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Linear mixed models capture multiple “levels” of variation in data.
They were introduced by R. A. Fisher in 1918 to study genetic and
non-genetic components of variance in quantitative traits.

This talk will describe some applications of random matrix theory
to understand spectral behavior and principal components analysis
for classical covariance estimates in these models.
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Example: A twin study

Measure p quantitative traits in n/2 pairs of twins. For
i = 1, . . . , n/2, model this with two “levels” of variation as

Yi ,1 = αi + εi ,1 ∈ Rp

Yi ,2 = αi + εi ,2 ∈ Rp

Here, αi ∈ Rp is the shared genetic effect in the i th twin pair, and
εi ,1, εi ,2 ∈ Rp are individual variations.

Assume these are random and independent,

αi
iid∼ N (0,ΣA), εi ,j

iid∼ N (0,ΣE )

Only the Yi ,j ’s (not the αi ’s or εi ,j ’s) are observed. From this, we
wish to separately understand ΣA and ΣE .
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Example: Mutations in fruit flies [McGuigan et al ’14]

Ancestors

Inbreeding

O�spring

...

... ... ...

In inbred lines of fruit lines, how much phenotypic variation arises
due to genetic mutations across the generations?

Model traits (gene expression measurements) in the j th offspring of
the i th inbred line as

Yi ,j = αi + εi ,j .

The covariance ΣA of αi ’s is the mutational variation of interest.



6/37

Example: Mutations in fruit flies [McGuigan et al ’14]

Ancestors

Inbreeding

O�spring

...

... ... ...

In inbred lines of fruit lines, how much phenotypic variation arises
due to genetic mutations across the generations?

Model traits (gene expression measurements) in the j th offspring of
the i th inbred line as

Yi ,j = αi + εi ,j .

The covariance ΣA of αi ’s is the mutational variation of interest.



7/37

Example: Genome-wide association studies

In n individuals, measure:

• p quantitative traits, Y ∈ Rn×p

• genotypes {0, 1, 2} at m SNPs, X ∈ Rn×m

Fisher’s infinitesimal model:

Y = XA + E

• A ∈ Rm×p has independent rows α1, . . . , αm. Each αi ∈ Rp is
the contribution of the i th SNP to the observed traits.

• E ∈ Rn×p has independent rows ε1, . . . , εn. Each εj ∈ Rp is
the residual trait variation in the j th individual.

The covariance ΣA of αi ’s is the (additive) genetic covariance.
The relative size of ΣA to ΣE provides a measure of heritability.
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The linear mixed model

A general model with k levels of variation is

Y = U1A1 + . . .+ UkAk ∈ Rn×p

• A1, . . . ,Ak are random and unobserved, with n1, . . . , nk
independent rows distributed as N (0,Σ1), . . . ,N (0,Σk).

• U1, . . . ,Uk are known, deterministic, and specified by the
experimental design. E.g. for the twin study, k = 2 and

U1 =


1
1

. . .

1
1

 , U2 = Id

(k = 1, U1 = Id is the setting of n independent observations in Rp)
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The MANOVA covariance estimator

For r ∈ {1, . . . , k}, a classical estimator for Σr is the MANOVA
estimator. This is a matrix

Σ̂ = Y TBY .

Here, B ∈ Rn×n is symmetric and chosen so that E[Σ̂] = Σr .

Some examples:

• For k = 1 and independent observations, we take B = 1
n I .

This gives the usual sample covariance matrix Σ̂ = 1
nY

TY .

• For k = 2 and the twin study, we take B = 1
n (π − π⊥) where

π, π⊥ are orthogonal projections onto the column span of U1

and its complement.
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The MANOVA covariance estimator

Substituting Y =
∑

r UrAr , we may express the estimator as

Σ̂ =
k∑

r=1

k∑
s=1

HT
r G

T
r FrsGsHs

• Hr ≡ Σ
1/2
r and Frs ≡ UT

r BUs are deterministic

• Gr are independent and random, with i.i.d. Gaussian entries

This is the random matrix model that I’ll discuss.

1. What is the bulk eigenvalue distribution for large
n, n1, . . . , nk , p?

2. What is the behavior of principal components in spiked
settings?
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Aside: The case of isotropic noise

A simple statistical null hypothesis in this model is

Σr = σ2r Id

for every r ∈ {1, . . . , k}, i.e. the distribution of every random effect
is isotropic noise.

This setting is special: We may write Σ̂ = GTFG where

G =

G1
...
Gk

 , F = (σrFrsσs)kr ,s=1.

Here, Σ̂ is related to the sample covariance model. We’ve obtained
more refined results in this setting than in the general case, due a
known local law [Knowles, Yin ’17].
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Results on spectral behavior
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Empirical spectral distribution

Theorem (Fan, Johnstone ’16)

As n, n1, . . . , nk , p →∞ proportionally, the e.s.d. µ̂ of Σ̂ is
approximated (weakly a.s.) by a deterministic equivalent measure
µ0.

