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Sample covariance matrix

Consider a (mean-zero) multivariate Gaussian random variable:

y =


y1
y2
...
yM

 ∈ RM , y ∼ N (0,Σ) .

Σ = Eyy∗, i.e., Σαβ = Eyαyβ : covariance matrix

Sample covariance matrix:

Σ̂ :=
1

N

N∑
i=1

yiy
∗
i , yi : samples .

Traditional setup: M fixed, N ↗∞, then Σ̂→ Σ = Eyy∗.

High-dimensional setup:

N/M =: dN → d ∈ (0,∞) , N ↗∞ .



Wishart matrix: Σ = I

Let λ1 ≥ λ2 ≥ . . . ≥ λM denote the ordered eigenvalues of Σ̂. For any fixed interval J∣∣∣∣NJ − ∫
J
ρMP(x)dx

∣∣∣∣→ 0 , with NJ ..=
1

M
#{j : λj ∈ J} ,

almost surely as N →∞, where ρMP is the Marchenko-Pastur law:

ρMP(x)dx =

{
νd(x)dx+ (1− d)δ0(x)dx , if d < 1 ,

νd(x)dx , if d ≥ 1 ,

where

νd(x) =
d

2π

√
(E+ − x)(x− E−)

x
1[E−,E+](x) and E± = (1± d−1/2)2 .
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Figure : Histogram of the eigenvalues

of Σ̂: Σ = I, N = 2000, d = 2.



Largest eigenvalue: Σ = I

Theorem.

Let E+ denote the upper endpoint of the support of ρMP. Then for any (small) ε > 0 and
(large) D > 0

P
(
|λ1 − E+| ≥

Nε

N2/3

)
≤

1

ND
,

for N ≥ N0(ε,D).

Hence, we expect that the fluctuations of the largest eigenvalue are of order N−2/3.



Largest eigenvalue: Σ = I

Theorem: (Johnstone 2001, Johansson 2000)

For real, respectively complex, Gaussians with Σ = I, there is a constant γ = γ(d) such that

lim
N→∞

P
(
γN2/3(λ1 − E+) ≤ s

)
= Fβ(s) , β = 1, 2 .

Tracy–Widom distributions:

F2(s) := exp

(
−
∫ ∞
s

(x− s)q(x)2dx

)
, F1(s) := exp

(
−

1

2

∫ ∞
s

q(x)dx

)
(F2(s))1/2 ,

where q satisfies

q′′ = sq + 2q3, q(s) ∼ Ai(s) as s→∞.
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Figure : Histogram of 2000 samples of γN2/3(λ1 − E+) of N = 1000 d = 2, real Gaussians.



Universality results

Replace Gaussian distributions by general distributions.

Definition.

Let X = (xαi) be an M ×N matrix whose entries are i.i.d. real random variables such that

Exαi = 0, E|xαi|2 = N−1, E|xαi|k 6
Ck

Nk/2
.

Assume that M = M(N) with N/M → d ∈ (0,∞) as N →∞.

Sample covariance matrix: Σ̂ = XX∗.

Theorem (Pillai and Yin 2014).

Let E+ denote the upper endpoint of the support of ρMP. Then for any (small) ε > 0 and
(large) D > 0

lim
N→∞

P
(
γN2/3(λ1 − E+) ≤ s

)
= F1(s) ,

for N ≥ N0(ε,D), where γ = d−1/6(d1/4 + d−1/4)−1.



Sparse sample covariance matrices

Motivation: Biadjacancy matrix of bipartite graph.

Two vertex sets: V = {vα}Mα=1 has size M ; W = {wi}Ni=1 has size N . Edges only between
V and W . Biadjacancy matrix:

B = (bαi) , 1 ≤ α ≤M , 1 ≤ i ≤ N .

bαi =

{
1 , if there is an edge between vα and wi,

0 , else .



