## Random normal matrix models with a soft edge of the spectrum

Joint work with Yacin Ameur and Nam-Gyu Kang

Seong-Mi Seo (KIAS)

May 92019

Random Matrices and Related Topics

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

### Random normal matrix ensembles

#### 2D Coulomb gas model

Consider *n* point charges on  $\mathbb{C}$  influenced by an external potential *Q*. The energy of a configuration  $(\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n$  is given by

$$H_n(\zeta_1,\cdots,\zeta_n) = \sum_{j\neq k} \log \frac{1}{|\zeta_j - \zeta_k|} + n \sum_{j=1}^n Q(\zeta_j).$$

ション ふゆ マ キャット マックシン

### Random normal matrix ensembles

#### 2D Coulomb gas model

Consider *n* point charges on  $\mathbb{C}$  influenced by an external potential *Q*. The energy of a configuration  $(\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n$  is given by

$$H_n(\zeta_1,\cdots,\zeta_n) = \sum_{j\neq k} \log \frac{1}{|\zeta_j - \zeta_k|} + n \sum_{j=1}^n Q(\zeta_j).$$

The Boltzmann-Gibbs distribution at inverse temperature  $\beta > 0$ :

$$d\mathbf{P}_{n}^{\beta}(\zeta_{1},\cdots,\zeta_{n}) = \frac{1}{Z_{n,\beta}} e^{-\beta H_{n}(\zeta_{1},\cdots,\zeta_{n})} dA(\zeta_{1})\cdots dA(\zeta_{n}),$$

where  $Z_{n,\beta}$  is the normalizing constant and dA is the area measure in  $\mathbb{C}$ .

うして ふゆう ふほう ふほう ふしつ

### Random normal matrix ensembles

#### 2D Coulomb gas model

Consider *n* point charges on  $\mathbb{C}$  influenced by an external potential *Q*. The energy of a configuration  $(\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n$  is given by

$$H_n(\zeta_1,\cdots,\zeta_n) = \sum_{j\neq k} \log \frac{1}{|\zeta_j - \zeta_k|} + n \sum_{j=1}^n Q(\zeta_j).$$

The Boltzmann-Gibbs distribution at inverse temperature  $\beta > 0$ :

$$d\mathbf{P}_{n}^{\beta}(\zeta_{1},\cdots,\zeta_{n}) = \frac{1}{Z_{n,\beta}} e^{-\beta H_{n}(\zeta_{1},\cdots,\zeta_{n})} dA(\zeta_{1})\cdots dA(\zeta_{n}),$$

where  $Z_{n,\beta}$  is the normalizing constant and dA is the area measure in  $\mathbb{C}$ . If  $\beta = 1$ , the point process  $\{\zeta_j\}_{j=1}^n$  is determinantal and it represents the eigenvalues of random normal matrix models.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

### Correlation functions

The k-point correlation function (for  $1 \le k \le n$ ) of the point process:

$$\mathbf{R}_{n,k}(\zeta_1,\cdots,\zeta_k) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^{2k}} \mathbf{P}_n \left[ \mathcal{N}(D(\zeta_j,\epsilon)) \ge 1 \text{ for all } 0 \le j \le k \right],$$

where  $\mathcal{N}(D)$  is the number of eigenvalues in  $D \subset \mathbb{C}$ .

### Correlation functions

The k-point correlation function (for  $1 \le k \le n$ ) of the point process:

$$\mathbf{R}_{n,k}(\zeta_1,\cdots,\zeta_k) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^{2k}} \mathbf{P}_n \left[ \mathcal{N}(D(\zeta_j,\epsilon)) \ge 1 \text{ for all } 0 \le j \le k \right],$$

where  $\mathcal{N}(D)$  is the number of eigenvalues in  $D \subset \mathbb{C}$ .

The system of eigenvalues forms a determinantal point process:

$$\mathbf{R}_{n,k}(\zeta_1,\cdots,\zeta_k) = \det\left(\mathbf{K}_n(\zeta_i,\zeta_j)\right)_{i,j=1}^k$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

where  $\mathbf{K}_n : \mathbb{C}^2 \to \mathbb{C}$  is called a correlation kernel.

