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Lozenge tilings of the hexagon

….take lozenges….

…and tile the hexagonTake a hexagon….



Lozenge tilings of the hexagon



Random lozenge tilings large hexagons

Uniform measure on  
all possible tilings 



Lozenge tilings of the hexagon
Measure on  all possible  
tilings that is 2-periodic  
in horizontal direction 



Lozenge tilings of the hexagon
Measure on  all possible 
tilings that is 2-periodic 
in horizontal direction 



Domino tilings of an Aztec diamond

Take an Aztec diamond…. …and tile the Aztec diamond.
….take horizontal 

and vertical  
dominos….



Domino tilings of the hexagon
Draw a checkerboard on the Aztec diamond…

… giving four  
type of dominos…

….each will have its own color.



Domino tilings of the hexagon

Uniform measure on all  
possible domino tilings 

Johansson ’03



Domino tilings of the Aztec Dimoand
2-periodic weighting 

 
Chhita-Young '14

Chhita-Johansson ’16
Beffara-Chhita-Johansson '16 

D-Kuijlaars ’17



Domino tilings of the Aztec Diamond

2-periodic with 
only two colors



Domino tilings of the Aztec Diamond
Higher periodicity  

Di Francesco Soto-Garrido ’14  
Berggren (upcoming) 



Tilings of planar domains
❖ There is a very large amount of studies for random tilings of planar domains in the past two 

decades.   
❖ Limit shapes are described by the complex Burger’s equation Kenyon-Okounkov ’07 (and many 

other works). Shape fluctuations are expected to be described terms of the Gaussian free field. 
❖ For doubly periodic weightings Kenyon-Okounkov-Sheffield ’06 not much results the fine 

asymptotic properties of such models are known. First results are by Chhita-Johansson ’16  and 
Beffara-Chhita-Johansson ’16 

❖ In D-Kuijlaars ’17 we introduced a new approach to study tiling models, using (matrix-valued) 
polynomials that satisfy orthogonality relations on curves in the complex plane. A tandem of 
Riemann-Hilbert techniques and classical stationary phase methods can be used for asymptotic 
studies.  

❖ In particular, this approach also gives an alternative studying random tilings of hexagons, which 
typically are not in the Schur class.



Non-Intersecting paths

….draw red lines  
on the lozenges as...Start with a tiling....

....and non-intersecting  
 up-right paths appear.



Non-Intersecting paths

The two pictures are in fact equivalent.....



Non-Intersecting paths
A slightly more complicated collection of  

paths can be found for the Aztec diamond.....
....... leading to paths that end at  
the same points as they started, 
 and are up-right for odd steps  
and go down on the even steps



❖ The probability measure on the tilings induces  
a probability  measure on the non-intersecting  
path 

❖ Denote the position of the j-th path  
after step m by  

❖ LGV Theorem:  probability measure can be written as : 
 
 
 
 
where for                                 we have as initial and endpoints:  
                                             

Products of determinants

∼
N

∏
m=1

det (Tm(xm−1
j , xm

k ))
n

j,k=1

x0
j = j − 1 xN

j = M + j − 1

j = 1,…, n

n = number of paths
N = number of steps

M = the shift at endpoints
          =   Transition  

probability at step m 
to jump from x to y

Tm(x, y)

xm
j



Toeplitz matrices
❖ The first class of models is when the transition matrices 

in  
 
 
 
are Toeplitz matrices 
 
 
 
That is, the step probability from x to y depends only on the size y-x.  
 

Tm(x, y) = ̂ϕm(y − x) =
1

2πi ∮ ϕm(z)
dz

zy−x+1

ϕm(z) = 1 + amz

ϕm(z) = 1 +
am

z

ϕm(z) =
1

1 − amz

ϕm(z) =
1

1 − am

z

∼
N

∏
m=1

det (Tm(xm−1
j , xm

k ))
n

j,k=1

Bernoulli up:

Bernoulli down:

Geometric up:

Geometric down:



Examples

ϕm(z) = 1 + z ϕm(z) = {
1 + qz, m odd
(1 − q

z )−1, m even

q ↑ 1

Uniform lozenge  
tilings of the hexagon

Uniform domino tilings  
of the Aztec diamond

….and take the limit



Orthogonal polynomials
❖ In D-Kuijlaars ’17  we used a biorthogonalization procedure using orthogonal 

polynomials in the complex plane to describe the  k-point correlations. 

❖ Let              be the monic polynomial of degree k  such that 

❖ Orthogonality relations is with respect to contour in the complex plane and non-
hermitian. The existence is not guaranteed! 

