Properties of Free Multiplicative Convolution

Hong Chang Ji

Korea Advanced Institute of Science and Technology (KAIST)

Random Matrices and Related Topics May 6 - 10, 2019

Wishart ensemble

- Suppose that we have sample N independent random vectors {x₁, · · · , x_N} from N-dimensional complex standard Gaussian distribution.
- Then their sample covariance matrix is defined by

$$XX^*$$
, where $X = (x_{ij})_{1 \le i,j \le N} = (\mathbf{x}_1, \cdots, \mathbf{x}_N).$

• X and XX* are known as (complex) Ginibre and Wishart ensemble.

Marčenko-Pastur law

The empirical distribution of eigenvalues of $N^{-1}XX^*$ converges to the Marčenko-Pastur distribution μ_{MP} :

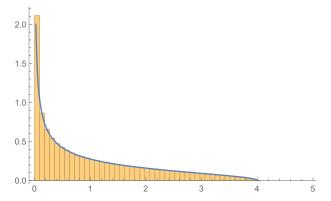


Figure: Histogram of eigenvalues of $N^{-1}XX^*$ with N = 5000 and density $\frac{1}{2\pi}\sqrt{\frac{(4-x)}{x}}$ of Marčenko-Pastur distribution.

Hong Chang Ji (KAIST)

May 10, 2019 3 / 34

Sample covariance matrix with general population

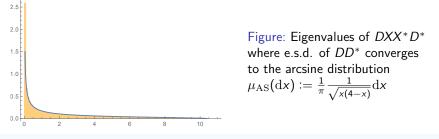
- In some occasions, we wish to consider the case in which the law of x is *non-standard* Gaussian, so that the variables are dependent.
- Thus we take y_i := Dx_i where D is another (N × N) matrix, called population matrix. In this case, the sample covariance matrix becomes

$$YY^* = (\mathbf{y}_1, \cdots, \mathbf{y}_N)(\mathbf{y}_1, \cdots, \mathbf{y}_N)^T = DXX^*D^*,$$

referred as non-white Wishart ensemble.

deformed Marčenko-Pastur law

- If the e.s.d. of D*D converges to a probability measure ν, then that of DXX*D* also converges(Marčenko and Pastur, 1967 [8]).
- The limiting measure was characterized by an integral equation satisfied by its Stieltjes transform.



The limit is *"free multiplicative convolution"* of ν and μ_{MP} .

Stieltjes transform and *M*-function

Definition 1

For a probability measure μ on $\mathbb{R}_+ := [0, \infty)$, we define its *Stieltjes transform* and *M*-function by, for $z \in \mathbb{C} \setminus \mathbb{R}_+$,

$$m_\mu(z) \coloneqq \int rac{1}{x-z} \mathrm{d} \mu(x), \quad ext{and} \quad M_\mu(z) = 1 - \left(\int rac{x}{x-z} \mathrm{d} \mu(x)
ight)^{-1}.$$

Remark

Free multiplicative convolution

Definition 2

For two probability measures μ and ν on $[0, \infty)$, both not δ_0 , $\mu \boxtimes \nu$ is the unique probability measure satisfying

$$M_{\mu\boxtimes
u}^{-1}(z)=rac{1}{z}M_{\mu}^{-1}(z)M_{
u}^{-1}(z)$$

in a neighborhood of $(-\infty, -C)$.

Remark

If X and Y are *free* random variables with distributions μ and ν , then $\mu \boxtimes \nu$ is the distribution of $\sqrt{X}Y\sqrt{X}$ (or $\sqrt{Y}X\sqrt{Y}$).

Free additive convolution

Definition 3

For two probability measures μ and ν on $\mathbb{R},\,\mu\boxplus\nu$ is the unique probability measure satisfying

$$F_{\mu\boxplus
u}^{-1}(z) = F_{\mu}^{-1}(z) + F_{
u}^{-1}(z) - z$$

in a neighborhood of (i $M, \mathrm{i}\infty$), where $F_\mu(z):=-1/m_\mu(z).$

Remark

- If X and Y are *free* random variables with distributions μ and ν , then $\mu \boxplus \nu$ is the distribution of X + Y.
- As X and Y are noncommutative, $\log(XY) = \log X + \log Y$ and $e^{X+Y} = e^X e^Y$ are no longer true.

(日) (同) (三) (

Connection to random matrices

• U_N : $(N \times N)$ - Haar distributed random unitary matrix.