### Global properties

For a smooth potential Q satisfying  $\liminf_{\zeta \to \infty} Q(\zeta) / \log |\zeta| > 2$ , the eigenvalues accumulate on a compact set when n goes to  $\infty$ .

▶ Macroscopic asymptotics: [Johansson, Hedenmalm–Makarov]

$$\frac{1}{n} \mathbb{E} \sum_{j=1}^{n} \delta_{\zeta_j} \to \sigma \quad \text{as} \quad n \to \infty (\text{in the weak-star sense of measures})$$

•  $\sigma = \sigma_Q$  is the Frostman's equilibrium measure. It is the unique probability measure which minimizes the weighted logarithmic energy,

$$I_Q(\mu) = \iint_{\mathbb{C}^2} \log \frac{1}{|\zeta - \eta|} d\mu(\zeta) d\mu(\eta) + \int_{\mathbb{C}} Q \, d\mu,$$

among all compactly supported Borel probability measure  $\mu$  on  $\mathbb{C}$ .

- $\sigma$  has compact support  $S = S_Q$  (droplet).
- $d\sigma(\zeta) = 1_S \Delta Q(\zeta) \, dA(\zeta)$  where  $\Delta = \partial \bar{\partial}$  and  $dA(x + iy) = dx \, dy/\pi$ .

### Global properties: examples

 $\{\zeta_i\}_{i=1}^n$ : the eigenvalues of random normal matrices associated with Q.



## Droplets



$$Q(z) = |z|^2 - \frac{1}{2} \log |z - \frac{1}{2}|$$
Balogh–Bertola–Lee–McLaughlin

$$Q(z) = |z|^6 - \frac{2}{\sqrt{3}} \operatorname{Re} z^3$$
  
[Balogh-Merzi]

うしつ 川田 ふぼう ふぼう ふしゃ

## Droplets



If Q is real analytic (except at finitely many points), then the boundary  $\partial S$  is a finite union of analytic arcs with at most a finite number of singularities.

うして ふゆう ふほう ふほう ふしつ

### Local properties

Define a rescaled eigenvalue system  $\{z_j\}_1^n$  at a point in the droplet S.



If p is a "regular" point,

 $\star \text{ Bulk scaling } (p \in \text{Int } S)$ 

$$z_j = \sqrt{n\Delta Q(p)}(\zeta_j - p).$$

 $\star \text{ Edge scaling } (p \in \partial S)$ 

・ロト ・聞ト ・ヨト ・ヨト

$$z_j = \sqrt{n\Delta Q(p)} \ e^{-i\theta}(\zeta_j - p),$$
  
$$e^{i\theta}: \text{ outer normal to } \partial S \text{ at } p.$$

### Local properties

Define a rescaled eigenvalue system  $\{z_j\}_1^n$  at a point in the droplet S.



If p is a "regular" point,

 $\star \text{ Bulk scaling } (p \in \text{Int } S)$ 

$$z_j = \sqrt{n\Delta Q(p)}(\zeta_j - p).$$

 $\star \text{ Edge scaling } (p \in \partial S)$ 

$$z_j = \sqrt{n\Delta Q(p)} \ e^{-i\theta}(\zeta_j - p),$$
  
$$e^{i\theta}: \text{ outer normal to } \partial S \text{ at } p.$$

Universality phenomenon: in the large n limit the microscopic behavior of eigenvalues does not depend on the specific potential.

### Universality results

#### Bulk scaling limits $(p \in \text{Int } S)$

►  $\Delta Q(p) > 0$ : [Berman '08, Ameur–Hedenmalm–Makarov '11]. The rescaled process  $z_j = \sqrt{n\Delta Q(p)}(\zeta_j - p)$  converges to the determinantal point process with correlation kernel

 $G(z,w) = e^{z\bar{w} - |z|^2/2 - |w|^2/2} \quad \text{(Ginibre kernel)}.$ 

### Universality results

#### Bulk scaling limits $(p \in \text{Int } S)$

►  $\Delta Q(p) > 0$ : [Berman '08, Ameur–Hedenmalm–Makarov '11]. The rescaled process  $z_j = \sqrt{n\Delta Q(p)}(\zeta_j - p)$  converges to the determinantal point process with correlation kernel