∮γ
pk(z) zj

∏N
m=1 ϕm(z)dz

zM+n
= 0, j = 0,1,…, k − 1

pk(z)

The idea of biorthogonalization is a standard trick for determinantal point processes. 
However, there are many ways to do it. The way we choose here is very different from 
the more common one, that would lead to Discrete Orthogonal Polynomials. Baik-
Deift-Kriechenbauer-McLaughlin The relation between the two is not obvious.



Determinantal point process
By the Eynard-Mehta Theorem the process is determinantal. 
 
 

Theorem D-Kuijlaars ’17

ℙ ( points at (m1, x1), …, (mk, xk)) = det (K(mj, xj, mℓ, xℓ)
n

j,ℓ=1

K(m, x, m′�, y) = −
χm>m′�

2πi ∮γ

m

∏
ℓ=m′�+1

ϕℓ(z)zy−x dz
z

+
cn

(2πi)2 ∮γ ∮γ

N

∏
ℓ=m′�+1

ϕℓ(w)
pn(z)pn−1(w) − pn(w)pn−1(z)

z − w

m

∏
ℓ=1

ϕℓ(w)
wy

zx+1wM+n
dzdw



Strategy for asymptotic analysis
❖ To study the asymptotic behavior                             we  

❖ First find the asymptotic behavior of the Orthogonal Polynomials. In particular 
for the Christoffel-Darboux kernel 

❖ Insert the asymptotics into the double integral formula and perform a steepest 
descent analysis. 

❖ The asymptotic for the orthogonal polynomials can be done by a Riemann-Hilbert 
analysis. 

❖ In certain special cases, like uniform lozenge tilings of the hexagon and domino tilings 
of the Aztec diamond, the orthogonal polynomials are ”classical.”  

❖ Schur processes: when only                    then the asymptotics of the polynomials is easy. 

n, N → ∞

n → ∞



Jacobi polynomials
❖ In case of uniform lozenge tilings of a hexagon  

we obtain the ”orthogonality measure” 
 
 

❖ In case of  domino tilings of the Aztec diamond 
 we obtain the ”orthogonality measure” 
 
 

❖ In both cases, this means that the orthogonal polynomials are in fact Jacobi 
polynomials where one of the parameter is negative. In the Aztec diamond the choice 
is even degenerate and the Christoffel-Darboux kernel is explicit and we retrieve the 
Krawtchouk kernel from Johansson  ’03

(1 + z)N

zM
dz

( 1 + qz
1 − qz )

N

dz



Periodic weighting
❖ In Charlier-D-Kuijlaars-Lenells (upcoming) 

we consider lozenge tilings of the  
regular hexagon with the probability of  
having            given by  
 
 
 
where the weight of a tiling is given by 
 
 
 
and 
 

ℙ(T0) =
W(T0)

∑T W(T )

W(T ) = ∏
□∈T

w( □ )

w( □ ) = {1, if □  in an odd column
α, if □  in an even column

T0

0 ≤ α ≤ 1

(0,0)

(0,N )

(N,0)

(N,2N ) (2N,2N )

(2N, N )



Periodic weighting

❖ This can be rewritten as 
 
 
 
so we think of                      as an inverse temperature parameter.             

W(T ) = exp (−log α−1 ⋅ # □  in even columns)
log α−1



1/9 < α < 1α = 0 α = 1

Low temperature High temperature

Periodic weighting



1/9 < α < 10 < α < 1/9

Low temperature High temperature

Periodic weighting



Periodic weighting
❖ In terms of the non-intersecting paths, this means we  

look at N paths with 2N step given by 
 
 
 
 
Meaning that the orthogonality weight is given by  

❖ By steepest descent analysis on the Riemann-Hilbert problem for the polynomials 
we find the asymptotic behavior of these polynomials. By inserting that in the double 
integral formula and then performing a classical steepest descent analysis we can 
compute the thermodynamical limit.

ϕm(z) = {1 + z, m odd
α + z, m even

(1 + z)N(α + z)N

z2N
dz 0 ≤ α ≤ 1



Periodic weighting
The liquid region is described by the algebraic function             defined by 
 
 
 
 
Here              is an explicit polynomial depending on      but not on  

Theorem (Charlier-D-Kuijlaars-Lenells ’19)  
The liquid region  consists of all              at most one zero                       with  
If it exists it is unique and denoted by  

(ζ −
ξ
2 ( 1

z + 1
+

1
z + α ) +

η
z )

2

= Qα(z) .