• $\mathcal{C}_N = \operatorname{diag}(c_1^{(N)},\cdots,c_N^{(N)}), D_N = \operatorname{diag}(d_1^{(N)},\cdots,d_N^{(N)})$ such that

$$\frac{1}{N}\sum_{i=1}^N \delta_{c_i^{(N)}} \to \mu \quad \text{and} \quad \frac{1}{N}\sum_{i=1}^N \delta_{d_i^{(N)}} \to \nu, \quad \text{as } N \to \infty.$$

•
$$(\lambda_1^{(N)}, \dots, \lambda_N^{(N)})$$
: eigenvalues of $C_N + U_N D_N U_N^*$,
 $(\gamma_1^{(N)}, \dots, \gamma_N^{(N)})$: those of $\sqrt{C_N} U_N D_N U_N^* \sqrt{C_N}$ (for $C_N, D_N \ge 0$).

Theorem (Voiculescu, 1998 [9])

$$\frac{1}{N}\sum_{i=1}^N \delta_{\lambda_i^{(N)}} \to \mu \boxplus \nu \quad \text{and} \quad \frac{1}{N}\sum_{i=1}^N \delta_{\gamma_i^{(N)}} \to \mu \boxtimes \nu.$$

We may replace $U_N D_N U_N^*$ with Wishart ensemble_and ν with μ_{MP} .

Hong Chang Ji (KAIST)

Marčenko-Pastur distribution revisited

•
$$\mu_{\mathrm{MP}} = \lim_{n \to \infty} ((n-1)\delta_0/n + \delta_1/n)^{\boxplus n}$$
 is also known as free Poisson law.

• In general for any $a\geq 1$, $\left((n-a)\,\delta_0/n+a\delta_1/n
ight)^{\boxplus n}$ converges to

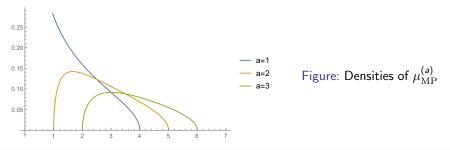
$$\mu_{\mathrm{MP}}^{(a)}(\mathrm{d} x) := \frac{1}{2\pi x} \sqrt{4a - (x - (a + 1))^2} \mathrm{d} x.$$

- The measure $\mu_{MP}^{(a)}$'s are also the limiting e.s.d. of the general sample covariance $N^{-1}XX^*$, where X is $(N \times M)$ random matrix whose entries are i.i.d. and $M/N \rightarrow a$.
- In fact, μ^(a)_{MP} are also ⊠-infinitely divisible, so that the common properties of μ^(a)_{MP} are "desirable" in terms of the operation ⊠.

Marčenko-Pastur distribution revisited

Examples of "desirable" properties are..

- Having density, which is analytic in the bulk of spectrum.
- The density being bounded by 1/x.
- The density decaying as square root at the edges.



These properties of $\mu_{MP}^{(a)}$ hold even for convolution of *two* measures, under proper assumptions.

Regularity(Lebesgue decomposition) of free convolution

Let $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_2$. Then $\mu \boxtimes \mu$ can be explicitly calculated as

$$\frac{1}{2}\delta_0 + \frac{1}{2\pi\sqrt{x(4-x)}}\mathbb{1}_{(0,4)}(x)\mathrm{d}x.$$

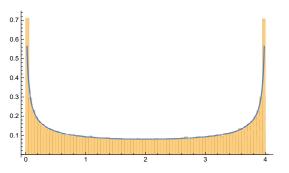


Figure: Nonzero eigenvalues of $(5 \cdot 10^3)$ matrix $\sqrt{C}UDU^*\sqrt{C}$, where $\{c_i, d_i\}$ are i.i.d. with law μ and U is independent of C and D.

Known results for free additive convolution: Lebesgue decomposition

Theorem (Belinschi, 2008 [4])

Let μ and ν be Borel probability measures on \mathbb{R} , both not a point mass.

- (i) $(\mu \boxplus \nu)(\{a\}) > 0$ if and only if there exist $b, c \in \mathbb{R}$ with a = b + cand $\mu(\{b\}) + \nu(\{c\}) > 1$. In this case, $(\mu \boxplus \nu)(\{a\}) = \mu(\{b\}) + \nu(\{c\}) - 1$.
- (ii) $(\mu \boxplus \nu)^{\rm sc} \equiv 0.$
- (iii) $\frac{d}{dx}(\mu \boxplus \nu)^{ac}(x)$ is analytic whenever positive and finite.

