_3$ .
- For fixed ε > 0, we consider the pull-back of points on S<sup>2</sup> ∩ B<sub>ε</sub>(e<sub>3</sub>) by the exponetial map exp : T<sub>e3</sub>(S<sup>2</sup>) → S<sup>2</sup> and denote it by ξ<sup>(ε)</sup><sub>N</sub>.
- Scaling map: For a configuration  $\xi = \sum_i \delta_{x_i}$ , we define

$$S_c(\xi) = \sum_i \delta_{cx_i}.$$

#### Theorem (Katori-S.)

The scaled p.p.  $S_{\sqrt{N}}(\xi_N^{(\epsilon)})$  converges weakly to the Ginibre DPP.

Recall that the Ginibre DPP is the DPP on  ${\mathbb C}$  associated with the kernel

$$K(z,w)=e^{z\overline{w}},\quad\lambda(dz)=\pi^{-1}e^{-|z|^2}dz.$$

# (2) Harmonic ensemble for $\mathbb{S}^2$

•  $L^2(\mathbb{S}^2)$ : There is a spectral decomposition of  $L^2(\mathbb{S}^2)$  as

$$L^2(\mathbb{S}^2)\simeq \bigoplus_{\ell=0}^{\infty} E_\ell,$$

where  $E_{\ell}$  is the eigenspace of  $-\Delta_{\mathbb{S}^2}$  corresponding to the eigenvalue  $\ell(\ell+1)$  and dim  $E_{\ell} = 2\ell + 1$ .

• Spherical harmonics:

$$Y^{\ell}_{m}(\theta,\varphi) := \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P^{\ell}_{m}(\cos\theta) e^{im\varphi} \quad (-\ell \leq m \leq \ell),$$

where  $P_m^{\ell}(x)$  is the associated Legendre polynomial of degree m. • Eigenspace  $E_{\ell}$ :  $E_{\ell}$  is spanned by the spherical harminoics

$$E_{\ell} = \operatorname{span} \{ Y_m^{\ell} : m = -\ell, -\ell + 1, \dots, \ell \}.$$

- $L^2(\mathbb{S}^2) = \oplus_{\ell=0}^{\infty} E_{\ell}$ , where  $E_{\ell}$  is the eigenspace of  $-\Delta_{\mathbb{S}^2}$  for  $\ell(\ell+1)$ .
- Reproducing kernel for  $\bigoplus_{\ell=0}^{N-1} E_{\ell}$ : dim  $E_{\ell} = 2\ell + 1$ .



where  $\Psi^{\ell}(x, y)$  is the reproducing kernel for  $E_{\ell}$ .

- DPP on  $\mathbb{S}^2$  associated with  $K_N$ : The number of points is  $N^2$ .
- As  $N \to \infty$ , the empirical measure converges weakly to the uniform measure on  $\mathbb{S}^2$  in law.

# Limiting DPP associated with $K_N$

- For fixed ε > 0, ξ<sub>N</sub><sup>(ε)</sup> is the pull-back of points on S<sup>2</sup> ∩ B<sub>ε</sub>(e<sub>3</sub>) by the exponential map exp : T<sub>e3</sub>(S<sup>2</sup>) → S<sup>2</sup>.
- For  $\xi = \sum_i \delta_{x_i}$ ,

$$S_N(\xi) = \sum_i \delta_{Nx_i}.$$



#### Theorem (Katori-S.)

The scaled p.p.  $S_N(\xi_N^{(\epsilon)})$  converges weakly to the DPP on  $T_{e_3}(\mathbb{S}^2) \simeq \mathbb{R}^2$  associated with the kernel

$$K(x,y) = \frac{1}{2\pi |x-y|} J_1(|x-y|),$$

where  $J_1(r)$  is the Bessel function of the first kind.

