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Motivation: S&P 500 Index
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Figure: Estimated tail indices of log-returns of 478 time series in
the S&P 500 index.
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Setup

Data matrix X = Xp: p× n matrix with iid centered
columns.

X = (Xit)i=1,...,p;t=1,...,n

Sample covariance matrix S = 1
nXX ′

Ordered eigenvalues of S

λ1(S) ≥ λ2(S) ≥ · · · ≥ λp(S)

Applications:
Principal Component Analysis
Linear Regression, . . .
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Sample Correlation Matrix

Sample correlation matrix R with entries

Rij =
Sij√
SiiSjj

, i, j = 1, . . . , p

and eigenvalues

λ1(R) ≥ λ2(R) ≥ · · · ≥ λp(R) .
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The Model

Data structure:
Xp = ApZp ,

where Ap is a deterministic p× p matrix such that (‖Ap‖) is
bounded and

Zp = (Zit)i=1,...,p;t=1,...,n

has iid, centered entries with unit variance (if finite).

Population covariance matrix Σ = AA′.

Population correlation matrix

Γ = (diag(Σ))−1/2Σ(diag(Σ))−1/2

Note: E[S] = Σ but E[Rij ] = Γij +O(n−1).
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The Model

Sample Population
Covariance matrix S Σ
Correlation matrix R Γ

Growth regime:

n = np →∞ and
p

np
→ γ ∈ [0,∞) , as p→∞ .

High dimension: lim
p→∞

p
n ∈ (0,∞)

Moderate dimension: lim
p→∞

p
n = 0
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Main Result

Approximation Under Finite Fourth Moment

Assume X = AZ and E[Z4
11] <∞. Then we have as p→∞,√

n/p ‖diag(S)− diag(Σ)‖ a.s.→ 0 .

Approximation Under Infinite Fourth Moment

Assume X = Z and E[Z4
11] =∞. Then we have as p→∞,

cnp︸︷︷︸
→0

‖S − diag(S)‖ P→ 0 .
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Main result

Assume X = AZ and E[Z4
11] <∞. Then we have as p→∞,√

n/p ‖diag(S)− diag(Σ)‖ a.s.→ 0 ,

and √
n/p ‖(diag(S))−1/2 − (diag(Σ))−1/2‖ a.s.→ 0 .

Relevance: Note that

R = (diag(S))−1/2S (diag(S))−1/2 .

S = 1
nXX ′ and R = Y Y ′, where

Y = (Yij)p×n =

(
Xij√∑n
t=1X

2
it

)
p×n

In general, any two entries of Y are dependent.
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A Comparison Under Finite Fourth Moment

Approximation of the sample correlation matrix

Assume X = AZ and E[Z4
11] <∞. Then we have√

n

p
‖R− (diag(Σ))−1/2S(diag(Σ))−1/2︸ ︷︷ ︸

SQ

‖ a.s.→ 0 .

Spectrum comparison

An application of Weyl’s inequality yields√
n

p
max
i=1,...,p

∣∣∣λi(R)− λi(SQ)
∣∣∣ ≤√n

p
‖R− SQ‖ a.s.→ 0 .

Operator norm consistent estimation

‖R− Γ‖ = O(
√
p/n) a.s.
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Notation

Empirical spectral distribution of p× p matrix C with real
eigenvalues λ1(C), . . . , λp(C):

FC(x) =
1

p

p∑
i=1

1{λi(C)≤x}, x ∈ R .

Stieltjes transform:

sC(z) =

∫
R

1

x− z
dFC(x) =

1

p
tr(C− zI)−1 , z ∈ C+ ,

Limiting spectral distribution:
Weak convergence of (FCp) to distribution function F a.s.
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Limiting Spectral Distribution of R

Assume X = AZ, E[Z4
11] <∞ and that FΓ converges to a

probability distribution H.

1 If p/n→ γ ∈ (0,∞), then FR converges weakly to a
distribution function Fγ,H , whose Stieltjes transform s satisfies

s(z) =

∫
dH(t)

t(1− γ − γs(z))− z
, z ∈ C+ .

