Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Johannes Heiny

Ruhr University Bochum, Germany

Joint work with

Thomas Mikosch (Copenhagen), Richard Davis (Columbia), and Jianfeng Yao (HKU).

KIAS, Random Matrices and Related Topics, May 9, 2019

Motivation: S&P 500 Index

Figure: Estimated tail indices of log-returns of 478 time series in the S&P 500 index.

• Data matrix $X = X_p$: $p \times n$ matrix with iid centered columns.

$$\boldsymbol{X} = (X_{it})_{i=1,\dots,p;t=1,\dots,n}$$

- Sample covariance matrix $S = \frac{1}{n}XX'$
- Ordered eigenvalues of S

$$\lambda_1(oldsymbol{S}) \geq \lambda_2(oldsymbol{S}) \geq \dots \geq \lambda_p(oldsymbol{S})$$

- Applications:
 - Principal Component Analysis
 - Linear Regression, ...

• Sample correlation matrix R with entries

$$R_{ij} = \frac{S_{ij}}{\sqrt{S_{ii}S_{jj}}}, \quad i, j = 1, \dots, p$$

and eigenvalues

$$\lambda_1(\mathbf{R}) \geq \lambda_2(\mathbf{R}) \geq \cdots \geq \lambda_p(\mathbf{R}).$$

Data structure:

$$\boldsymbol{X}_p = \mathbf{A}_p \mathbf{Z}_p \,,$$

where \mathbf{A}_p is a deterministic $p \times p$ matrix such that $(\|\mathbf{A}_p\|)$ is bounded and

$$\mathbf{Z}_p = (Z_{it})_{i=1,...,p;t=1,...,n}$$

has iid, centered entries with unit variance (if finite).

Data structure:

 $\boldsymbol{X}_p = \boldsymbol{A}_p \boldsymbol{Z}_p \,,$

where \mathbf{A}_p is a deterministic $p \times p$ matrix such that $(\|\mathbf{A}_p\|)$ is bounded and

$$\mathbf{Z}_p = (Z_{it})_{i=1,...,p;t=1,...,n}$$

has iid, centered entries with unit variance (if finite).

- Population covariance matrix $\Sigma = AA'$.
- Population correlation matrix

$$\mathbf{\Gamma} = (\operatorname{diag}(\mathbf{\Sigma}))^{-1/2} \mathbf{\Sigma} (\operatorname{diag}(\mathbf{\Sigma}))^{-1/2}$$

• Note: $\mathbb{E}[S] = \Sigma$ but $\mathbb{E}[R_{ij}] = \Gamma_{ij} + O(n^{-1})$.

	Sample	Population
Covariance matrix	$oldsymbol{S}$	Σ
Correlation matrix	\mathbf{R}	Γ

	Sample	Population
Covariance matrix	old S	$\boldsymbol{\Sigma}$
Correlation matrix	\mathbf{R}	Γ

Growth regime:

$$n=n_p\to\infty \quad \text{ and } \quad \frac{p}{n_p}\to\gamma\in [0,\infty)\,, \quad \text{ as } p\to\infty\,.$$

- High dimension: $\lim_{p \to \infty} \frac{p}{n} \in (0,\infty)$
- Moderate dimension: $\lim_{p \to \infty} \frac{p}{n} = 0$

Approximation Under Finite Fourth Moment

Assume $X = \mathbf{AZ}$ and $\mathbb{E}[Z_{11}^4] < \infty$. Then we have as $p \to \infty$,

 $\sqrt{n/p} \| \operatorname{diag}(\boldsymbol{S}) - \operatorname{diag}(\boldsymbol{\Sigma}) \| \stackrel{a.s.}{\to} 0.$

Approximation Under Infinite Fourth Moment

Assume X = Z and $\mathbb{E}[Z_{11}^4] = \infty$. Then we have as $p \to \infty$,

$$\underbrace{c_{np}}_{\to 0} \|\boldsymbol{S} - \operatorname{diag}(\boldsymbol{S})\| \stackrel{\mathbb{P}}{\to} 0.$$

