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Introduction

Wishart ensemble

@ Suppose that we have sample N independent random vectors
{x1,- -+ ,xn} from N-dimensional complex standard Gaussian
distribution.

@ Then their sample covariance matrix is defined by

XX*,  where X = (xj)i<ij<n = (X1, ,Xn)-

e X and XX* are known as (complex) Ginibre and Wishart ensemble.
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Introduction

Maréenko-Pastur law

The empirical distribution of eigenvalues of N=1XX* converges to the
Mar&enko-Pastur distribution pinp:

Figure: Histogram of eigenvalues of N~1XX* with N = 5000 and density

1 [

5 ~— of Mar&enko-Pastur distribution.
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Introduction

Sample covariance matrix with general population

@ In some occasions, we wish to consider the case in which the law of x
is non-standard Gaussian, so that the variables are dependent.

@ Thus we take y; := Dx; where D is another (N x N) matrix, called
population matrix. In this case, the sample covariance matrix becomes

YY* = (ylv' t aYN)(YL te 7yN)T = DXX*D*,

referred as non-white Wishart ensemble.
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deformed Maréenko-Pastur law

o If the e.s.d. of D*D converges to a probability measure v, then that
of DXX*D* also converges(Mar&enko and Pastur, 1967 [8]).

@ The limiting measure was characterized by an integral equation
satisfied by its Stieltjes transform.

Figure: Eigenvalues of DXX*D*

15 where e.s.d. of DD* converges
. to the arcsine distribution
dx) =1 L _dx
05 MAS( ) & vV x(4—x)
0.0
0 2 4 6 8 10
The limit is “free multiplicative convolution” of v and pyp. )
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Free convolutions

Stieltjes transform and M-function

Definition 1

For a probability measure p on Ry :=[0,00), we define its Stieltjes
transform and M-function by, for z € C\ Ry,

me) = [ L, and MG =1 ([ du(X)>_1-

X —Z X —Z

v

Remark
o My(z)=1—(zmu(2)+1)7!
e my, M, : C\Ry — C\ Ry are analytic.
o M, :(—o0,0) = (—oc, —u(0)/(1 — u(0))) is increasing.
e M1 is analytic in a neighborhood of (—oo, —(0)/(1 — (0))).
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Free convolutions

Free multiplicative convolution

Definition 2

For two probability measures p and v on [0, 00), both not dg, 1 X v is the
unique probability measure satisfying

1

Mz, (2) = SM; ()M (2)

in a neighborhood of (—oo, —C).

Remark

If X and Y are free random variables with distributions © and v, then
i X v is the distribution of VXY VX (or \/VX\/?)
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Free convolutions

Free additive convolution

Definition 3

For two probability measures ¢ and v on R, pH v is the unique probability
measure satisfying

Fe(2) = Fi(2) + B (2) - 2

in a neighborhood of (iM,ic0), where F,(z) := —1/m,(z).

Remark

o If X and Y are free random variables with distributions p and v, then
B v is the distribution of X + Y.

e As X and Y are noncommutative, log(XY) = log X + log Y and

eXtY = eXeY are no longer true.
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Free convolutions

Connection to random matrices

e Upn: (N x N)- Haar distributed random unitary matrix.
o Cy =diag(c™, -+, M), Dy = diag(d™,- -, d{") such that

1 N
NZ5£(N)—>/L and
i=1

° ()\(IN), e ,)\SVN)): eigenvalues of Cy + UyDn Uy,
(Mo A M): those of v/Cy Uy D Ujv/Cr (for Cy, Dy > 0).
Theorem (Voiculescu, 1998 [9])

N

1
N &

N
Z —v, as N — cc.

== I

N
1
(5 y > uHBvr and NZ(S%W)—)/L&V.

We may replace UyDpy Uy with Wishart ensemble and v with ipp.
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Maréenko-Pastur distribution revisited

® unMp = nIer;o((n —1)d0/n+ 01/n)®" is also known as free Poisson law.

o In general for any a > 1, ((n — a) 8o/n + ad1/n)=" converges to

@) (o) 2 Saa— (x—
{3 (dx) = 27r)(\/43 (x — (a+ 1))2dx.

@ The measure ygﬂ;s are also the limiting e.s.d. of the general sample

covariance N1 XX*, where X is (N x M) random matrix whose
entries are i.i.d. and M/N — a.