Sparse sample covariance matrices

Biadjacancy matrix of bipartite Erdős-Rényi graph:

B = (bαi) ,

(bαi) are i.i.d. random variables satisfying

bαi =

{
1 , with probability p

0 , with probability 1− p ,

Remarks:

◦ Ebkαi = p, k ≥ 1.

◦ We allow p to depend on N .

We say that B is sparse if p� 1.



Sparse sample covariance matrices

Center and normalize B = (bαi):

Xαi
..=

bαi − p√
Np(1− p)

.

Then,

EXαi = 0 , EX2
αi =

1

N
, EXk

αi =
1

N(Np)(k−2)/2

(
1 +O(p)

)
, (k ≥ 3) .

Introduce the sparsity parameter q by

q2 ..= pN , 0 < q ≤ cN1/2 .

Hence,

EXk
αi =

1

Nqk−2

(
1 +O(q2/N)

)
, k ≥ 3 .



Sparse sample covariance matrix

Definition.

Let X = (Xαi) be an M ×N matrix whose entries are real i.i.d. random variables such that

EXαi = 0, E|Xαi|2 = N−1, E|Xαi|k ≤
Ck

Nqk−2

for some q = Nφ, 0 < φ ≤ 1
2

. Assume that M = M(N) with N/M → d ∈ (0,∞) as
N →∞.
Sample covariance matrix Σ̂ := XX∗.

Remark: For any φ > 0, the eigenvalues of Σ̂ follow the Marchenko-Pastur law on global
scale.

Rescaled cumulants: Let κ(k) be the k-th cumulant of Xαi:

logE
[
etXαi

]
=

∞∑
k=1

κ(k)
tk

k!
, κ(1) = 0 , κ(2) =

1

N
.

Set, for k ≥ 3,
s(1) := 0 , s(2) := 1 , s(k) := Nqk−2κ(k).



Estimates on largest eigenvalue

Theorem (Hwang-Lee-S. ’18).

Consider the largest eigenvalue λ1 of XX∗. Assume that q ≥ Nφ, φ > 0. Then, there is
L+ ∈ R such that for any ε > 0 and D > 0,

P
(∣∣λ1 − L+

∣∣ > Nε
( 1

q4
+

1

N2/3

))
< N−D ,

for N ≥ N0(ε,D), where

L+ :=

(
1 +

1
√
d

)2

+
1
√
d

(
1 +

1
√
d

)2 s(4)

q2
+O(q−4) .



Tracy–Widom limit

Theorem (Hwang-Lee-S. ’18).

Assume that φ > 1/6 (so that q � N1/6). Let λ1 be the largest eigenvalue of XX∗. Then,

lim
N→∞

P
(
γN2/3(λ1 − L+) 6 s

)
= F1(s)

for all s ∈ R, where γ−1 = d1/6(d1/4 + d−1/4).

Remark: For N1/6 � q ≤ N1/3, the spectral shift L+ − E+ ' 1
q2

is much larger than the

TW-fluctuations.

Remark: If φ < 1/6, it is believed that the limiting distribution will be Gaussian; cf.
Huang-Landon-Yau ’17.



(Some) previous results

� TW for Wishart matrix (X is Gaussian, Σ = I)

� Complex case: Johansson (2000)
� Real case: Johnstone (2001)

� Null case (Σ = I)

� Edge universality: Pillai-Yin (2014), Ding-Yang (2018)

� (Phase transition for) Spiked Wishart matrix (X is Gaussian, Σ is a finite-rank perturbation of I)

� Complex case: Baik-Ben Arous-Péché (2005)
� Real case: Bloemendal-Virág (2011)

� Spiked sample covariance matrix (Σ is a finite-rank perturbation of I)

� Edge universality: Bloemendal-Knowles-Yau-Yin (2014)

� Non-null case (Σ 6= I)

� TW for Gaussian, complex case: El Karoui (2007), real case: Lee-S. (2016), Fan-Johnstone
(2017)

� Edge universality: Bao-Pan-Zhou (2015), Knowles-Yin (2017).