Main result

Assume $X = \mathbf{AZ}$ and $\mathbb{E}[Z_{11}^4] < \infty$. Then we have as $p \to \infty$, $\sqrt{n/p} \| \operatorname{diag}(S) - \operatorname{diag}(\Sigma) \| \stackrel{a.s.}{\to} 0$,

$$\sqrt{n/p} \|(\operatorname{diag}(\boldsymbol{S}))^{-1/2} - (\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2}\| \stackrel{a.s.}{\to} 0.$$

Main result

Assume $X = \mathbf{AZ}$ and $\mathbb{E}[Z_{11}^4] < \infty$. Then we have as $p \to \infty$, $\sqrt{n/p} \|\operatorname{diag}(S) - \operatorname{diag}(\Sigma)\| \stackrel{a.s.}{\to} 0$,

and

$$\sqrt{n/p} \|(\operatorname{diag}(\boldsymbol{S}))^{-1/2} - (\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2}\| \stackrel{a.s.}{\to} 0.$$

Relevance: Note that

$$\mathbf{R} = (\operatorname{diag}(\boldsymbol{S}))^{-1/2} \boldsymbol{S} (\operatorname{diag}(\boldsymbol{S}))^{-1/2}$$

 $oldsymbol{S} = rac{1}{n} oldsymbol{X} oldsymbol{X}'$ and $oldsymbol{R} = oldsymbol{Y} oldsymbol{Y}'$, where

$$\boldsymbol{Y} = (Y_{ij})_{p \times n} = \left(\frac{X_{ij}}{\sqrt{\sum_{t=1}^{n} X_{it}^2}}\right)_{p \times n}$$

In general, any two entries of ${\bf Y}$ are dependent.

A Comparison Under Finite Fourth Moment

Approximation of the sample correlation matrix

Assume X = AZ and $\mathbb{E}[Z_{11}^4] < \infty$. Then we have

$$\sqrt{\frac{n}{p}} \| \mathbf{R} - \underbrace{(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2} \boldsymbol{S}(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2}}_{\boldsymbol{S}^{\mathbf{Q}}} \| \stackrel{a.s.}{\to} 0.$$

A Comparison Under Finite Fourth Moment

Approximation of the sample correlation matrix

Assume $X = \mathbf{AZ}$ and $\mathbb{E}[Z_{11}^4] < \infty$. Then we have

$$\sqrt{\frac{n}{p}} \|\mathbf{R} - \underbrace{(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2} \boldsymbol{S}(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2}}_{\boldsymbol{S}^{\mathbf{Q}}} \| \stackrel{a.s.}{\to} 0.$$

Spectrum comparison

An application of Weyl's inequality yields

$$\sqrt{rac{n}{p}} \max_{i=1,...,p} \left| \lambda_i(\mathbf{R}) - \lambda_i(\mathbf{S}^{\mathbf{Q}})
ight| \leq \sqrt{rac{n}{p}} \left\| \mathbf{R} - \mathbf{S}^{\mathbf{Q}}
ight\| \stackrel{a.s.}{ o} 0$$
 .

A Comparison Under Finite Fourth Moment

Approximation of the sample correlation matrix

Assume $X = \mathbf{AZ}$ and $\mathbb{E}[Z_{11}^4] < \infty$. Then we have

$$\sqrt{\frac{n}{p}} \|\mathbf{R} - \underbrace{(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2} \boldsymbol{S}(\operatorname{diag}(\boldsymbol{\Sigma}))^{-1/2}}_{\boldsymbol{S}^{\mathbf{Q}}} \| \stackrel{a.s.}{\to} 0.$$

Spectrum comparison

An application of Weyl's inequality yields

$$\sqrt{\frac{n}{p}} \max_{i=1,\dots,p} \left| \lambda_i(\mathbf{R}) - \lambda_i(\mathbf{S}^{\mathbf{Q}}) \right| \le \sqrt{\frac{n}{p}} \left\| \mathbf{R} - \mathbf{S}^{\mathbf{Q}} \right\| \stackrel{a.s.}{\to} 0.$$

Operator norm consistent estimation

$$\|\mathbf{R} - \mathbf{\Gamma}\| = O(\sqrt{p/n})$$
 a.s.