This has Stieltjes transform m0(z) characterized by

ar (z) = −n−1r Tr
(

(z Id +b · Σ)−1Σr

)
br (z) = −n−1r Trr

(
(Id +FD(a))−1F

)
m0(z) = −p−1 Tr

(
(z Id +b · Σ)−1

)
for r = 1, . . . , k. Here,

b · Σ ≡ b1(z)Σ1 + . . .+ bk(z)Σk , F ≡ (Frs)kr ,s=1

D(a) ≡ diag(a1(z) Idn1 , . . . , ak(z) Idnk ),

and Trr is the trace of the (r , r) block, of size nr .
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Empirical spectral distribution

Sample eigenvalues

F
re
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en

cy
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15
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Spectrum of Σ̂A in a twin study design, 300 twin pairs, 300 traits.
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Empirical spectral distribution

Sample eigenvalues

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
10

20
30

40

Spectrum of Σ̂A in a twin study design, 150 twin pairs, 600 traits.
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A free approximation

The measure µ0 is the τ -law of an operator

w =
k∑

r=1

k∑
s=1

h∗r g
∗
r frsgshs

in a non-commutative probability space (A, τ):

• {hr}kr=1 and {frs}kr ,s=1 have the same joint moments under τ

as {Hr}kr=1 and {Frs}kr ,s=1 under the normalized matrix trace.

• Each g∗r gr has Marcenko-Pastur moments under τ .

• The families {hr : r = 1, . . . , k}, {frs : r , s = 1, . . . , k}, and
elements g1, . . . , gk are free with amalgamation over a
diagonal sub-algebra of projections. [Benaych-Georges ’09]

We show that this approximation is asymptotically correct, due to
the independence and rotational invariance of G1, . . . ,Gk .
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Computation of fixed-point equations

In (A, τ), let τH : A → H be the conditional expectation onto the
subalgebra H = 〈h1, . . . , hk〉 ⊂ A, and similarly for τG , τF .

Let

w =
k∑

r=1

k∑
s=1

h∗r g
∗
r frsgshs

v =
k∑

r=1

k∑
s=1

g∗r frsgs

u =
k∑

r=1

k∑
s=1

frs

We relate the τH Stieltjes-transform of w , τG Stietjes-transform of
v , and τF Stieltjes-transform of u using conditional cumulant
relations, and compute τ ◦ τH((z − w)−1). [Speicher, Vargas ’12]
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All eigenvalues stick to the support

Theorem (Fan, Sun, Wang ’19)

For any fixed δ > 0, almost surely for all large n

spec(Σ̂) ⊂ supp(µ0)δ ≡ {x ∈ R : dist(x , supp(µ0)) < δ}.

We get this from a strong asymptotic freeness result for GOE and
deterministic matrices, by embedding G1, . . . ,Gk into GOE.

Theorem (Fan, Johnstone ’17)

When Σr = σ2r Id for every r , the extremal eigenvalue at each
“regular” edge of supp(µ0) has GOE Tracy-Widom fluctuations.

This is a distinct analytic argument specific to the isotropic setting.
Establishing Tracy-Widom for general Σr is interesting and open.
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“regular” edge of supp(µ0) has GOE Tracy-Widom fluctuations.

This is a distinct analytic argument specific to the isotropic setting.
Establishing Tracy-Widom for general Σr is interesting and open.
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Spiked model and outliers

For understanding principal components analysis in these models,
we are interested in spiked settings

Σr = Σ̊r + ΓT
r Γr

where Γr ∈ Rp×`r , and ΓT
r Γr is a perturbation of fixed rank `r .
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Σ̂A in a twin-study design, where each ΣA and ΣE is a rank-1 perturbation of

Id. The spike-to-outlier mapping is not 1-to-1, and ΣE produces outliers in Σ̂A.



19/37

Spiked model and outliers

For understanding principal components analysis in these models,
we are interested in spiked settings

Σr = Σ̊r + ΓT
r Γr

where Γr ∈ Rp×`r , and ΓT
r Γr is a perturbation of fixed rank `r .

Mean eigenvalue locations

Eigenvalue

F
re

qu
en

cy

−4 −2 0 2 4 6

0
20

40
60

80

Σ̂A in a twin-study design, where each ΣA and ΣE is a rank-1 perturbation of

Id. The spike-to-outlier mapping is not 1-to-1, and ΣE produces outliers in Σ̂A.