Tools: Stieltjes transform and Green function

◦ Given a probability measure µ on R, its Stieltjes transform is defined as

mµ(z) ..=

∫
R

dµ(x)

x− z
, z ∈ C+ .

◦ For µ the Marchenko-Pastur law, we have

mMP(z) =

(
z + 1− 1

d

)
+
√(

z + 1− 1
d

)2 − 4z

2z
.

◦ Hence, mMP(z) is the solution to

1 + zmMP +
(
zmMP + 1−

1

d

)
mMP(z) = 0 ,

with mMP(z) ∈ C+, for z ∈ C+.

◦ In the sparse setup we make the ansatz

1 + zm̃(z) +
(
zm̃(z) + 1−

1

d

)
m̃(z) +

s(4)

q2

(
zm̃(z) + 1−

1

d

)2

m̃(z)2 = 0 ,

and pick the solution with m̃(z) ∈ C+, z ∈ C+.



Tools: Stieltjes transform and Green function

◦ In the sparse setup we make the ansatz

1 + zm̃(z) +
(
zm̃(z) + 1−

1

d

)
m̃(z) +

s(4)

q2

(
zm̃(z) + 1−

1

d

)2

m̃(z)2 = 0 ,

and pick the solution with m̃(z) ∈ C+, z ∈ C+.

◦ Then there is a probability measure ρ̃ such that m̃(z) =
∫
R

dρ̃(x)
x−z and with support on

[L−, L+] where

L± =

(
1±

1
√
d

)2

±
1
√
d

(
1±

1
√
d

)2 s(4)

q2
+O(q−4) .

Moreover, we have ρ̃(x) ∼
√

(L+ − x)+, for x near the upper edge.

◦ Green function/resolvent of Q := X∗X (N by N matrix)

GX
∗X(z) :=

1

X∗X − z
.

◦ By spectral calculus

1

N
TrGX

∗X(z) =

N∑
i=1

1

λi(Q)− z
.



Tools: Stieltjes transform and Green function

◦ Green function/resolvent of Q := X∗X (N by N matrix)

GX
∗X(z) :=

1

X∗X − z
.

◦ By spectral calculus

1

N
TrGX

∗X(z) =
N∑
i=1

1

λi(Q)− z
.

Local law at the edge:

∣∣∣ 1

N
TrGX

∗X(z)− m̃(z)
∣∣∣ ≤ Nε

(
1

q2
+

1

N Im z

)
,

with high probability, for all z = E + iη with E ∈ [L+ − c, L+ + 1], N−1+ε′ ≤ η ≤ 1.



Linearization

◦ Define an (N +M)× (N +M) matrix (the linearization of Q)

H(z) :=

(
−zIN×N X∗

X −IM×M

)
, z ∈ C+ .

◦ Introduce the “Green function” G(z) := H(z)−1. By the Schur complement formula,

Gij(z) =

(
1

X∗X − zI

)
ij

, 1 ≤ i, j ≤ N ,

Gαβ(z) = z

(
1

XX∗ − zI

)
αβ

, N + 1 ≤ α, β ≤ N +M .

Weak local law (Ding-Yang 2018)

|Gab(z)−Πab(z)| ≤ Nε

(
1

q
+

√
ImmMP (z)

N Im z
+

1

N Im z

)
, 1 ≤ a, b ≤ N +M ,

with high probability, for all z = E + iη with E ∈ [L+ − c, L+ + 1], N−1+ε′ ≤ η ≤ 1, where

Π(z) :=

(
mMP(z)IN×N 0

0 (1 +mMP(z))−1IM×M

)
.



Moment estimate

Define P : C+ → C by

P (m) := 1 + zm+
(
zm+ 1−

1

d

)
m+

s(4)

q2
m2

(
zm+ 1−

1

d

)2

.