Notation

• Empirical spectral distribution of $p \times p$ matrix C with real eigenvalues $\lambda_1(\mathbf{C}), \ldots, \lambda_p(\mathbf{C})$:

$$F_{\mathbf{C}}(x) = \frac{1}{p} \sum_{i=1}^{p} \mathbb{1}_{\{\lambda_i(\mathbf{C}) \le x\}}, \qquad x \in \mathbb{R}.$$

• Stieltjes transform:

$$s_{\mathbf{C}}(z) = \int_{\mathbb{R}} \frac{1}{x-z} \,\mathrm{d}F_{\mathbf{C}}(x) = \frac{1}{p} \operatorname{tr}(\mathbf{C} - z\mathbf{I})^{-1}, \quad z \in \mathbb{C}^+,$$

Limiting spectral distribution:

Weak convergence of $(F_{\mathbf{C}_p})$ to distribution function F a.s.

Limiting Spectral Distribution of \mathbf{R}

Assume X = AZ, $\mathbb{E}[Z_{11}^4] < \infty$ and that F_{Γ} converges to a probability distribution H.

• If $p/n \to \gamma \in (0, \infty)$, then $F_{\mathbf{R}}$ converges weakly to a distribution function $F_{\gamma,H}$, whose Stieltjes transform s satisfies

$$s(z) = \int \frac{\mathrm{d}H(t)}{t(1-\gamma-\gamma s(z))-z}, \quad z \in \mathbb{C}^+.$$

$$s(z) = -\int \frac{\mathrm{d}H(t)}{z+t\widetilde{s}(z)}, \quad z \in \mathbb{C}^+,$$

where \widetilde{s} is the unique solution to $\widetilde{s}(z) = -\int (z + t\widetilde{s}(z))^{-1}t \, \mathrm{d}H(t)$ and $z \in \mathbb{C}^+$.

Simplified assumptions:

- iid, symmetric entries $X_{it} \stackrel{\mathrm{d}}{=} X$
- **2** Growth regime: $\lim_{p \to \infty} \frac{p}{n} = \gamma \in [0, 1]$

Marčenko-Pastur and Semicircle Law

• Marčenko–Pastur law F_{γ} has density

$$f_{\gamma}(x) = \begin{cases} \frac{1}{2\pi x\gamma} \sqrt{(b-x)(x-a)}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise,} \end{cases}$$

where $a = (1 - \sqrt{\gamma})^2$ and $b = (1 + \sqrt{\gamma})^2$.

Marčenko-Pastur and Semicircle Law

• Marčenko–Pastur law F_{γ} has density

$$f_{\gamma}(x) = \begin{cases} \frac{1}{2\pi x \gamma} \sqrt{(b-x)(x-a)}, & \text{if } x \in [a,b], \\ 0, & \text{otherwise,} \end{cases}$$

where $a = (1 - \sqrt{\gamma})^2$ and $b = (1 + \sqrt{\gamma})^2$.

• Semicircle law SC

Largest and smallest eigenvalues of ${f R}$

If $p/n \to \gamma \in [0,1]$ and $\mathbb{E}[X^4] < \infty$, then $\sqrt{n/p} \left(\lambda_1(\mathbf{R}) - 1\right) \stackrel{a.s.}{\to} 2 + \sqrt{\gamma}$

and

$$\sqrt{n/p} \left(\lambda_p(\mathbf{R}) - 1 \right) \stackrel{a.s.}{\to} -2 + \sqrt{\gamma} \, .$$

Largest and smallest eigenvalues of ${f R}$

If $p/n \to \gamma \in [0,1]$ and $\mathbb{E}[X^4] < \infty$, then $\sqrt{-1} \left(\sum_{i=1}^{n} (1-i) \right)^{a.s.} 2 + \frac{1}{2} \sum_{i=1}^{n} (1-i) \sum_{i$

$$\sqrt{n/p} \left(\lambda_1(\mathbf{R}) - 1\right) \stackrel{a.s.}{\to} 2 + \sqrt{\gamma}$$

and

$$\sqrt{n/p} \left(\lambda_p(\mathbf{R}) - 1\right) \stackrel{a.s.}{\to} -2 + \sqrt{\gamma} \,.$$