20/37

Spiked model and outliers

Define µ0 by the bulk components Σ̊1, . . . , Σ̊k . Recall
b1(z), . . . , bk(z) from the fixed-point equations for µ0, and set

T (z) = Id +

(
ΓT
r

(
z Id +b · Σ̊

)−1
Γsbs(z)

)k

r ,s=1

∈ C`+×`+

where `+ = `1 + . . .+ `k and b · Σ̊ = b1Σ̊1 + . . .+ bkΣ̊k .

Theorem (Fan, Sun, Wang ’19)

Eigenvalues λ̂ of Σ̂ separated from supp(µ0) are in correspondence
with roots of 0 = detT (λ), such that λ̂−λ→ 0. If λ is an isolated
root, then the eigenvector v̂ and unit vector u ∈ kerT (λ) satisfy

(ΓT
1 v̂ , . . . , Γ

T
k v̂)− α−1/2u → 0.

For Σ̊r = σ2r Id, we established also in [Fan, Johnstone, Sun ’18] a
Gaussian CLT for λ̂− λ.
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Bias and phase transition of eigenvalues

The number of outlier eigenvalues is predicted by

|{λ /∈ supp(µ0) : 0 = detT (λ)}|.

This is 0 if all population spikes are small.

More generally, the number and locations of outliers depend on

• Alignments between bulk components Σ̊1, . . . , Σ̊k

• Their alignments with all spike directions Γ1, . . . , Γk

Qualitatively, for the twin-study design:

• Large spikes in ΣE generate two outliers of opposite sign in Σ̂A

• Large eigenvalues in ΣA are observed with upward bias in Σ̂A,
where the bias is larger if this eigenvector of ΣA is aligned
with eigenvectors of ΣE .
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Bias and phase transition of eigenvalues
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Bias of principal eigenvectors

In contrast to the sample covariance setting of k = 1, here there
may also be bias in the outlier eigenvectors:

●
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In high dimensions, principal component eigenvectors of Σ̂A may
be biased towards eigenvectors of ΣE .
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Debiasing the principal components

For Σ̊r = σ2r Id, we developed in [Fan, Johnstone, Sun ’18] an
algorithm to estimate the population eigenvalues, and also debias
the estimated principal eigenvectors:

1. Track the trajectories of outlier eigenvalues of Σ̂ = Y TBY , as
B varies within a (k − 1)-dimensional family.

2. For B where an outlier λ̂ satisfies b2(λ̂) = . . . = bk(λ̂) = 0, v̂
is unbiased for an eigenvector of Σ1, and λ̂ is related to the
eigenvalue of Σ1. Use a grid search to find such B.
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Debiasing the principal components

Mean and 90%-ellipsoid of MANOVA and debiased principal
eigenvector estimates, for true eigenvector (1, 0) and eigenvalue µ:

µ = 6
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Mean and st. dev. of MANOVA and debiased eigenvalue estimates:

µ = 6 µ = 8 µ = 10

MANOVA 10.57 (1.74) 11.98 (1.85) 13.59 (1.99)
Estimated 6.28 (1.56) 8.21 (1.72) 10.15 (1.91)

Developing estimation procedures for general Σ̊r 6= σ2r Id is open.
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A few general tools
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1. `2 fluctuation averaging

In the setting Σr = σ2r Id, recall that Σ̂ = GTFG .

The resolvent

R(z) = (Σ̂− z Id)−1

has a deterministic approximation R0(z) in the form of an
anisotropic local law [Knowles, Yin ’17].

For z separated from the spectral support, dist(z , supp(µ0)) > δ,
and any deterministic unit vectors u and v , this says

u∗(R(z)− R0(z))v ≺ 1/
√
n.

To approximate other combinations of resolvent entries, e.g.
TrR(z), one may apply weak dependence of these entries and
“fluctuation averaging” techniques [Erdös, Yau, Yin ’11].
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1. `2 fluctuation averaging

Let x1, . . . , xn be independent random quantities. For Y a scalar
function of x1, . . . , xn, denote

Pi [Y] = Exi [Y], Qi [Y] = Y − Pi [Y], QS [Y] =

(∏
i∈S
Qi

)
[Y]

Lemma (Fan, Johnstone, Sun ’18)

Suppose Y1, . . . ,Yn satisfy Pi [Yi ] = 0, Yi ≺ 1, and the weak
dependence QS [Yi ] ≺ n−|S |/2 for i /∈ S. Then

n∑
i=1

uiYi ≺

(
n∑

i=1

|ui |2
)1/2

.

Compared with existing results that I’m aware of, this does not
require ui ≡ 1/n or use an upper bound on ‖u‖∞.
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1. `2 fluctuation averaging

Lemma (Fan, Johnstone, Sun ’18)

Suppose (Yij)i 6=j satisfy Pi [Yij ] = Pj [Yij ] = 0, Yij ≺ 1, and
QS [Yij ] ≺ n−|S|/2 for i , j /∈ S. Then

∑
i 6=j

uijYij ≺

∑
i 6=j

|uij |2
1/2

.