Im s > 0

ζ(z)

ζ(s) = 0
s(ξ, η)

Qα(z)

(ξ, η)

α

1
9

< α < 10 < α <
1
9

α = 1

(ξ, η)



Periodic weighting
 
Theorem (Charlier-D-Kuijlaars-Lenells ’19)  
Take              such that                                            is a point in the liquid region. 
 
Then  
 
 
 
 
where 

s(ξ, η)

0−α
ϕ□ ϕ

ϕ

(x /N, y/N ) → (ξ, η)

s(ξ, η)

−1 0
ϕ□

ϕ

ϕ

lim
N→∞

ℙ( ) =
ϕ

π(x, y)

x = odd x = even

(x, y)

lim
N→∞

ℙ( □ )=
ϕ□

π(x, y)
lim

N→∞
ℙ( ) =

ϕ
π(x, y)



Periodic weighting
 
Theorem (Charlier-D-Kuijlaars-Lenells ’19)  
The map                                 is a diffeomorphism from the liquid region to two copies of the 
upper half plane that in the high temperature regime are glued together

(ξ, η) ↦ s(ξ, η)

Work in progress: The fluctuations of the corresponding height function are described by 
the pull back of the Gaussian free field on the image of the liquid region of the map s. 
Interesting transition at α =

1
9

0 < α <
1
9

1
9

< α < 1



Doubly periodic tiling models



Block Toeplitz transition matrices
❖ The original motivation for D-Kuijlaars ’17 was to analyze the 2-periodic Aztec 

diamond (see also Chhita-Young ’14, Chhita-Johansson '14, Beffara-Chhita-
Johansson ’15)  

❖ In a more general setup, we considered  measures  
of the type 
 
 
 
where the transition matrices are block Toeplitz matrices  with blocks  of size 

Tm(px + r, py + s) = ( ̂ϕm(y − x))r+1,s+1
=

1
2πi ∮ (ϕm(z))r+1,s+1

dz
zy−x+1

,

p × p

r, s = 0,…, p − 1 x, y ∈ ℤ

∼
N

∏
m=1

det (Tm(xm−1
j , xm

k ))
n

j,k=1



Block Toeplitz transition matrices
❖ In the case                  the following matrix symbols are canonical:

ϕm(z) = ( am bm

cm /z dm)

ϕm(z) = (am bmz
cm dm )

ϕm(z) =
1

1 − q/z ( am bm

cm /z dm)

ϕm(z) =
1

1 − qz (am bmz
cm dm )

p = 2

"Bernoulli up"

"Bernoulli up"

"Geometric up"

"Geometric down"



2 periodic Aztec diamond
❖ The 2-periodic Aztec diamond has the weight  

❖ Here   

❖ where we also need 

ϕm(z) =
(

α 0
0 1

α ) (1 az
a 1 ), m even,

1
1 − a2 /z (1 a

a /z 1), m odd.

a ↑ 1

α > 1



Matrix Orthogonal Polynomials
❖ In D-Kuijlaars ’17  we used  matrix orthogonal polynomials in the complex plane 

to describe the  k-point correlations. 

❖ Let                                          be the monic polynomial of degree k  such that 
 

❖ Orthogonality relations is with respect to contour in the complex plane and non-
hermitian.  

❖ The weight is matrix valued. Order in the product is important!

∮γ
pk(z) zj

∏N
m=1 ϕm(z)dz

zM+n
= 0, j = 0,1,…, k − 1

pk(z) = Ipzk + …



Correlation kernel
Theorem D-Kuijlaars ’17  The point process is determinantal with orrelation kernel: 
 
 
 
 
 
 
 
 
 
where                      is the Christoffel-Darboux kernel for the matrix orthogonal polynomials 

❖ Due to  non-commutativity, the order in the product is important!

[K(m, px + j; m′�, py + i)]p−1
i,j=0

= −
χm>m′�

2πi ∮γ

m

∏
ℓ=m′�+1

ϕℓ(z)zy−x dz
z

+
1

(2πi)2 ∮γ ∮γ

N

∏
ℓ=m′�+1

ϕℓ(w) R(z, w)
m

∏
ℓ=1

ϕℓ(z)
wy

zx+1wM+n
dzdw

Rn(z, w)



2 periodic Aztec diamond
❖ For the 2-periodic the Riemann-Hilbert problem can be solved explicitly. This was 

done in D-Kuijlaars '17 and reproved in a different way in Berggren-D ’19  
 
 
 
 
 