 $G(z,w) = e^{z\bar{w} - |z|^2/2 - |w|^2/2} \quad \text{(Ginibre kernel)}.$ 

•  $Q(\zeta) = Q_r(\zeta - p) + h(\zeta) - (2c/n) \log |\zeta - p|$  for d > 0, c > -1: •  $Q_r$  is a radially symmetric function with  $Q_r(\zeta) = |\zeta|^{2d} + O(|\zeta|^{2d+\epsilon})$ • h is a harmonic polynomial [Ameur–Kang–S. '18]. The rescaled process  $z_j = n^{1/2d}(\zeta_j - p)$  converges to the determinantal point process with correlation kernel

$$K(z,w) = \sum_{j=0}^{\infty} \frac{d(z\bar{w})^j}{\Gamma((j+c+1)/d)} e^{-|z|^{2d}/2 - |w|^{2d}/2 + c\log|z| + c\log|w|}.$$

### Universality results

#### Edge scaling limits $(p \in \partial S)$

- ►  $Q(\zeta) = |\zeta|^2 a \operatorname{Re} \zeta^2$ : [Lee-Riser, '15] fine asymptotics of eigenvalues.
- ΔQ(p) > 0, regular points: [Ameur–Kang–Makarov '14] Translation invariant limiting kernels were characterized. [Hedenmalm-Wennman '17] The rescaled process z<sub>j</sub> = √nΔQ(p)e<sup>-iθ</sup>(ζ<sub>j</sub> − p) converges to the determinantal point process with correlation kernel

$$e^{z\bar{w}-|z|^2/2-|w|^2/2}\cdot \frac{1}{2}\operatorname{erfc}\left(\frac{z+\bar{w}}{\sqrt{2}}\right)$$

- ▶  $\Delta Q(p) > 0$ , singular points [Ameur–Kang–Makarov–Wennman '15].
- $\blacktriangleright \Delta Q(p) = 0 ?$
- Q with a logarithmic singularity on  $\partial S$  ?

## Free boundary / Hard edge

Random normal matrix models with two different boundary conditions.

- $\star$  Free boundary RNM model
  - $\blacktriangleright$  External potential Q
  - ▶ Equilibrium measure

 $\sigma_Q = 1_S \Delta Q dA$ 

► Edge scaling

$$z_j = \sqrt{n\Delta Q(p)}e^{-i\theta}(\zeta - p)$$

► Rescaled correlation kernel  $K(z, w) = G(z, w)\varphi(z + \overline{w})$ where

$$G(z,w) = e^{z\bar{w} - |z|^2/2 - |w|^2/2}$$
$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^0 e^{-(\xi - z)^2/2} d\xi$$

 $\star$  Hard edge RNM model

$$\blacktriangleright Q^{\mathrm{H}} = \begin{cases} Q & \text{if } \mathbf{z} \in \mathbf{S} \\ +\infty & \text{otherwise} \end{cases}$$

- Equilibrium measure  $\sigma_Q$
- ► Edge scaling

$$z_j = \sqrt{n\Delta Q(p)}e^{-i\theta}(\zeta - p)$$

► Rescaled correlation kernel  $G(z, w)H(z + \bar{w})1_{\mathbb{L}}(z)1_{\mathbb{L}}(w)$ where  $G(z, w) = e^{z\bar{w} - |z|^2/2 - |w|^2/2}$ 

$$H(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \frac{e^{-(\xi-z)^{2}/2}}{\varphi(\xi)} d\xi$$

うせん 一川 ふかく 山下 ふしゃ

## Free boundary / Hard edge

Random normal matrix models with two different boundary conditions.