Then we had P (m̃(z)) = 0. Hence we expect that∣∣∣∣P ( 1

N
Tr

1

X∗X − z

)∣∣∣∣ ≤ NεΨ(z) ,

with high probability for some “small” control parameter Ψ(z). In other words:

E
[
P (m(z))

D
P (m(z))D

]
≤ N2DεΨ(z)2D , m(z) :=

1

N
Tr

1

X∗X − z
.



Recursive moment estimate I

We would hope for a recursive estimate of the form

E
[
|P (m(z))|2D

]
. NεE

[(
1

q4
+

Im m̃(z)

Nη

)
|P (m(z))|2D−1

]
, η = Im z .

Then Hölder or Young would give

E
[
|P (m(z))|2D

]
≤ CNε

(
1

q4
+

Im m̃(z)

Nη

)2D

,

and we would be in good shape to apply Markov.



Recursive moment estimate II

We would hope that

E
[
|P (m(z))|2D

]
. NεE

[(
1

q4
+

Im m̃(z)

N Im z

)
|P (m(z))|2D−1

]
.

Then Hölder or Young would give E
[
|P (m(z))|2D

]
≤ CNε

(
1
q4

+
Im m̃(z)
N Im z

)2D
, and we

would be in good shape.

Lemma.

E|P (m)|2D 6 N
εE
[( 1

q4
+

Imm

Nη
+
N −M
N2

)
|P (m)|2D−1

]
+N

−ε/4
q
−1E

[
|m− m̃|2|P (m)|2D−1

]
+N

ε
q
−8D

+N
ε
q
−1

2D∑
s=2

s−2∑
u′=0

E
[( Imm

Nη
+
N −M
N2

)2s−u′−2
|P ′(m)|u

′
|P (m)|2D−s

]

+N
ε

2D∑
s=2

E
[( 1

Nη
+

1

q

( Imm

Nη
+
N −M
N2

)1/2
+

1

q2

)
×
( Imm

Nη
+
N −M
N2

)s−1
|P ′(m)|s−1|P (m)|2D−s

]
=: Φ(z) .



Recursive moment estimate III

Recall that

P (m) = 1 + zm+
(
zm+ 1−

1

d

)
m+

s(4)

q2

(
zm+ 1−

1

d

)2

m2 .

Recall the definition of the “Green function” H(z)G(z) = I, in components,

1 + zGii(z) =

M+N∑
α=N+1

(X∗)iαGαi(z) = 1 , 1 ≤ i ≤ N ,

and

m(z) =
1

N

N∑
i=1

Gii(z) .

Hence

E
[
(1 + zm)P (m)D−1P (m)

D]
=

1

N

∑
i,α

E
[
XαiGαiP (m)D−1P (m)

D]
.



Cumulant expansion

Stein Lemma

Fix ` ∈ N and let F ∈ C`+1(R;C+). Let Y be a centered random variable with finite
moments to order `+ 2. Then,

E[Y F (Y )] =
∑̀
r=1

κ(r+1)(Y )

r!
E[F (r)(Y )] + E[Ω`(Y F (Y ))] ,

where κ(r+1)(Y ) denotes the (r + 1)-st cumulant of Y and F (r) denotes the r-th derivative
of the function F . The error is controlled in terms of F (`+1) and κ(`+2).

Applied to our recursive moment estimate

E[(1 + zm)PD−1PD] =
1

N

∑̀
r=1

1

r!

s(r+1)

Nqr−1
E
[∑
i,α

∂rαi
(
GαiP

D−1PD
)]

+ E
(
Ω`
)
,

where ∂rαi = ∂r

(∂Xαi)r
. We stop expanding at order ` = 8D.



First order terms r = 1

Need to compute

1

N

s(2)

N
E
[∑
i,α

∂αi
(
GαiP

D−1PD
)]
,

where s(2) = 1. Using ∂αiGαi = −GiiGαα −GαiGαi, we get

∂αi
(
GαiP

D−1PD
)

= (−GiiGαα −GαiGαi)PD−1PD

+ (D − 1)P ′(m)Gαi
1

N

∑
j

∂αiGjjP
D−2PD

+DP ′(m)Gαi
1

N

∑
j

∂αiGjjP
D−1PD−1 .