# (3) Harmonic ensemble on $\mathbb{S}^n$

- Eigenspace  $E_{\ell}$ :  $E_{\ell}$  is the eigenspace of  $-\Delta_{\mathbb{S}^n}$  corresponding to  $\ell(\ell + n 1)$ .
- Spherical harmonics on  $\mathbb{S}^n$ :  $E_\ell$  is spanned by the spherical harmonics  $\{Y_m^\ell\}_{m=1}^{d_\ell}$ , where  $d_\ell = \frac{(2\ell+n-1)(\ell+n-2)!}{(n-1)!\ell!}$ .
- Spectral decomposition:

$$L^2(\mathbb{S}^n) = \bigoplus_{\ell=0}^{\infty} E_{\ell}$$

• Projection onto  $H_N := \bigoplus_{\ell=0}^{N-1} E_\ell$ :

$$\mathcal{K}_{\mathcal{N}}(x,y) = \sum_{\ell=0}^{N-1} \underbrace{\sum_{m=1}^{d_{\ell}} Y_m^{\ell}(x) \overline{Y_m^{\ell}(y)}}_{\text{projection onto } E_{\ell}},$$

•  $(H_N, K_N)$  is a RKHS, and then  $\exists$  the rotation invariant DPP on  $\mathbb{S}^n$ .

# Limiting DPP for harmonic ensemble on $\mathbb{S}^n$

•  $\xi_N^{(\epsilon)}$  is the pull-back of points on  $\mathbb{S}^n \cap B_{\epsilon}(e_{n+1})$  by the exponetial map  $\exp : T_{e_{n+1}}(\mathbb{S}^n) \to \mathbb{S}^n.$ 

• For  $\xi = \sum_i \delta_{x_i}$ ,

$$S_N(\xi) = \sum_i \delta_{Nx_i}.$$



#### Theorem (Katori-S.)

The scaled p.p.  $S_N(\xi_N^{(\epsilon)})$  converges weakly to the DPP on  $\mathcal{T}_{e_{n+1}}(\mathbb{S}^n) \simeq \mathbb{R}^n$  associated with the kernel

$$\mathcal{K}^{(n)}(x,y) = rac{1}{(2\pi |x-y|)^{rac{n}{2}}} J^{rac{n}{2}}(|x-y|),$$

where  $J_{\nu}(r)$  is the Bessel function of the first kind with index  $\nu$ .

### Example: generalized Paley-Wiener space

• Frequency bounded functions: For a bounded Borel set  $B \subset \mathbb{R}^n$ ,

$$PW_{B}(\mathbb{R}^{n}) := \{ f \in L^{2}(\mathbb{R}^{n}) : \operatorname{supp} \widehat{f} \subset \overline{B} \},$$
  
where  $\widehat{f}(\omega) = \int_{\mathbb{R}^{n}} f(x) e^{-i\omega \cdot x} dx.$   
 $|f(x)| \leq \frac{1}{(2\pi)^{n}} \left| \int_{B} \widehat{f}(\omega) e^{i\omega \cdot x} d\omega \right| \leq \sqrt{\frac{|B|}{(2\pi)^{n}}} ||f||_{L^{2}(\mathbb{R}^{n})}.$ 

• Reproducing kernel:

$$\mathcal{K}_B(x,y) = \frac{1}{(2\pi)^n} \int_B e^{i\omega \cdot (x-y)} d\omega$$

• RKHS  $(PW_B(\mathbb{R}^n), K_B)$  is a generalization of the Paley-Wiener space.

### Multi-dimensional version of Paley-Wiener space

• Correlation kernel:

$$egin{aligned} \mathcal{K}^{(n)}(x,y) &= rac{1}{(2\pi |x-y|)^{rac{n}{2}}} J^{rac{n}{2}}(|x-y|) \ &= \Big(rac{1}{2\pi}\Big)^n \int_{\mathbb{R}^n} \mathbf{1}_{B_1}(u) e^{iu \cdot (x-y)} du. \end{aligned}$$

- RKHS: *H<sub>K</sub>*<sup>(*n*)</sup> is the generalized Paley-Wiener space corresponding to the unit ball *B*<sub>1</sub>.
- Invariance:  $K^{(n)}(x, y)$  is motion invariant and hence

$$K^{(n)}(x,y) = k^{(n)}(|x-y|)$$

where

$$k^{(n)}(r) = \frac{1}{(2\pi r)^{\frac{n}{2}}} J_{\frac{n}{2}}(r)$$

• For odd  $n = 1, 3, \ldots$ , it is simplified as

$$k^{(1)}(r) = \frac{\sin r}{\pi r}, \quad k^{(3)}(r) = \frac{1}{2\pi^2 r^2} \left(\frac{\sin r}{r} - \cos r\right), \dots$$