- $\star$  Free boundary RNM model
  - $\blacktriangleright$  External potential Q
  - ► Rescaled one point function  $R(z) = K(z, z) = \varphi(z + \overline{z})$



 $\star$  Hard edge RNM model

$$Q^{\mathrm{H}} = Q + \infty \cdot 1_{\mathbb{C} \setminus S}$$

► Rescaled one point function  $R^{\mathrm{H}}(z) = H(z + \bar{z}) \mathbf{1}_{\mathbb{L}}(z)$ 



## A scale of boundary conditions

Construct the random normal matrix model which interpolates between the free boundary case and the hard edge case.

- External potential  $Q_t := \check{Q} + t(Q \check{Q})$  for t > 0.
- $\check{Q}$  is the solution of the obstacle problem:

 $\check{Q}$  is the maximal subharmonic function  $\leq Q$  which grows like  $\log |z|^2 + O(1)$  when  $|z| \to \infty$ .

•  $\check{Q} = -2U^{\sigma} + \gamma$  where  $U^{\sigma}$  is the logarithmic potential of the equilibrium measure  $\sigma$  and  $\gamma$  is the modified Robin constant which makes  $Q = \check{Q}$  on S.

A scale of boundary conditions  $(Q(z) = |z|^2)$ 

Construct the random normal matrix model which interpolates between the free boundary case and the hard edge case.

We first consider the Ginibre potential  $Q(z) = |z|^2$ .

- ► { $\zeta_j$ }: eigenvalues of random normal matrices associated with the potential  $Q_t = \begin{cases} |z|^2 & \text{if } z \in \mathbb{D} \\ t|z|^2 + (1-t)(\log |z|^2 + 1) & \text{if } z \in \mathbb{D}^c. \end{cases}$
- ▶  $\check{Q}(z) = \log |z|^2 + 1$ : the obstacle function associated with  $Q(z) = |z|^2$ . ( $\check{Q}$  is the maximal subharmonic function  $\leq Q$  which grows like  $\log |z|^2 + O(1)$  when  $|z| \to \infty$ .)

- t = 1:  $Q_t = Q$  (free boundary)
- $t = \infty$ :  $Q_t = Q^{\mathrm{H}}$  (hard edge)
- t = 0:  $Q_t = \log |z|^2 + 1$  (not confining)

Soft edge scaling limits  $(Q(z) = |z|^2)$ 

- ► { $\zeta_j$ }: eigenvalues of random normal matrices associated to the potential  $Q_t = \begin{cases} |z|^2 & \text{if } z \in \mathbb{D} \\ t|z|^2 + (1-t)(\log |z|^2 + 1) & \text{if } z \in \mathbb{D}^c. \end{cases}$
- Edge scaling  $(p \in \partial \mathbb{D})$ :  $z_j = \sqrt{n}e^{-i\theta}(\zeta_j p)$ .
- The rescaled eigenvalue system  $\{z_j\}$  converges to the determinantal point process with correlation kernel

$$K^{t}(z,w) = G(z,w)S_{t}(z+\bar{w}) e^{(1-t)((\operatorname{Re} z)^{2} 1_{\{\operatorname{Re} z>0\}} + (\operatorname{Re} w)^{2} 1_{\{\operatorname{Re} w>0\}})}.$$

• 
$$S_t(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^0 \frac{e^{-(\xi-z)^2/2}}{\Phi_t(\xi)} d\xi$$
, where  
 $\Phi_t(\xi) = \varphi(\xi) + \frac{1}{\sqrt{t}} e^{\frac{1-t}{2t}\xi^2} \left(1 - \varphi(\frac{\xi}{\sqrt{t}})\right)$  and  $\varphi(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\xi}^{\infty} e^{-u^2/2} du$ .

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Soft edge scaling limits  $(Q(z) = |z|^2)$ 