• • = • • = •

Lebesgue decomposition

Theorem 1 (J., 2019 [7])

Let μ and ν be Borel probability measures on \mathbb{R}_+ , both not a point mass.

(i*) For c > 0, $(\mu \boxtimes \nu)(\{c\}) > 0$ if and only if there exist $u, v \in (0, \infty)$ with uv = c and $\mu(\{u\}) + \nu(\{v\}) > 1$. In this case, $(\mu \boxtimes \nu)(\{c\}) = \mu(\{u\}) + \nu(\{v\}) - 1$.

(ii*)
$$(\mu \boxtimes \nu)(\{0\}) = \max(\mu(\{0\}), \nu(\{0\})).$$

(iii) $(\mu \boxtimes \nu)^{\rm sc} \equiv 0.$

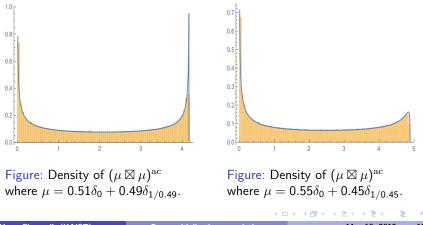
(iv) $\frac{d(\mu \boxtimes \nu)^{ac}(x)}{dx}$ is analytic whenever positive and finite.

*First two statements were proved in Belinschi, 2003 [3].

イロト イポト イヨト イヨト 二日

Boundedness of the density

Letting $\mu = (1 - p)\delta_0 + p\delta_{1/p}$, we find that $\mu \boxtimes \mu$ almost have an atom at p^{-2} if p = 1/2. Figures below show what happens if p < 1/2.



Known results for free additive convolution: Boundedness of the density

Theorem (Belinschi, 2013 [5])

Let μ and ν be Borel probability measures on \mathbb{R} , both not a point mass. If F_{μ} and F_{ν} are continuous at infinity and $\mu(\{b\}) + \nu(\{c\}) < 1$ for all $b, c \in \mathbb{R}$, then $\mu \boxplus \nu = (\mu \boxplus \nu)^{\mathrm{ac}}$ and the density is bounded and continuous.

Remark

The density of $\mu_{\rm MP}$ diverges as $x^{-1/2}$ around x, thus we need different statement to cover $\mu_{\rm MP}$.

Boundedness of the density

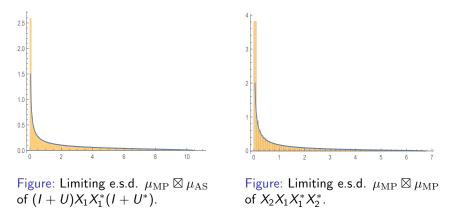
Theorem 2 (J., 2019 [7])

Let μ and ν be probability measures on \mathbb{R}_+ such that M_{μ} and M_{ν} are continuous at 0 and ∞ . Further assume that $\mu(\{a\}) + \nu(\{b\}) < 1$ for all $a, b \in (0, \infty)$. Then the density of $(\mu \boxtimes \nu)^{\mathrm{ac}}$ is continuous and uniformly $O(x^{-1})$ on $(0, \infty)$.

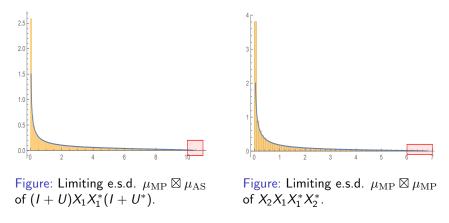
Remark

By Theorem 1 (i), $\mu \boxtimes \nu$ can have point mass at 0 under the assumptions of Theorem 2.

U: Haar unitary matrix, X_1, X_2 : Ginibre ensembles



U: Haar unitary matrix, X_1, X_2 : Ginibre ensembles



U: Haar unitary matrix, X_1, X_2 : Ginibre ensembles

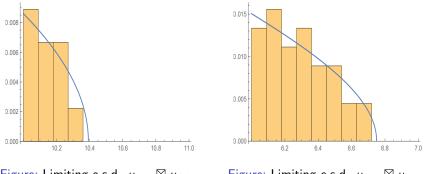


Figure: Limiting e.s.d. $\mu_{\rm MP} \boxtimes \mu_{\rm AS}$ of $(I + U)X_1X_1^*(I + U^*)$. Figure: Limiting e.s.d. $\mu_{\rm MP} \boxtimes \mu_{\rm MP}$ of $X_2 X_1 X_1^* X_2^*$.