Leading order one term:

−E
[ 1

N2

∑
i,α

GiiGααP
D−1PD

]
= −E

[
m

1

N

∑
α

GααP
D−1PD

]
.

Since X∗X and XX∗ share the same non-zero eigenvalues, we have

1

N

∑
α

Gαα =
1

N

∑
α

(
z

XX∗ − z

)
αα

=
z

N

∑
i

(
1

X∗X − z

)
ii

+
N −M
N

= zm+ 1−
1

d
.



First order terms r = 1

Hence

E
[
(1 + zm)P (m)D−1P (m)

D]
=

1

N2
E
[∑
i,α

∂αi
(
GαiP

D−1PD
)]

+ h.o.t(r ≥ 2) + Φ(z)

= −E
[
m

(
zm+ 1−

1

d

)
PD−1PD

]]
+ h.o.t(r ≥ 2) + Φ(z) .

and we get cancellation to leading order in the cumulant expansion.

Higher order terms in the cumulant expansion: Terms involving the third cumulant r = 2 are
negligible: Third moment does not matter.



r = 3 terms

1

3!

s(4)

Nq2
1

N

∑
i,α

E
[
∂3αi

(
GαiP

D−1PD
)]

=
1

3!

s(4)

N2q2
E
[∑
i,α

(∂αiGαi)P
D−1PD

]
+O(Φ(z)) .

Need to compute

1

3!
∂3αiGαi = −G2

iiG
2
αα + terms involing off-diagonal Green function entries .

Leading term for r = 3:

−
s(4)

q2
E
[( 1

N

∑
i

G2
ii

)( 1

N

∑
α

G2
αα

)
PD−1PD

]

Lemma.

−
s(4)

q2
E
[ 1

N2

∑
i,α

G
2
iiG

2
ααP

D−1
PD
]

= −
s(4)

q2
E
[
m

2

(
1

N

∑
α

Gαα
)2
P
D−1

PD

]
+O(Φ)

= −
s(4)

q2
E[m

2
(zm+ 1−

1

d
)
2
P
D−1

PD] +O(Φ) .



Wrapping things up:

◦ We argued that

E|P (m)|2D ≤ NΦ(z) .

Hence we get a high probability estimate on |P (m)|.

◦ Study the local stability of the equation P (m̃(z)) = 0, yields the local law.

◦ Recursive moment estimate combined with local law give an estimate on
|λ1(X∗X)− L+|.



Ideas to prove the Tracy–Widom fluctuations

◦ The fluctuations of the largest eigenvalues can be extracted from the expectation of the
Green function when the spectral parameter is close to the edge.

◦ Introduce a continuous interpolation between the given sparse sample covariance matrix
and the Wishart covariance matrix: Dyson matrix flow/Ornstein-Uhlenbeck process.

dXαi =
1
√
N

dBαi −
1

2
Xαidt =⇒ q = qt , L+ = L+(t) .

◦ Follow the associated flow of the Green function and estimate its change over time.

dE[N Imm(L+ + κ+ iη0)] =
∑
α,i,j

ImE
[
−

1

2

∂Gii

∂Xαj
Xαi +

1

2N

∂2Gii

(∂Xαj)2

]
dt .

◦ This change is offset by changing the spectral parameter, time-dependent spectral
parameter.

E
[∑
i,j

L̇+GijGji
]
dt , with L̇+ ' 2

1
√
d

(
1 +

1
√
d

)2
e−ts(4)q−2

t .

◦ Non-trivial technical estimates are required to assure that the expectations of certain
linear combinations of the random variables are smaller than their naive sizes.



Thank you for your attention, and the hospitality!
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