▶ Soft edge limiting correlation kernel:

$$\begin{split} K^{t}(z,w) &= G(z,w)S_{t}(z+\bar{w})\,e^{(1-t)((\operatorname{Re} z)^{2}1_{\{\operatorname{Re} z>0\}}+(\operatorname{Re} w)^{2}1_{\{\operatorname{Re} w>0\}})}.\\ \blacktriangleright \ S_{t}(z) &= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{0}\frac{e^{-(\xi-z)^{2}/2}}{\Phi_{t}(\xi)}d\xi, \text{ where}\\ \Phi_{t}(\xi) &= \varphi(\xi) + \frac{1}{\sqrt{t}}e^{\frac{1-t}{2t}\xi^{2}}\left(1-\varphi(\frac{\xi}{\sqrt{t}})\right) \text{ and } \varphi(\xi) &= \frac{1}{\sqrt{2\pi}}\int_{\xi}^{\infty}e^{-u^{2}/2}du.\\ \blacktriangleright \ t &= 1:\ K^{t}(z,w) = G(z,w)\varphi(z+\bar{w}) \text{ free boundary case.}\\ \blacktriangleright \ t &= \infty:\ K^{t}(z,w) = G(z,w)H(z+\bar{w})1_{\{\operatorname{Re} z<0\}}1_{\{\operatorname{Re} w<0\}} \text{ hard edge case.} \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### 1-point density of the rescaled system

 $R^t$ : the limiting 1-point function of the rescaled eigenvalue system  $\{z_j\}$ . Graphs of  $R^t(x) = K^t(x, x) = S_t(2x) e^{2(1-t)x^2 \mathbf{1}_{\{x>0\}}}$  for  $x \in \mathbb{R}$ .  $(t \ge 1)$ 



・ロト ・雪ト ・ヨト ・ヨト

### 1-point function of the rescaled system

 $R^t$ : the limiting 1-point function of the rescaled eigenvalue system. Graphs of  $R^t(x) = K^t(x, x) = S_t(2x) e^{2(1-t)x^2 \mathbf{1}_{\{x>0\}}}$  for  $x \in \mathbb{R}$ . (t < 1)



◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

### 1-point function of the rescaled system

 $R^t$ : the limiting 1-point function of the rescaled eigenvalue system. Graphs of  $R^t(x) = K^t(x, x) = S_t(2x) e^{2(1-t)x^2 \mathbb{1}_{\{x>0\}}}$  for  $x \in \mathbb{R}$ . (t < 1)



Exterior estimates:  $R^t(x) \le Ce^{-tx^2}, \quad x > 0$   $R^0(x) = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{4x^2} + O(x^{-3})\right), x \to \infty.$ 

うして ふゆう ふほう ふほう ふしつ

### Correlation kernels

Correlation kernel  $\mathbf{K}_n$  is given by

$$\mathbf{K}_n(\zeta,\eta) = \sum_{j=0}^{n-1} p_{n,j}(\zeta) \overline{p_{n,j}(\eta)} e^{-nQ(\zeta)/2 - nQ(\eta)/2},$$

where  $p_{n,j}$  is an orthonormal polynomial of deg j with respect to  $e^{-nQ}dA$ :

$$\int_{\mathbb{C}} p_{n,j}(z) \,\overline{p_{n,k}(z)} \, e^{-nQ(z)} dA(z) = \delta_{jk}.$$

We use the recent method of [Hedenmalm-Wennman '17] to obtain the asymptotics of weighted orthogonal polynomials near the boundary of the droplet.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Assumptions

- Assumptions: (i) Growth at infinity: lim inf<sub>z→∞</sub> Q(z)/log |z| > 2.
  (ii) Q is real analytic and strictly subharmonic in S\*.
  (iii) The boundary ∂S is a smooth, simple, and closed curve.
- ▶ Fix  $p \in \partial S$ . Rescale

 $z_j = \sqrt{n\Delta Q(p)}e^{-i\theta}(\zeta_j - p), \quad e^{i\theta}: \text{ outer normal to } \partial S \text{ at p.}$ 

### Weighted orthogonal polynomials

For any  $\zeta$  with dist $(\zeta, \partial S) \leq M/\sqrt{n}$  for large M, the higher degree terms  $|p_{n,j}|^2 e^{-nQ_t} (n - \sqrt{n} \log n \leq j \leq n - 1)$  contribute to the kernel. Graphs of  $|p_{n,j}|^2 e^{-nQ_t}$  restricted on  $\mathbb{R}$  when  $Q(z) = |z|^2$  and t = 0.5.  $(n = 1000, j = 100, 150, \cdots, 1000)$ 



うして ふゆう ふほう ふほう ふしつ

### Approximate quasi-polynomials

Fix j with  $n - \sqrt{n} \log n \le j \le n - 1$  and write  $\tau = j/n$ .