@ In fact, ,ul(\f[)P are also K-infinitely divisible, so that the common

properties of uf\z)}, are “desirable” in terms of the operation K.
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Maréenko-Pastur distribution revisited

Examples of “desirable” properties are..

@ Having density, which is analytic in the bulk of spectrum.
@ The density being bounded by 1/x.
@ The density decaying as square root at the edges.

— a=1
o a=2 Figure: Densities of ,ug\i)}-,
0.10 — a=3
0.05
7
These properties of ,ug\ﬂj hold even for convolution of two measures,
under proper assumptions.
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Main results

Regularity(Lebesgue decomposition) of free convolution

Let p = %50 + %52. Then X 1 can be explicitly calculated as

07F

Figure: Nonzero eigenvalues of
(5 - 10%) matrix /CUDU*V/C,
where {¢;, d;} are i.i.d. with law
w1 and U is independent of C
and D.
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Main results

Known results for free additive convolution:
Lebesgue decomposition

Theorem (Belinschi, 2008 [4])

Let . and v be Borel probability measures on R, both not a point mass.

(i) (nBv)({a}) > 0 if and only if there exist b,c € R witha= b+ ¢
and p({b}) + v({c}) > 1.

In this case, (u B v)({a}) = u({b}) + v({c}) — 1.
(i) (nBv)*=0.

(iii) (%((u B v)2¢(x) is analytic whenever positive and finite.
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Main results

Lebesgue decomposition

Theorem 1 (J., 2019 [7])

Let . and v be Borel probability measures on Ry, both not a point mass.
(i*) Forc >0, (u®v)({c}) > 0 if and only if there exist u,v € (0, c0)
with uv = ¢ and p({u}) + v({v}) > 1.
In this case, (u X v)({c}) = p({u}) + v({v}) — 1.
(i) (n®w)({0}) = max(u({0}), »({0})).
(i) (pX¥v)*c=0.

(iv) % is analytic whenever positive and finite.

*First two statements were proved in Belinschi, 2003 [3].
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Boundedness of the density

Letting p = (1 — p)do + pdy/p, we find that y X 11 almost have an atom at
p~2 if p=1/2. Figures below show what happens if p < 1/2.

L L I i
0 1 2 3 4

Figure: Density of (u X p)2© Figure: Density of (u X p)?¢
where o= 05160 + 0.4951/0149. where on = 05560 + 0.4551/0.45.
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Main results

Known results for free additive convolution:
Boundedness of the density

Theorem (Belinschi, 2013 [5])

Let i and v be Borel probability measures on R, both not a point mass. If
F,. and F, are continuous at infinity and p({b}) + v({c}) < 1 for all

b,c € R, then pBv = (uB v)?® and the density is bounded and
continuous.

Remark

The density of zp diverges as x1/2 around x, thus we need different
statement to cover uyp.
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Boundedness of the density

Theorem 2 (J., 2019 [7])

Let ;v and v be probability measures on R such that M,, and M, are
continuous at 0 and co. Further assume that p({a}) + v({b}) < 1 for all

a,b € (0,00). Then the density of (u® v)2¢ is continuous and uniformly
O(x1) on (0, 00).

Remark

By Theorem 1 (i), X v can have point mass at 0 under the assumptions
of Theorem 2.
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Main results

Square root behavior at the edges

U: Haar unitary matrix, X, Xo: Ginibre ensembles

4
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OO[; 2 4 6 8 1‘0 OC‘U 1 2 3 4 5 6 7‘
Figure: Limiting e.s.d. unvp X pas Figure: Limiting e.s.d. unvp X pnvp
of (I + U)X X (1 + U¥). of XoXo X7 X5
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Main results

Square root behavior at the edges

U: Haar unitary matrix, X, Xo: Ginibre ensembles
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Figure: Limiting e.s.d. unp X pas Figure: Limiting e.s.d. unmp X pnvp
of (I + U)XoX; (1 + U*). of XoXi XEX;.
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Main results

Square root behavior at the edges

U: Haar unitary matrix, X, Xo: Ginibre ensembles
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Figure: Limiting e.s.d. unp X pas Figure: Limiting e.s.d. unvp X pnvp
of (I + U)XoX; (1 + U*). of XoXo X X5,
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Main results

Known results for free additive convolution:
Square root behavior

Assumption 1

Let 1 and v be Borel probability measures on R satisfying the following:
(i) They have densities; du(x) = pu(x)dx, dv(x) = p,(x)dx.
(ii) supp p, = [EL, EY], supp p, = [EY, EY].