э

Known results for free additive convolution: Square root behavior

Assumption 1

Let μ and ν be Borel probability measures on $\mathbb R$ satisfying the following:

(i) They have densities; $d\mu(x) = \rho_{\mu}(x)dx$, $d\nu(x) = \rho_{\nu}(x)dx$.

(ii) supp
$$\rho_{\mu} = [E_{-}^{\mu}, E_{+}^{\mu}]$$
, supp $\rho_{\nu} = [E_{-}^{\nu}, E_{+}^{\nu}]$.

(iii) The measures are Jacobi; there exist $-1 < t_\pm^\mu, t_\pm^\nu < 1$ and a constant C>1 such that

$$C^{-1} \leq rac{
ho_{\mu}(x)}{(x-E_{-}^{\mu})^{t_{-}^{\mu}}(E_{+}^{\mu}-x)^{t_{+}^{\mu}}} \leq C, \quad ext{for a.e. } x \in [E_{-}^{\mu}, E_{+}^{\mu}],$$

and the same bound holds for ν .

Known results for free additive convolution: Square root behavior

Theorem (Bao, Erdős and Schnelli, 2018 [2])

Under Assumption 1, there exist $E_- < E_+$ and $\gamma_+, \gamma_- > 0$ such that

• $\{E \in \mathbb{R} : \rho(x) > 0\} = (E_-, E_+)$ so that $\operatorname{supp}(\mu \boxplus \nu) = [E_-, E_+]$,

$$\lim_{x \searrow E_{-}} \frac{\rho(x)}{\sqrt{x - E_{-}}} = \gamma_{-}, \qquad \lim_{x \nearrow E_{+}} \frac{\rho(x)}{\sqrt{E_{+} - x}} = \gamma_{+},$$

where $\rho(x)$ is the continuous density of $\mu \boxplus \nu$.

Theorem 3 (J. 2019 [7])

Let μ and ν be probability measures on \mathbb{R}_+ satisfying Assumption 1 and $E_-^{\mu}, E_-^{\nu} > 0$. Then there exist $0 < E_- < E_+$ and $\gamma_+, \gamma_- > 0$ such that • $\{E \in \mathbb{R} : \rho(x) > 0\} = (E_-, E_+)$ so that $\operatorname{supp}(\mu \boxtimes \nu) = [E_-, E_+]$, • $\lim_{x \searrow E_-} \frac{\rho(x)}{\sqrt{x - E_-}} = \gamma_-, \qquad \lim_{x \nearrow E_+} \frac{\rho(x)}{\sqrt{E_+ - x}} = \gamma_+,$

where $\rho(x)$ is the continuous density of $\mu \boxtimes \nu$.

(日) (得) (日) (日) (日) (日)

Analytic subordination functions

Proposition 1

Let μ and ν be probability measures on \mathbb{R}_+ , both not δ_0 . There exist unique analytic self-maps Ω_{μ} and Ω_{ν} of $\mathbb{C} \setminus \mathbb{R}_+$ satisfying the following: (i) $\lim_{z \to -\infty} \Omega_{\mu}(z) = \lim_{z \to -\infty} \Omega_{\nu}(z) = -\infty$; (ii) For all $z \in \mathbb{C}_+$, $\Omega_{\mu}(\bar{z}) = \overline{\Omega_{\mu}(z)}$, $\Omega_{\nu}(\bar{z}) = \overline{\Omega_{\mu}(z)}$, and $\arg \Omega_{\mu}(z) \ge \arg z$, $\arg \Omega_{\nu}(z) \ge \arg z$; (iii) Contraction (1.5) $\Sigma_{\mu} = \mathcal{O} \setminus \mathbb{D}$

(iii) (Subordination) For all $z \in \mathbb{C} \setminus \mathbb{R}_+$,

$$M_{\mu}(\Omega_{\nu}(z)) = M_{\nu}(\Omega_{\mu}(z)) = M_{\mu\boxtimes\nu}(z);$$

(iv) (Free multiplicative convolution) For all $z \in \mathbb{C} \setminus \mathbb{R}_+$,

$$\Omega_{\mu}(z)\Omega_{
u}(z)=zM_{\mu\boxtimes
u}(z)$$

Characterization of the edge

Let μ and ν satisfy the assumptions of Theorem 3.