- Earlier: $\|\mathbf{R} \mathbf{\Gamma}\| = O(\sqrt{p/n})$ a.s.
- In this case:

$$\sqrt{n/p} \|\mathbf{R} - \boldsymbol{\Gamma}\| \stackrel{a.s.}{\to} 2 + \sqrt{\gamma}.$$

Limiting Spectral Distribution

Marčenko–Pastur Theorem

Assume $\mathbb{E}[X^2] = 1$. Then (F_S) converges weakly to F_{γ} . If $\mathbb{E}[X^4] < \infty$ and $p/n \to 0$, then $(F_{\sqrt{n/p}(S-I)})$ converges weakly to SC.

Limiting Spectral Distribution

Marčenko–Pastur Theorem

Assume $\mathbb{E}[X^2] = 1$. Then (F_S) converges weakly to F_{γ} . If $\mathbb{E}[X^4] < \infty$ and $p/n \to 0$, then $(F_{\sqrt{n/p}(S-I)})$ converges weakly to SC.

JH (2018+)

Under the domain of attraction type-condition for the Gaussian law,

$$\lim_{n \to \infty} \frac{n}{p} \, n \mathbb{E} \big[Y_{11}^4 \big] = 0 \,,$$

the sequence $(F_{\bf R})$ converges weakly to $F_{\gamma}.$ If in addition $p/n \to 0$, then $(F_{\sqrt{n/p}\,({\bf R}-{\bf I})})$ converges weakly to SC.

Here
$$Y_{ij} = \frac{X_{ij}}{\sqrt{\sum_{t=1}^{n} X_{it}^2}}$$
.

• **Regular variation** with index $\alpha > 0$:

 $\mathbb{P}(|X| > x) = x^{-\alpha}L(x),$

where L is a slowly varying function.

• This implies $\mathbb{E}[|X|^{\alpha+\varepsilon}] = \infty$ for any $\varepsilon > 0$.

• **Regular variation** with index $\alpha > 0$:

$$\mathbb{P}(|X| > x) = x^{-\alpha}L(x),$$

where L is a slowly varying function.

- This implies $\mathbb{E}[|X|^{\alpha+\varepsilon}] = \infty$ for any $\varepsilon > 0$.
- Procedure:
 - Simulate X
 - 2 Plot histograms of $(\lambda_i(\mathbf{R}))$ and $(\lambda_i(\mathbf{S}))$
 - Ompare with Marčenko–Pastur density

(a) Sample correlation

(b) Sample covariance

$$\alpha = 6, n = 2000, p = 1000$$

- Regular variation with index $\alpha \in (0,4)$
- Normalizing sequence (a_{np}^2) such that

$$np \mathbb{P}(X^2 > a_{np}^2 x) \to x^{-\alpha/2}, \quad \text{as } n \to \infty \text{ for } x > 0.$$

Then $a_{np} = (np)^{1/\alpha} \ell(np)$ for a slowly varying function ℓ .

Diagonal

X with iid regularly varying entries $\alpha \in (0, 4)$ and $p = n^{\beta} \ell(n)$ with $\beta \in [0, 1]$. We have

$$a_{np}^{-2} \| \boldsymbol{X} \boldsymbol{X}' - \operatorname{diag}(\boldsymbol{X} \boldsymbol{X}') \| \stackrel{\mathbb{P}}{\to} 0,$$

where $\|\cdot\|$ denotes the spectral norm.

$$(\boldsymbol{X}\boldsymbol{X}')_{ij} = \sum_{t=1}^{n} X_{it}X_{jt}.$$

• Weyl's inequality

$$\max_{i=1,\dots,p} \left| \lambda_i (\mathbf{A} + \mathbf{B}) - \lambda_i (\mathbf{A}) \right| \le \|\mathbf{B}\|.$$

 $\bullet \ \mathsf{Choose} \ \mathbf{A} + \mathbf{B} = \boldsymbol{X} \boldsymbol{X}' \ \mathsf{and} \ \mathbf{A} = \mathrm{diag}(\boldsymbol{X} \boldsymbol{X}') \ \mathsf{to} \ \mathsf{obtain}$

$$a_{np}^{-2} \max_{i=1,\dots,p} \left| \lambda_i(\boldsymbol{X}\boldsymbol{X}') - \lambda_i(\operatorname{diag}(\boldsymbol{X}\boldsymbol{X}')) \right| \stackrel{\mathbb{P}}{\to} 0, \quad n \to \infty.$$

• Note: Limit theory for $(\lambda_i(S))$ reduced to (S_{ii}) .