(iii) The measures are Jacobi; there exist —1 <t/ t{ < 1 and a constant
C > 1 such that

c1l< Pu(x) < C, forae xe€[E" E!],
(x — E’_‘)tﬁ(Eﬁ — x)t "

and the same bound holds for v.
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Main results

Known results for free additive convolution:
Square root behavior

Theorem (Bao, Erdés and Schnelli, 2018 [2])
Under Assumption 1, there exist E_ < Ey and v4,v— > 0 such that

o {EcR:p(x) >0} =(E_,E}) so that supp(uBr) = [E_, E4],

XNE- (/x — E_ T xEy \JE, —x ’

where p(x) is the continuous density of B v.
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Main results

Square root behavior at the edges

Theorem 3 (J. 2019 [7])

Let p and v be probability measures on R satisfying Assumption 1 and
E" E” > 0. Then there exist 0 < E_ < E; and v+,v— > 0 such that
o {E€R:p(x)>0}=(E_, Ey) so that supp(u X v) = [E_, E4],

’ ) p(x)

— lim —
NE- /x — E_ T X/I‘ng+ v EL —x e

where p(x) is the continuous density of X v.
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Sketch of proof of Theorem 3

Analytic subordination functions

Proposition 1

Let i and v be probability measures on R, both not &g. There exist

unique analytic self-maps €2, and €, of C \ R+ satisfying the following:

(i) limzs oo Qu(2) = limyy oo Qu(2) =

(i) Forallz € Cy, Qu.(2) = Qu.(2), W(2) = m, and
argQ,(z) > argz, argQ,(z) > argz;
(i) (Subordination) For all z € C\ Ry,
Mu(Q.(2)) = My(Qu(2)) = Muzw(2);
(iv) (Free multiplicative convolution) For all z € C\ R,

Q,(2)(2) = zM,x.(2).
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Sketch of proof of Theorem 3

Characterization of the edge

Let 1 and v satisfy the assumptions of Theorem 3.

@ By Theorem 1 (iv) and Theorem 2,
(Edges of supp X v) = (points at which analyticity of M,x, breaks).

@ Using the subordination functions,
Mz, (z) = M, (Qu(2)), Vze C\Ry.
@ The subordination functions extend continuously to R.
E € R being an edge of supp u X v implies either

(Q, is not analytic at E) or (M, is not analytic at Q,(E)).
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Sketch of proof of Theorem 3

Stability bounds

0.30
0.25
0.20
0.15
0.10
0.05

Figure: Graph(orange) of

Qu(- +1073) for u{ip) ® u{0

and the support(red).

Proposition 2

10" 15 2.0 25 3.0

Figure: Graph(orange) of
Q. (- + 10730) for (u{i>>)22
and the support(red).

Let v and v satisfy assumptions of Theorem 3. Then there exists a

constant ¢ > 0 such that

inf dist(£2,(z),suppv) > c,

zeCy

inf dist(,(z),supp ) > c.
zeCy

Hong Chang Ji (KAIST)

Free multiplicative convolution

May 10, 2019

24/34



Stability bounds

0.30
0.25
0.20
0.15
0.10
0.05

1.0 15 20 25 30

Figure: Graph(orange) of Figure: Graph(orange) of
Q, (- +10731) for p{4Y & ) Q. (- + 10731) for (u{i>>)22
and the support(red). and the support(red).

Proposition 2

Let i and v satisfy assumptions of Theorem 3. Then there exists a
constant ¢ > 0 such that

inf dist(2,(z),suppv) > c, ian dist(Q,(z),supp ) > ¢
zel4

zeCy
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Sketch of proof of Theorem 3

Singularity of subordination functions

From Proposition 1, we find the following heuristic equality:

zM,(Q,,(2)) = z2Myum (2) = Qu(2)2(2)
:QM(Z)MJI(MM%(Z)) = Qu(z)(M;1 oM, 09Q,)(z),

Thus €, has an inverse Z given by

By inverse function theorem, we can guess that the analyticity of €,
breaks at z if Z/(Q,(z)) = 0.
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Sketch of proof of Theorem 3

Characterization of the edges

Proposition 3

Define V := 0{x € R : p(x) > 0}. For z € C4 UR, the following holds:

(W gy 020 1) (o M) 1) | < 1

Furthermore, the equality holds if and only if z € V. In this case, the
equality remains true without taking the absolute value of LHS.