- *M*: compact, smooth Riemannian manifold of dimension *n*.
- Suppose that on a neighborhood on B<sub>e</sub>(p) of a point p ∈ M, the empirical measure converges to a measure with positive density on B<sub>e</sub>(p).
- For sufficiently small ε > 0 (smaller than the injective radius at p), ξ<sub>N</sub><sup>(ε)</sup> is the pull-back of points on M ∩ B<sub>ε</sub>(p) by the exponential map exp : T<sub>p</sub>(M) → M.
- For  $\xi_N^{(\epsilon)} = \sum_i \delta_{x_i}$ ,

$$S_{a_N}(\xi_N^{(\epsilon)}) = \sum_i \delta_{a_N \times_i} \stackrel{d}{\Rightarrow} ??$$



# The Weyl law and quantum ergodicity

• Let (*M*, *g*) be a compact, smooth Riemannian manifold of dimension *n* and consider the eigenvalue problem

$$-\Delta_M \varphi_j = \lambda_j^2 \varphi_j,$$

where  $0 = \lambda_1 \leq \lambda_2 \leq \cdots$  and  $\{\varphi_j\}_{j \geq 1}$  is an ONB of  $L^2(M)$ . • Weyl law: As  $\lambda \to \infty$ ,

$$N(\lambda) = \#\{j \ge 1 : \lambda_j \le \lambda\} \sim \frac{|B_1|}{(2\pi)^n} \operatorname{Vol}(M) \lambda^n,$$

where  $|B_1|$  is the volume of the unit ball of in  $\mathbb{R}^n$ .

• Quantum ergodicity: Does the following hold?

$$|arphi_j(x)|^2 dx \stackrel{w}{
ightarrow} dx \quad ext{as } j 
ightarrow \infty?$$

Thm. (Shnirelman-Zelditch-Colin de Verdiére) This is true along a subsequence with density 1 if the geodesic flow on M is ergodic.

# (4) DPP associated with spectral projections for $\Delta_M$

- $E_{\lambda_i}$ : the eigenspace of  $-\Delta_M$  corresponding to  $\lambda_i$ .
- Reproducing kernel (projection kernel) for  $\bigoplus_{\lambda_i \leq \lambda} E_{\lambda_i}$ :

$$\mathcal{K}_{\lambda}(x,y) = \sum_{\lambda_j \leq \lambda} arphi_j(x) \overline{arphi_j(y)}.$$

- Consider DPP  $\xi_{\lambda}(\omega)$  on *M* associated with  $K_{\lambda}$ .
- The counting function is equal to the number of DPP points:

$$N(\lambda) = \int_M K_\lambda(x,x) dx \sim \frac{|B_1|}{(2\pi)^n} \operatorname{Vol}(M) \lambda^n,$$

where  $B_1$  is the unit ball in  $\mathbb{R}^n$ .

# Universality of DPP on Riemannian manifold

For ξ<sup>(ε)</sup><sub>λ</sub> = ∑<sub>i</sub> δ<sub>xi</sub> on the cotangent space T<sup>\*</sup><sub>p</sub>(M) at p, which is the pullback of the DPP ξ<sub>λ</sub> on M ∩ B<sub>p</sub>(ε).

$$S_{\lambda}(\xi_{\lambda}^{(\epsilon)}) = \sum_{i} \delta_{\lambda x_{i}} \stackrel{d}{\Rightarrow} ??$$

#### Theorem (Katori-S.)

The scaled DPP  $S_{\lambda}(\xi_{\lambda}^{(\epsilon)}(\omega))$  converges weakly to the DPP associated with

$$\mathcal{K}^{(n)}(x,y)=\frac{1}{(2\pi)^n}\int_{\mathbb{R}^n}\mathbf{1}_{B_1}(u)e^{iu\cdot(x-y)}du,$$

where  $B_1$  is the unit ball in  $\mathbb{R}^n$ .

- We discussed *L*<sup>1</sup>-limit for the accumulated spectrogram for DPPs from the view point of hyperunifomity.
- Two types of DPPs on  $\mathbb{S}^2$  are discussed.
  - **(**) through the eigenvalues of  $A^{-1}B$  (harmonic ensemble)
  - through the RKHS spanned by spherical harmomics (spherical ensemble).

The former converges to DPP associated with the Bessel function  $J_1$ , the latter converges to Ginibre DPP.

- The DPP on S<sup>n</sup> associated with RKHS spanned by spherical harmonics is introduced, and show the convergence toawards the DPP associated with the generalized Paley-Wiener space
- Furthermore, we considered the similar problem on compact Riemannian manifolds, and we showed the universality.