Theorem (Heiny and Mikosch, 2016)

X with iid regularly varying entries $\alpha \in (0,4)$ and $p_n = n^{\beta} \ell(n)$ with $\beta \in [0,1]$.

• If $\beta \in [0,1]$, then

$$a_{np}^{-2} \max_{i=1,\dots,p} \left| \lambda_i(\boldsymbol{X}\boldsymbol{X}') - \lambda_i(\operatorname{diag}(\boldsymbol{X}\boldsymbol{X}')) \right| \stackrel{\mathbb{P}}{\to} 0.$$

2 If $\beta \in ((\alpha/2 - 1)_+, 1]$, then

$$a_{np}^{-2} \max_{i=1,\dots,p} \left| \lambda_i(\boldsymbol{X}\boldsymbol{X}') - X_{(i),np}^2 \right| \stackrel{\mathbb{P}}{\to} 0.$$

Example: Eigenvalues

Figure: Smoothed histogram based on 20000 simulations of the approximation error for the normalized eigenvalue $a_{np}^{-2}\lambda_1(S)$ for entries X_{it} with $\alpha = 1.6$, $\beta = 1$, n = 1000 and p = 200.

- \mathbf{v}_k unit eigenvector of $oldsymbol{S}$ associated to $\lambda_k(oldsymbol{S})$
- Unit eigenvectors of diag(S) are canonical basisvectors \mathbf{e}_j .

Eigenvectors

X with iid regularly varying entries with index $\alpha \in (0, 4)$ and $p_n = n^{\beta} \ell(n)$ with $\beta \in [0, 1]$. Then for any fixed $k \ge 1$,

$$\|\mathbf{v}_k - \mathbf{e}_{L_k}\|_{\ell_2} \xrightarrow{\mathbb{P}} 0, \quad n \to \infty.$$

Localization vs. Delocalization

Figure: $X \sim \text{Pareto}(0.8)$

Figure: $X \sim N(0, 1)$

Components of eigenvector \mathbf{v}_1 . p = 200, n = 1000.

Point Process of Normalized Eigenvalues

Point process convergence

$$N_n = \sum_{i=1}^p \delta_{a_{np}^{-2}\lambda_i(\boldsymbol{X}\boldsymbol{X}')} \xrightarrow{\mathrm{d}} \sum_{i=1}^\infty \delta_{\Gamma_i^{-2/\alpha}} = N$$

The limit is a PRM on $(0,\infty)$ with mean measure $\mu(x,\infty)=x^{-\alpha/2}, x>0,$ and

 $\Gamma_i = E_1 + \cdots + E_i$, (E_i) iid standard exponential.

Point Process of Normalized Eigenvalues

• Limiting distribution: For $k \ge 1$,

$$\lim_{n \to \infty} \mathbb{P}(a_{np}^{-2}\lambda_k \le x) = \lim_{n \to \infty} \mathbb{P}(N_n(x,\infty) < k) = \mathbb{P}(N(x,\infty) < k)$$
$$= \sum_{s=0}^{k-1} \frac{(x^{-\alpha/2})^s}{s!} e^{-x^{-\alpha/2}}, \quad x > 0.$$

Point Process of Normalized Eigenvalues

• Limiting distribution: For $k \ge 1$,

$$\lim_{n \to \infty} \mathbb{P}(a_{np}^{-2}\lambda_k \le x) = \lim_{n \to \infty} \mathbb{P}(N_n(x,\infty) < k) = \mathbb{P}(N(x,\infty) < k)$$
$$= \sum_{s=0}^{k-1} \frac{(x^{-\alpha/2})^s}{s!} e^{-x^{-\alpha/2}}, \quad x > 0.$$