- By Theorem 1 (iv) and Theorem 2,
 (Edges of supp μ ⊠ ν) ≡ (points at which analyticity of M_{μ⊠ν} breaks).
- Using the subordination functions,

$$M_{\mu\boxtimes
u}(z)=M_
u(\Omega_\mu(z)),\quad orall z\in\mathbb{C}\setminus\mathbb{R}_+.$$

• The subordination functions extend continuously to \mathbb{R} .

 $E \in \mathbb{R}$ being an edge of $\operatorname{supp} \mu \boxtimes \nu$ implies either $(\Omega_{\mu} \text{ is not analytic at } E) \text{ or } (M_{\nu} \text{ is not analytic at } \Omega_{\mu}(E)).$

イロト イポト イヨト イヨト

Stability bounds

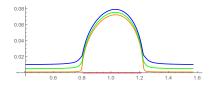


Figure: Graph(orange) of $\Omega_{\mu}(\cdot + 10^{-3}i)$ for $\mu_{\mathrm{MP}}^{(1.1)} \boxtimes \mu_{\mathrm{MP}}^{(1.1)}$ and the support(red).



Figure: Graph(orange) of $\Omega_{\mu}(\cdot + 10^{-3}i)$ for $(\mu_{AS}^{(1.5,3,5)})^{\boxtimes 2}$ and the support(red).

Proposition 2

Let μ and ν satisfy assumptions of Theorem 3. Then there exists a constant c > 0 such that

$$\inf_{z\in\mathbb{C}_+} \operatorname{dist}(\Omega_\mu(z),\operatorname{supp}\nu)\geq c,\quad \inf_{z\in\mathbb{C}_+}\operatorname{dist}(\Omega_\nu(z),\operatorname{supp}\mu)\geq c.$$

Stability bounds

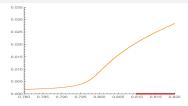


Figure: Graph(orange) of $\Omega_{\mu}(\cdot + 10^{-3}i)$ for $\mu_{\mathrm{MP}}^{(1.1)} \boxtimes \mu_{\mathrm{MP}}^{(1.1)}$ and the support(red).

Figure: Graph(orange) of $\Omega_{\mu}(\cdot + 10^{-3}i)$ for $(\mu_{AS}^{(1.5,3,5)})^{\boxtimes 2}$ and the support(red).

Proposition 2

Let μ and ν satisfy assumptions of Theorem 3. Then there exists a constant c > 0 such that

$$\inf_{z\in\mathbb{C}_+}\operatorname{dist}(\Omega_\mu(z),\operatorname{supp}\nu)\geq c,\quad \inf_{z\in\mathbb{C}_+}\operatorname{dist}(\Omega_\nu(z),\operatorname{supp}\mu)\geq c.$$

Singularity of subordination functions

From Proposition 1, we find the following heuristic equality:

$$egin{aligned} &zM_
u(\Omega_\mu(z))=zM_{\muoxtimes
u}(z)=\Omega_\mu(z)\Omega_
u(z)\ &=&\Omega_\mu(z)M_\mu^{-1}(M_{\muoxtimes
u}(z))=\Omega_\mu(z)(M_\mu^{-1}\circ M_
u\circ\Omega_\mu)(z), \end{aligned}$$

Thus Ω_{μ} has an inverse \widetilde{z} given by

$$\widetilde{z}(\Omega) = rac{\Omega M_{\mu}^{-1} \circ M_{
u}(\Omega)}{M_{
u}(\Omega)}$$

٠

By inverse function theorem, we can guess that the analyticity of Ω_{μ} breaks at z if $\tilde{z}'(\Omega_{\mu}(z)) = 0$.

イロト イポト イヨト イヨト

Characterization of the edges

Proposition 3

Define $\mathcal{V} := \partial \{x \in \mathbb{R} : \rho(x) > 0\}$. For $z \in \mathbb{C}_+ \cup \mathbb{R}$, the following holds:

$$\left(rac{\Omega_
u(z)}{M_\mu(\Omega_
u(z))}M'_\mu(\Omega_
u(z))-1
ight)\left(rac{\Omega_\mu(z)}{M_
u(\Omega_\mu(z))}M'_
u(\Omega_\mu(z))-1
ight)
ight|\leq 1.$$

Furthermore, the equality holds if and only if $z \in V$. In this case, the equality remains true without taking the absolute value of LHS.