Remark
(i) In fact, Z(,(z)) = 0 is equivalent to the equality without modulus.
(i) We can prove that V consists of exactly two points {E_, E }.
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Sketch of proof of Theorem 3

Square root behavior

We can prove that z/(2,(E+)) # 0, so that in a neighborhood of E,,
z = 2(Qu(2))
= E+ + 2" (Qu(E+))(Qu(2) — Qu(E+))? + 0(1Q4(2) — Qu(E+)P).
Inverting the expansion, we have
Qu(z) = cv/z— E{ +o(|z - E. P/?).

Recalling that

1 ) X
Ep(E) = ;ImQM(E + 10)/ QuE T i0)|2d1/(x),
"

we have the square root behavior around E;.
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Behavior at the hard edge

U: Haar unitary matrix, Xi, Xa: Ginibre ensembles

00—
0

I T "
2 4 6 8 10

3 4 5 6 7
Figure: Limiting e.s.d. pnp X pas Figure: Limiting e.s.d. pmp X pvp
of (I + U)XX*(I + U*). of Xo X1 X{' X5
Both densities diverge as x2/3 as x — 0. J

[ (=7 = = YJRC
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Behavior at the hard edge

Behavior at the hard edge

So far, when both of the measures ;1 and v are separated from the hard
edge, 1t X v shared the same property with pHv.

Theorem (Banica, Belinschi, Capitaine and Collins, 2011 [1])

The density ps of the fractional power ,u%[sp of ump = ,ug/l[)P satisfies

1 s

ps(x) ~ =x"st1  asx — 0.
™

Remark

o It implies that the bound O(1/x) in Theorem 2 is optimal.
@ If supports of 1 and v touches 0, i.e. E¥ = EY =0, Theorem 3 fails.

v
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Behavior at the hard edge

Converting the singularity

a—1

If a measure du(x) = f(x)dx supported on (0, 00) satisfies f(x) ~ x
so that
#((0,x]) ~ x* a5 x =0, (1)

where o € (0,1), then for any realization X of p, the distribution (-1 of
X1 satisfies

Y ((x,00)) ~ x7% as x — oo.
Since (1 X v)("Y = u(-D K (-1 the case E* = E¥ = 0 can be
converted to the case in which p and v are regularly varying around cc.
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Regular variation and M-function

Suppose that u((x,00)) ~ x~® and v((x,0)) ~ x~#, with a, 3 € (0,1).
@ The measures xdu(x) and xdv(x) satisfy, as y — +o0,

/de () ~ ——yp((y.0)) ~ ——y'*,  and
| xdu o yHy, a5

/Oy xdv(x) ~ %yu((y7 00)) ~ % 18

@ By Karamata's Abelian-Tauberian theorem, as y — +o0,

/xdu(x) __oam )% and /xdz/(x) L -8

x+y  sin(fBm)

x+y  sin(ar)
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Behavior at the hard edge

Regular variation and M-function

and combining above results, as w \, —co we get

Recalling

1 1
_ 1 amw \ @ Brw 8 1.1 4
M1 ~ [ _ 7 = —Cop(—w)aT8 ",
i (W) w ( sin(om)) ( sin(,Bw)) s(=w)
Going backwards, we conclude
(u & V)(X, m) ~ Dang_(a_l‘i'ﬁ_l_l)_l. (2)

Remark

Hazra and Maulik [6] showed that for all & > 0, any reguarly varying p
with tail index a is free subexponential, i.e. ®"(x,00) ~ nu(x, oc).
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Behavior at the hard edge

Behavior at the hard edge

Now substituting x and v by p(=1 and v(-1),

If 1 and v satisfy (0, x) ~ x® and (0, x) ~ x? for some «, 8 € (0, 1),
then

(X v)(0,x) ~ Daﬁx(a—l—l-ﬁ—l_l)_l‘

o If we plug in @ = 3 =1/2, then

O e

which coincides with the case of uyp X pnvp and pvp X pias.
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Thank you for listening!
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