• Largest eigenvalue

$$\frac{n}{a_{np}^2}\lambda_1(\boldsymbol{S}) \stackrel{\mathrm{d}}{\to} \Gamma_1^{-\alpha/2} \,,$$

where the limit has a *Fréchet distribution* with parameter $\alpha/2$. Soshnikov (2006), Auffinger et al. (2009), Auffinger and Tang (2016), Davis et al. (2014, 2016²), JH and Mikosch (2016)

$$\alpha = 3.99$$

(a) Sample correlation

$$\alpha = 3.99, n = 2000, p = 1000$$

(a) Sample correlation

(b) Sample covariance

$$\alpha = 3, n = 2000, p = 1000$$

$$\alpha = 2.1, n = 10000, p = 1000$$

 (Z_{it}) : iid field of regularly varying random variables.

• Stochastic volatility model:

$$\boldsymbol{X} = \left(Z_{it} \, \sigma_{it}^{(n)}
ight)_{p imes n}$$

 (Z_{it}) : iid field of regularly varying random variables.

• Stochastic volatility model:

$$\boldsymbol{X} = \left(Z_{it} \, \sigma_{it}^{(n)}
ight)_{p imes n}$$

• Generate deterministic covariance structure A:

$$X = \mathbf{A}^{1/2} \mathbf{Z}$$

Davis et al. (2014)

Heavy Tails and Dependence

 (Z_{it}) : iid field of regularly varying random variables.

• Dependence among rows and columns:

$$X_{it} = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{kl} Z_{i-k,t-l}$$

with some constants h_{kl} . Davis et al. (2016)

Heavy Tails and Dependence

 (Z_{it}) : iid field of regularly varying random variables.

• Dependence among rows and columns:

$$X_{it} = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{kl} Z_{i-k,t-l}$$

with some constants h_{kl} . Davis et al. (2016)

• Relation to iid case:

$$\boldsymbol{X}\boldsymbol{X}' = \sum_{l_1, l_2=0}^{\infty} \sum_{k_1, k_2=0}^{\infty} h_{k_1 l_1} h_{k_2 l_2} \boldsymbol{Z}(k_1, l_1) \boldsymbol{Z}'(k_2, l_2) ,$$

where

$$\mathbf{Z}(k,l) = (Z_{i-k,t-l})_{i=1,\ldots,p;t=1,\ldots,n}, \quad l,k \in \mathbb{Z}.$$

Heavy Tails and Dependence

 (Z_{it}) : iid field of regularly varying random variables.

• Dependence among rows and columns:

$$X_{it} = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{kl} Z_{i-k,t-l}$$

with some constants h_{kl} . Davis et al. (2016)

• Relation to iid case:

$$\boldsymbol{X}\boldsymbol{X}' = \sum_{l_1, l_2=0}^{\infty} \sum_{k_1, k_2=0}^{\infty} h_{k_1 l_1} h_{k_2 l_2} \boldsymbol{Z}(k_1, l_1) \boldsymbol{Z}'(k_2, l_2) ,$$

where

$$\mathbf{Z}(k,l) = (Z_{i-k,t-l})_{i=1,...,p;t=1,...,n}, \quad l,k \in \mathbb{Z}.$$

• Location of squares:

$$oldsymbol{M}_{ij} = \sum_{l \in \mathbb{Z}} h_{il} h_{jl}, \qquad i, j \in \mathbb{Z}.$$

• For $s \ge 0$,

$$X_n(s) = (X_{i,t+s})_{i=1,\dots,p; t=1,\dots,n}, \quad n \ge 1.$$

Then $\boldsymbol{X}_n = \boldsymbol{X}_n(0)$.

• Autocovariance matrix for lag s

 $\boldsymbol{X}_n(0)\boldsymbol{X}_n(s)'$

• Limit theory for singular values of such matrices.

Components of eigenvector \mathbf{v}_1 . p = 200, n = 1000. $X \sim \text{Pareto}(0.8)$.

Autocovariance eigenvectors

Autocovariance eigenvectors

36 / 37

Thank you!