2 If p/n→ 0, then F√
n/p(R−Γ)

converges weakly to a

distribution function F , whose Stieltjes transform s satisfies

s(z) = −
∫

dH(t)

z + ts̃(z)
, z ∈ C+ ,

where s̃ is the unique solution to
s̃(z) = −

∫
(z + ts̃(z))−1t dH(t) and z ∈ C+.
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Special Case A = I

Simplified assumptions:

1 iid, symmetric entries Xit
d
= X

2 Growth regime: lim
p→∞

p
n = γ ∈ [0, 1]
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Marčenko–Pastur and Semicircle Law

Marčenko–Pastur law Fγ has density

fγ(x) =

{
1

2πxγ

√
(b− x)(x− a) , if x ∈ [a, b],

0 , otherwise,

where a = (1−√γ)2 and b = (1 +
√
γ)2.

Semicircle law SC
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Extreme Eigenvalues

Largest and smallest eigenvalues of R

If p/n→ γ ∈ [0, 1] and E[X4] <∞, then√
n/p (λ1(R)− 1)

a.s.→ 2 +
√
γ

and √
n/p (λp(R)− 1)

a.s.→ −2 +
√
γ .

Earlier: ‖R− Γ‖ = O(
√
p/n) a.s.

In this case: √
n/p ‖R− Γ‖ a.s.→ 2 +

√
γ .
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Limiting Spectral Distribution

Marčenko–Pastur Theorem

Assume E[X2] = 1. Then (FS) converges weakly to Fγ .
If E[X4] <∞ and p/n→ 0, then (F√

n/p (S−I)
) converges weakly

to SC.

JH (2018+)

Under the domain of attraction type-condition for the Gaussian
law,

lim
p→∞

n

p
nE
[
Y 4

11

]
= 0 ,

the sequence (FR) converges weakly to Fγ .
If in addition p/n→ 0, then (F√

n/p (R−I)
) converges weakly to

SC.

Here Yij =
Xij√∑n
t=1X

2
it

.
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Simulation Study

Regular variation with index α > 0:

P(|X| > x) = x−αL(x),

where L is a slowly varying function.

This implies E[|X|α+ε] =∞ for any ε > 0.

Procedure:
1 Simulate X
2 Plot histograms of (λi(R)) and (λi(S))
3 Compare with Marčenko–Pastur density
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3 Compare with Marčenko–Pastur density

J. Heiny Heavy-tailed correlation and covariance matrices 16 / 37



α = 6

α = 6, n = 2000, p = 1000
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Infinite Fourth Moment

Regular variation with index α ∈ (0, 4)

Normalizing sequence (a2
np) such that

npP(X2 > a2
npx)→ x−α/2, as n→∞ for x > 0.

Then anp = (np)1/α`(np) for a slowly varying function `.

J. Heiny Heavy-tailed correlation and covariance matrices 19 / 37



Reduction to Diagonal

Diagonal

X with iid regularly varying entries α ∈ (0, 4) and p = nβ`(n) with
β ∈ [0, 1]. We have

a−2
np ‖XX ′ − diag(XX ′)‖ P→ 0 ,

where ‖ · ‖ denotes the spectral norm.

(XX ′)ij =

n∑
t=1

XitXjt.
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Eigenvalues

Weyl’s inequality

max
i=1,...,p

∣∣λi(A + B)− λi(A)
∣∣ ≤ ‖B‖ .

Choose A + B = XX ′ and A = diag(XX ′) to obtain

a−2
np max

i=1,...,p

∣∣λi(XX ′)− λi(diag(XX ′))
∣∣ P→ 0 , n→∞ .

Note: Limit theory for (λi(S)) reduced to (Sii).
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Heavy-tailed case

Theorem (Heiny and Mikosch, 2016)

X with iid regularly varying entries α ∈ (0, 4) and pn = nβ`(n)
with β ∈ [0, 1].

1 If β ∈ [0, 1], then

a−2
np max

i=1,...,p

∣∣λi(XX ′)− λi(diag(XX ′))
∣∣ P→ 0 .