- $\partial S_{\tau}$  is smooth, simple, and closed.
- Let  $\phi_{\tau}$ :  $S_{\tau}^c \to \mathbb{D}^c$  be the conformal map s.t.  $\phi_{\tau}(\infty) = \infty, \, \phi'_{\tau}(\infty) > 0.$
- $\check{Q}_{\tau}$ : the obstacle function s.t.  $\check{Q}_{\tau} = Q$  on  $S_{\tau}$  and  $\check{Q}_{\tau} \sim \tau \log |z|^2$  at  $\infty$ .
- $\mathcal{Q}_{\tau}$ : the bounded holomorphic function on  $S_{\tau}^c$  s.t. Re  $\mathcal{Q}_{\tau} = Q$  on  $\partial S_{\tau}$ .
- $\mathcal{H}_{\tau}$ : the bounded holomorphic function on  $S_{\tau}^c$  s.t.

Re  $\mathcal{H}_{\tau} = \frac{1}{2} \log \Delta Q - \log \Phi_{j,n}$  on  $\partial S_{\tau}$  where  $\Phi_{j,n}(\zeta) = \Phi_t \left(\frac{j-n}{\sqrt{n}} \cdot \frac{\phi_{\tau}'(\zeta)}{\sqrt{\Delta Q(\zeta)}}\right)$ 

The approximate quasi-polynomial of degree j is defined in a neighborhood of  $S^c_\tau$  by

$$F_{n,j} = \left(\frac{n}{2\pi}\right)^{\frac{1}{4}} \sqrt{\phi_{\tau}'} \, \phi_{\tau}^j \, e^{n\mathcal{Q}_{\tau}/2} \, e^{\mathcal{H}_{\tau}/2}.$$

### Error function approximation

Let  $\{\zeta_j\}$  be the eigenvalues of random normal matrices associated with  $Q_t$ . The 1-point function of the system  $\{\zeta_j\}$  can be approximated by

$$\mathbf{R}_{n}^{t}(\zeta) = \sum_{j=0}^{n-1} |p_{n,j}(\zeta)|^{2} e^{-nQ_{t}(\zeta)} = \sum_{j=n-\sqrt{n}\log n}^{n-1} |F_{j,n}(\zeta)|^{2} e^{-nQ_{t}(\zeta)} (1 + O(n^{-\frac{1}{2}+\delta}))$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

for all  $\zeta$  with dist $(\zeta, \partial S) = O(n^{-1/2})$ .

### Error function approximation

Let  $\{\zeta_j\}$  be the eigenvalues of random normal matrices associated with  $Q_t$ . The 1-point function of the system  $\{\zeta_j\}$  can be approximated by

$$\mathbf{R}_{n}^{t}(\zeta) = \sum_{j=0}^{n-1} |p_{n,j}(\zeta)|^{2} e^{-nQ_{t}(\zeta)} = \sum_{j=n-\sqrt{n} \log n}^{n-1} |F_{j,n}(\zeta)|^{2} e^{-nQ_{t}(\zeta)} (1 + O(n^{-\frac{1}{2}+\delta}))$$

for all  $\zeta$  with dist $(\zeta, \partial S) = O(n^{-1/2})$ .

Fix  $p \in \partial S$ . Let  $\{z_j\}$  be the rescaled system  $z_j = \sqrt{n\Delta Q(p)} e^{-i\theta} (\zeta_j - p)$ . The 1-point function of the system  $\{z_j\}$  is approximated by

$$R_{n}^{t}(z) = \frac{1}{n\Delta Q(p)} \mathbf{R}_{n}^{t}(\zeta) = \frac{1}{n\Delta Q(p)} \sum_{j=n-\sqrt{n}\log n}^{n-1} |F_{j,n}(\zeta)|^{2} e^{-nQ_{t}(\zeta)} + o(1)$$

うして ふゆう ふほう ふほう ふしつ

where  $\zeta = p + e^{i\theta} \frac{z}{\sqrt{n\Delta Q(p)}}$ .