Remark

(i) In fact, $\tilde{z}'(\Omega_{\mu}(z)) = 0$ is equivalent to the equality without modulus.

(ii) We can prove that \mathcal{V} consists of exactly two points $\{E_{-}, E_{+}\}$.

イロト イポト イヨト イヨト

Square root behavior

We can prove that $\widetilde{z}''(\Omega_\mu(E_\pm))
eq 0$, so that in a neighborhood of E_+ ,

$$egin{aligned} &z=\widetilde{z}(\Omega_{\mu}(z))\ &=E_{+}+\widetilde{z}''(\Omega_{\mu}(E_{+}))(\Omega_{\mu}(z)-\Omega_{\mu}(E_{+}))^{2}+o(|\Omega_{\mu}(z)-\Omega_{\mu}(E_{+})|^{3}). \end{aligned}$$

Inverting the expansion, we have

$$\Omega_{\mu}(z) = c\sqrt{z-E_+} + o(|z-E_+|^{3/2}).$$

Recalling that

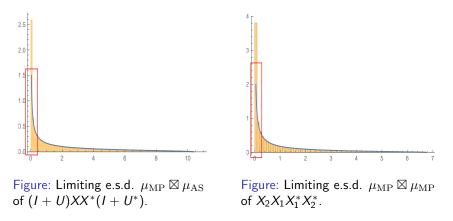
$$E
ho(E)=rac{1}{\pi}\operatorname{Im}\Omega_{\mu}(E+\mathrm{i}0)\intrac{x}{\left|x-\Omega_{\mu}(E_{+}+\mathrm{i}0)
ight|^{2}}\mathrm{d}
u(x),$$

we have the square root behavior around E_+ .

Hong Chang Ji (KAIST)

Behavior at the hard edge

U: Haar unitary matrix, X_1, X_2 : Ginibre ensembles



Both densities diverge as $x^{-2/3}$ as $x \to 0$.

Hong Chang Ji (KAIST)

Free multiplicative convolution

May 10, 2019 28 / 34

Behavior at the hard edge

So far, when both of the measures μ and ν are separated from the *hard* edge, $\mu \boxtimes \nu$ shared the same property with $\mu \boxplus \nu$.

Theorem (Banica, Belinschi, Capitaine and Collins, 2011 [1])

The density ρ_s of the fractional power $\mu_{MP}^{\boxtimes s}$ of $\mu_{MP} \equiv \mu_{MP}^{(1)}$ satisfies

$$ho_s(x)\sim rac{1}{\pi}x^{-rac{s}{s+1}}$$
 as $x
ightarrow 0.$

Remark

- It implies that the bound O(1/x) in Theorem 2 is optimal.
- If supports of μ and ν touches 0, i.e. $E_{-}^{\mu} = E_{-}^{\nu} = 0$, Theorem 3 fails.

< ロ > (同 > (回 > (回 >))

Converting the singularity

If a measure $d\mu(x) = f(x)dx$ supported on $(0,\infty)$ satisfies $f(x) \sim x^{\alpha-1}$ so that

$$\mu((0,x]) \sim x^{lpha}$$
 as $x \to 0,$ (1)

where $\alpha \in (0,1)$, then for any realization X of μ , the distribution $\mu^{(-1)}$ of X^{-1} satisfies

$$\mu^{(-1)}((x,\infty)) \sim x^{-lpha}$$
 as $x \to \infty$.

Since $(\mu \boxtimes \nu)^{(-1)} = \mu^{(-1)} \boxtimes \nu^{(-1)}$, the case $E_{-}^{\mu} = E_{-}^{\nu} = 0$ can be converted to the case in which μ and ν are regularly varying around ∞ .