2 If β ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p

∣∣λi(XX ′)−X2
(i),np

∣∣ P→ 0 .
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Example: Eigenvalues

Figure: Smoothed histogram based on 20000 simulations of the
approximation error for the normalized eigenvalue a−2

npλ1(S) for entries
Xit with α = 1.6, β = 1, n = 1000 and p = 200.
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Eigenvectors

vk unit eigenvector of S associated to λk(S)

Unit eigenvectors of diag(S) are canonical basisvectors ej .

Eigenvectors

X with iid regularly varying entries with index α ∈ (0, 4) and
pn = nβ`(n) with β ∈ [0, 1]. Then for any fixed k ≥ 1,

‖vk − eLk‖`2
P→ 0 , n→∞ .
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Localization vs. Delocalization

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto data

Indices of components

S
iz

e 
of

 c
om

po
ne

nt
s

Figure: X ∼ Pareto(0.8)
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Components of eigenvector v1. p = 200, n = 1000.
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Point Process of Normalized Eigenvalues

Point process convergence

Nn =

p∑
i=1

δa−2
npλi(XX′)

d→
∞∑
i=1

δ
Γ
−2/α
i

= N

The limit is a PRM on (0,∞) with mean measure
µ(x,∞) = x−α/2, x > 0, and

Γi = E1 + · · ·+ Ei , (Ei) iid standard exponential.
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Point Process of Normalized Eigenvalues

Limiting distribution: For k ≥ 1,

lim
n→∞

P(a−2
np λk ≤ x) = lim

n→∞
P(Nn(x,∞) < k) = P(N(x,∞) < k)

=

k−1∑
s=0

(
x−α/2

)s
s!

e−x
−α/2

, x > 0 .

Largest eigenvalue
n

a2
np

λ1(S)
d→ Γ

−α/2
1 ,

where the limit has a Fréchet distribution with parameter α/2.
Soshnikov (2006), Auffinger et al. (2009), Auffinger and Tang (2016),

Davis et al. (2014, 20162), JH and Mikosch (2016)
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α = 3.99

α = 3.99, n = 2000, p = 1000
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α = 3

α = 3, n = 2000, p = 1000
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α = 2.1

α = 2.1, n = 10000, p = 1000
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Heavy Tails and Dependence

(Zit): iid field of regularly varying random variables.

Stochastic volatility model:

X =
(
Zit σ

(n)
it

)
p×n

Generate deterministic covariance structure A:

X = A1/2Z

Davis et al. (2014)
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Heavy Tails and Dependence

(Zit): iid field of regularly varying random variables.

Dependence among rows and columns:

Xit =

∞∑
l=0

∞∑
k=0

hklZi−k,t−l

with some constants hkl. Davis et al. (2016)

Relation to iid case:

XX ′ =

∞∑
l1,l2=0

∞∑
k1,k2=0

hk1l1hk2l2Z(k1, l1)Z′(k2, l2) ,

where

Z(k, l) = (Zi−k,t−l)i=1,...,p;t=1,...,n , l, k ∈ Z .

Location of squares:

M ij =
∑
l∈Z

hilhjl, i, j ∈ Z .
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Autocovariance Matrices

For s ≥ 0,

Xn(s) = (Xi,t+s)i=1,...,p; t=1,...,n , n ≥ 1 .

Then Xn = Xn(0).

Autocovariance matrix for lag s

Xn(0)Xn(s)′

Limit theory for singular values of such matrices.
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Localization
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Components of eigenvector v1. p = 200, n = 1000.
X ∼ Pareto(0.8).
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Autocovariance eigenvectors
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Autocovariance eigenvectors

Eigenvectors of K(0,0)

1

-0.5

0

0.5

1st eigenvector of P(0,0)

878 880 882 884 886 888 890 892

-0.5

0

0.5

2nd eigenvector of P(0,0)

878 880 882 884 886 888 890 892

Number of coordinate
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3rd eigenvector of P(0,0)

78 80 82 84 86 88 90 92
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0.5

4th eigenvector of P(0,0)

878 880 882 884 886 888 890 892

-0.5

0

0.5

5th eigenvector of P(0,0)

395 400 405 410

-0.5

0

0.5
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Thank you!
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