### Error function approximation

Applying Taylor expansion to the quasi-polynomial,

$$R_{n}^{t}(z) = \frac{1}{\sqrt{2\pi}} \frac{|\phi'(p)|}{\sqrt{n\Delta Q(p)}} \sum_{k=1}^{\sqrt{n}\log n} \frac{e^{-\frac{1}{2}(\xi_{k}-2\operatorname{Re} z)^{2}}}{\Phi_{t}(\xi_{k})} e^{2(1-t)(\operatorname{Re} z)^{2}1_{\{\operatorname{Re} z<0\}}} + o(1),$$
  
where  $\xi_{k} = -\frac{k}{\sqrt{n}} \cdot \frac{|\phi'(p)|}{\sqrt{\Delta Q(p)}}.$ 

By the Riemann sum approximation,

$$\lim_{n \to \infty} R_n^t(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^0 \frac{e^{-\frac{1}{2}(\xi - 2\operatorname{Re} z)^2}}{\Phi_t(\xi)} d\xi \cdot e^{2(1-t)(\operatorname{Re} z)^2 \mathbf{1}_{\{\operatorname{Re} z < 0\}}}$$
$$= S_t(2\operatorname{Re} z) \ e^{2(1-t)(\operatorname{Re} z)^2 \mathbf{1}_{\{\operatorname{Re} z < 0\}}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

## Universality results for radially symmetric potentials

#### Theorem [Ameur–Kang–S., 19]

Suppose that Q is radially symmetric. For  $0 < t < \infty$ , the rescaled process  $\{z_j\}_1^n$  converges to a determinantal point process with correlation kernel

$$K^{t}(z,w) = G(z,w)S_{t}(z+\bar{w})e^{(1-t)((\operatorname{Re} z)^{2}1_{\{\operatorname{Re} z<0\}} + (\operatorname{Re} w)^{2}1_{\{\operatorname{Re} w<0\}})}$$

with locally uniform convergence of correlation functions.

▶ In the free boundary case (t = 1), the above theorem is proved for general potentials. [Hedenmalm–Wennman, 17]

うして ふゆう ふほう ふほう ふしつ

### Spectral radius

Assume that the potential Q is radially symmetric.

Let  $|\zeta|_n = \max_{1 \le j \le n} |\zeta_j|$  be the maximal modulus of eigenvalues associated with  $Q_t$  and  $r_0$  be the radius of the outer boundary of the droplet.

#### Theorem [Ameur–Kang–S., 19]

Write  $\gamma_n = \log(n/2\pi) - 2\log\log n + 2\log(r_0\sqrt{t\Delta Q(r_0)}/(\sqrt{t}+1))$ . The random variable  $\omega_n = \sqrt{4nt\gamma_n\Delta Q(r_0)} \left(|\zeta|_n - r_0 - \sqrt{\frac{\gamma_n}{4nt\Delta Q(r_0)}}\right)$  converges in distribution to the Gumbel distribution: for  $x \in \mathbb{R}$ 

$$\lim_{n \to \infty} \mathbf{P}_n(\omega_n \le x) = e^{-e^{-x}}$$

- ▶ The fluctuation of the maximal modulus of Ginibre ensemble converges in distribution to the Gumbel distribution. [Rider, 03]
- General radially symmetric potentials and t = 1, [Chafai–Peche, 14]

### Related results

► [S., 15] For 
$$t = \infty$$
, put  $\omega_n = \log 4 \cdot r_0 n \Delta Q(r_0)(|\zeta|_n - r_0)$ . Then  
$$\lim_{n \to \infty} \mathbf{P}_n(\omega_n \le x) = \min\{e^x, 1\}.$$

• [Butez, Garcia-Zeleda, 18] Consider  $Q_n = (1 + \frac{1}{n})\check{Q}$  and suppose that the outer boundary of the droplet is unit circle. Then

$$\lim_{n \to \infty} \mathbf{P}_n(|\zeta|_n < x) = \prod_{k=1}^{\infty} (1 - x^{-2k}), \quad x > 1.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