 
 
where 
 
 
and

[𝕂N(2m + r, n; 2m′� + s, n′�)]1
r,s=0

= −
χm>m′�

2πi ∮γ0,1

Am−m′�(z)z(m′�+n′�)/2−(m+n)/2 dz
z

+
1

(2πi)2 ∮γ0,1

dz
z ∮γ1

dw
z − w

AN−m′ �(w)F(w)A−N+m(z)
zN/2(z − 1)N

wN/2(w − 1)N

w(m′�+n′ �)/2

z(m+n)/2

A(z) =
1

z − 1 ( 2αz α(z + 1)
βz(z + 1) 2βz )

F(z) =
1
2

I2 +
1

2 z(z + α2)(z + β2) ( (α − β)z α(z + 1)
βz(z + 1) −(α − β)z),



2 periodic Aztec diamond
❖ In D-Kuijlaars ’17 we analyzed this double integral formula asymptotically  

❖ An important role in the analysis is defined by the spectral curve 
 
 
 
 
 
which is an important input for finding the saddle point in the steepest descent 
analysis.  

❖ An important feature of the spectral curve is that it leads to a Rieman-surface with 
genus 1. The presence of a gas phase seems intrinsic to a non-zero genus. 

det (A(z) − λ) = 0 A(z) =
1

z − 1 ( 2αz α(z + 1)
βz(z + 1) 2βz )



 Products of infinite minors
❖ In Berggren-D ’19 we follow the approach of Schur processes and found a general 

statement for the kernel in case of infinite systems of paths.  

❖ Think of lozenge tilings of the hexagon. Schur processes arise  
when  vertical size of the hexagon tends to infinity.  

❖ That is, instead of keeping the number of paths n finite, we can  
also define the process  for                   . 
 
 
 
where 
 

❖ NOTE: There can be two interesting limits: at the top and bottom of the hexgaon

n → ∞

Tm(x, y) = ̂ϕm(y − x) =
1

2πi ∮ ϕm(z)
dz

zy−x+1

∼
n

∏
m=1

det (Tm(xm−1
j , xm

k ))
∞

j,k=1

M

N



Matrix analogue of the Schur process
❖ We assume that the orthogonality weight has  a matrix Wiener-Hopf type factorization 
 
 
 
where 

❖                                   are analytic for                     and continuous for  

❖                                    are analytic for                     and continuous for  

❖  

❖ In Beggren-D ’19 we prove the following statement that is the analogue of the 
correlation kernels for the Schur process.

N

∏
m=1

ϕm(z) = ϕ+(z)ϕ−(z) = ϕ̃ −(z) ϕ̃ +(z)

ϕ−(z), ϕ̃ −(z) ∼ zMIp  as z → ∞

ϕ±1
+ (z), ϕ̃ ±1

+ (z)

ϕ±1
− (z), ϕ̃ ±1

− (z)

|z | < 1 |z | ≤ 1

|z | > 1 |z | ≥ 1



❖ The bottom part of the paths converge to a DPP with kernel 
 
 
 

❖ The top part of the paths converge to a DPP with  kernel

Matrix Analogue of the Schur process

[Kbottom(m, px + r; m′�, py + s)]p−1
r,s=0

= −
χm>m′ �

2πi ∮γ

m

∏
ℓ=m′ �+1

ϕℓ(z)zy−x dz
z

−
1

(2πi)2 ∬|z|<|w|

N

∏
ℓ=m′ �+1

ϕℓ(z)ϕ−1
− (w)ϕ−1

+ (z)
m

∏
ℓ=1

ϕℓ(z)
wy

zx+1(z − w)
dzdw

[Ktop(m, xp + r; m′ �, yp + s)]
p−1

r,s=0
= −

χm>m′ �

2πi ∮γ

m

∏
ℓ=m′�+1

ϕℓ(z)zy−x dz
z

+
1

(2πi)2 ∬|w|<|z|

N

∏
ℓ=m′ �+1

ϕℓ(z) ϕ̃ −1
+ (w) ϕ̃ −1

− (z)
m

∏
ℓ=1

ϕℓ(z)
wy

zx+1(z − w)
dzdw



Matrix Wiener-Hopf factorization
❖ These results are of course only meaningful if we can find a Matrix Wiener-Hopf 

factorization.  
❖ The existence of such is a classical problem and many results are known. Existence 

results apply to the typical cases that we are interested in 
❖ Still, existence is not enough. We want an explicit form of the factorization that is 

useful for an asymptotic study.  
❖ So far we have been able to do several cases: 

❖ 2 periodic Aztec diamond 
❖ Higher periodic Aztec diamonds (Berggen, upcoming) 
❖ 2 periodic tilings of the infinite hexagons 

❖ As a result, all of these example can be analyzed asymptotically…