(日) (得) (日) (日) (日) (日)

Regular variation and *M*-function

Suppose that $\mu((x,\infty)) \sim x^{-\alpha}$ and $\nu((x,\infty)) \sim x^{-\beta}$, with $\alpha, \beta \in (0,1)$. • The measures $x d\mu(x)$ and $x d\nu(x)$ satisfy, as $y \to +\infty$,

$$\int_0^y x d\mu(x) \sim \frac{\alpha}{1-\alpha} y \mu((y,\infty)) \sim \frac{\alpha}{1-\alpha} y^{1-\alpha}, \text{ and}$$
$$\int_0^y x d\nu(x) \sim \frac{\beta}{1-\beta} y \mu((y,\infty)) \sim \frac{\beta}{1-\beta} y^{1-\beta}.$$

• By Karamata's Abelian-Tauberian theorem, as $y o +\infty$,

$$\int \frac{x \mathrm{d} \mu(x)}{x+y} \sim \frac{\alpha \pi}{\sin(\alpha \pi)} y^{-\alpha} \quad \text{and} \quad \int \frac{x \mathrm{d} \nu(x)}{x+y} \sim \frac{\beta \pi}{\sin(\beta \pi)} y^{-\beta}.$$

Regular variation and *M*-function

Recalling

$$M_{\mu}(y) = 1 - \left(\int rac{x \mathrm{d} \mu(x)}{x-y}
ight)^{-1}$$

and combining above results, as $w\searrow -\infty$ we get

$$M_{\mu\boxtimes\nu}^{-1}(w)\sim \frac{1}{w}\left(-\frac{\alpha\pi w}{\sin(\alpha\pi)}\right)^{\frac{1}{\alpha}}\left(-\frac{\beta\pi w}{\sin(\beta\pi)}\right)^{\frac{1}{\beta}}=-C_{\alpha,\beta}(-w)^{\frac{1}{\alpha}+\frac{1}{\beta}-1}.$$

Going backwards, we conclude

$$(\mu \boxtimes \nu)(x,\infty) \sim D_{\alpha,\beta} x^{-(\alpha^{-1}+\beta^{-1}-1)^{-1}}.$$
(2)

Remark

Hazra and Maulik [6] showed that for all $\alpha \ge 0$, any reguarly varying μ with tail index α is free subexponential, i.e. $\mu^{\boxplus n}(x,\infty) \sim n\mu(x,\infty)$.

イロト イ得ト イヨト イヨト

э

Behavior at the hard edge

Now substituting μ and ν by $\mu^{(-1)}$ and $\nu^{(-1)}$,

If μ and ν satisfy $\mu(0, x) \sim x^{\alpha}$ and $\nu(0, x) \sim x^{\beta}$ for some $\alpha, \beta \in (0, 1)$, then

$$(\mu \boxtimes
u)(0,x) \sim D_{lpha,eta} x^{(lpha^{-1}+eta^{-1}-1)^{-1}}.$$

• If we plug in $\alpha=\beta=1/2,$ then

$$(\alpha^{-1} + \beta^{-1} - 1)^{-1} = \frac{1}{3},$$
(3)

which coincides with the case of $\mu_{MP} \boxtimes \mu_{MP}$ and $\mu_{MP} \boxtimes \mu_{AS}$.

T. Banica, S. T. Belinschi, M. Capitaine, and B. Collins. Free bessel laws.

Canadian Journal of Mathematics, 63(1):3–37, 2011.

[2] Z. Bao, L. Erdős, and K. Schnelli.

On the support of the free additive convolution. *arXiv e-prints*, page arXiv:1804.11199, Apr 2018.

[3] S. T. Belinschi.

The atoms of the free multiplicative convolution of two probability distributions.

Integral Equations Operator Theory, 46(4):377–386, 2003.

[4] S. T. Belinschi.

The Lebesgue decomposition of the free additive convolution of two probability distributions.

Probab. Theory Related Fields, 142(1-2):125-150, 2008.

[5] S. T. Belinschi.

 L^{∞} -boundedness of density for free additive convolutions.

Hong Chang Ji (KAIST)

The end

Rev. Roumaine Math. Pures Appl., 59(2):173-184, 2014.

[6] R. S. Hazra and K. Maulik. Free subexponentiality. Ann. Probab., 41(2):961–988, 2013.

[7] H. C. Ji.
 Properties of free multiplicative convolution.
 arXiv e-prints, page arXiv:1903.02326, Mar 2019.

 [8] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. *Mat. Sb. (N.S.)*, 72 (114):507–536, 1967.

[9] D. Voiculescu.

A strengthened asymptotic freeness result for random matrices with applications to free entropy.

International Mathematics Research Notices, 1998(1):41-63, 01 1998.

Thank you for listening!

< D > < P > < P > < P >