For z with dist(z , supp(µ0)) > δ, we obtain from these and the
entrywise local law, for any deterministic matrix M, that

Tr(R(z)− R0(z))M ≺ ‖M‖HS/
√
n.

This recovers the anisotropic local law for rank-one M = vu∗, but
provides a strengthened guarantee when rank(M)� 1. We use
this to establish the CLT for fluctuations of outlier eigenvalues.
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2. Anisotropic resolvent approximation

For Σr 6= σ2r Id, we still wish to approximate u∗R(z)v to analyze
outliers by a “master equation” approach [Benaych-Georges,
Nadakuditi ’12], but we currently don’t have a local law.

We show using free probability techniques, for general self-adjoint
polynomial matrix models, that for dist(z , supp(µ0)) > δ we have

u∗(R(z)− R0(z))v → 0

almost surely, for a certain deterministic approximation R0.

Note: R0 is not necessarily isotropic. The approximation is not
u∗R(z)v ≈ u∗v ·m0(z) if u, v are aligned with R0(z).
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2. Anisotropic resolvent approximation

Let

• H1, . . . ,Hq ∈ Cn×n be deterministic matrices,

• G1, . . . ,Gp ∈ Cn×n be random and jointly orthogonally
invariant in law.

So {H1, . . . ,Hq} is asymptotically free of {G1, . . . ,Gp}.

Define the von Neumann algebras

• (A1, τ1) ≡ (Cn×n, n−1 Tr), containing H1, . . . ,Hq,

• (A2, τ2) containing {g1, . . . , gp} which approximate
{G1, . . . ,Gp} in joint law.

Let (A, τ) be the free deterministic equivalent model defined by
their von Neumann free product.

Let τH : A → H ≡ 〈H1, . . . ,Hq〉 be the conditional expectation.
Note: For any a ∈ A, τH(a) ∈ H ⊂ A1 is an n × n matrix!
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2. Anisotropic resolvent approximation

Theorem (Fan, Sun, Wang ’19)

Fix a self-adjoint ∗-polynomial Q and δ > 0. Let

W = Q(G1, . . . ,Gp,H1, . . . ,Hq) ∈ Cn×n,

w = Q(g1, . . . , gp,H1, . . . ,Hq) ∈ A.

Let R(z) = (W − z Id)−1, and define a deterministic approximation

R0(z) = τH((w − z)−1) ∈ Cn×n.

Then for any deterministic unit vectors u, v ∈ Cn, as n→∞,

u∗(R(z)− R0(z))v → 0

uniformly over {z ∈ C : dist(z , spec(W ) ∪ spec(w)) > δ}.
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3. Augmented Cauchy and R-transforms

Our computations in the approximating free model use relations
between (conditional) Cauchy and R-transforms:

Let κ`(a1, . . . , a`) be the `th order non-crossing cumulant, and

Ga(z) = τ((z − a)−1) =
∞∑
`=0

z−(`+1)τ(a`),

Ra(z) =
∞∑
`=1

z`−1κ`(a, . . . , a).

The moment-cumulant relations for non-crossing partitions give

Ga(z) = (z −Ra(Ga(z)))−1.
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3. Augmented Cauchy and R-transforms

In addition to approximating n−1 TrR(z), we also need

n−1 TrAR(z)

for certain (random) matrices A.

We introduce augmented
transforms and some associated moment-cumulant relations:

Ga,w (z) = τ(a(z − w)−1) =
∞∑
`=0

z−(`+1)τ(aw `),

Ra,w (z) =
∞∑
`=1

z`−1κ`(a,w , . . . ,w).

Lemma (Fan, Sun, Wang ’19)

Ga,w (z) = Ra,w (Gw (z))Gw (z)
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4. Strong asymptotic freeness for GOE

In the setting Σr 6= σ2r Id, we use a strong asymptotic freeness
result to show that eigenvalues stick to supp(µ0):

Theorem (Fan, Sun, Wang ’19)

Let W1, . . . ,Wp be independent GOE, H1, . . . ,Hq deterministic
with bounded norm, and w1, . . . ,wp free semicircular elements. For
any fixed self-adjoint ∗-polynomial Q and δ > 0, a.s. for large n,

spec(Q({Wi}pi=1, {Hj}qj=1)) ⊂ spec(Q({wi}pi=1, {Hj}qj=1))δ.

The GUE analogue was proven in [Male ’12], and extended to
complex Wigner matrices in [Belinschi, Capitaine ’17].

We follow proof ideas of these works, and of [Schultz ’05] in the
pure GOE setting.
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Thank you!
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