Spectral rigidity for addition of random matrices at the regular edge

Zhigang Bao

HKUST

Random Matrices and Related Topics

KIAS, Seoul, Korea

May 6 -10, 2019

Joint with László Erdős and Kevin Schnelli

Addition of random matrices

Matrix model: Given real $A = diag(a_1, \ldots, a_N)$ and $B = diag(b_1, \ldots, b_N)$, consider the model

$$H = A + UBU^*$$

where U is a Haar unitary matrix.

Global spectral distribution [Voiculescu '91]:

Let
$$\mu_A = \frac{1}{N} \sum_i \delta_{a_i}$$
 $\mu_B = \frac{1}{N} \sum_i \delta_{b_i}$

When N is large, The empirical spectral distribution of H

$$\mu_H = \frac{1}{N} \sum_i \delta_{\lambda_i}, \qquad \lambda_1 \geqslant \ldots \geqslant \lambda_N : \text{ eigenvalues of } H$$

is close to the free additive convolution $\mu_A \boxplus \mu_B$.

We choose neither A nor B to be multiples of identity.

Our questions

Theorem [Voiculescu '91] For any fixed interval $\mathcal{I} \subset \mathbb{R}$,

$$\frac{|\mu_H(\mathcal{I}) - \mu_A \boxplus \mu_B(\mathcal{I})|}{|\mathcal{I}|} \xrightarrow{\text{a.s.}} 0, \quad N \to \infty. \qquad \mu_H(\mathcal{I}) = \frac{|\{i : \lambda_i \in \mathcal{I}\}|}{N}$$

Alternative proofs [Speicher'93, Biane'98, Collins'03, Pastur-Vasilchuk'00]

Question 1 (local law) Does the convergence still hold if $|\mathcal{I}| = o(1)$, and how small can $|\mathcal{I}|$ be? (Answer: $\frac{1}{N}$)

Question 2 (convergence rate) What is the convergence rate of

$$\sup_{\mathcal{I} \subset \mathbb{R}} \left| \mu_H(\mathcal{I}) - \mu_A \boxplus \mu_B(\mathcal{I}) \right| \qquad \qquad (\textbf{Answer: } \frac{1}{N})$$

Question 3 (Spectral rigidity) What is the size of

$$|\lambda_i - \gamma_i|$$

where γ_i is the N-i+1-th N-quantile of $\mu_A \boxplus \mu_B$.

Stieltjes transform

Definition: For any probability measure μ , its Stieltjes transform $m_{\mu}(z)$ is

$$m_{\mu}(z) = \int \frac{1}{\lambda - z} d\mu(\lambda), \qquad z \in \mathbb{C}^+.$$

Inverse formula: one to one correspondence between measure and its Stielt-jes transform: density of μ given by

$$\rho(E) = \frac{1}{\pi} \lim_{\eta \downarrow 0} \operatorname{Im} m_{\mu}(E + i\eta).$$

Notation: For $\alpha = A, B$, and $A \boxplus B$, we will use $m_{\alpha}(z)$ to denote the Stieltjes transfrom of μ_A, μ_B and $\mu_A \boxplus \mu_B$, respectively. Note that for $\mu_A = \frac{1}{N} \sum \delta_{a_i}$ and $\mu_B = \frac{1}{N} \sum \delta_{b_i}$, we have

$$m_A(z) = \frac{1}{N} \sum \frac{1}{a_i - z}, \qquad m_B(z) = \frac{1}{N} \sum \frac{1}{b_i - z}.$$

Analytic definition of free additive convolution

Theoerm [Belinschi-Bercovici '06, Chistyakov-Götze '05] There exist unique analytic $\omega_A, \omega_B : \mathbb{C}^+ \to \mathbb{C}^+$, s.t. $\Im \omega_k(z) \geqslant \Im z$ and $\lim_{\eta \uparrow \infty} \frac{\omega_k(i\eta)}{i\eta} = 1$ for k = A, B, such that

$$m_A(\omega_B(z)) = m_B(\omega_A(z)), \qquad -[m_A(\omega_B(z))]^{-1} = \omega_A(z) + \omega_B(z) - z.$$

• $\omega_A(z), \omega_B(z)$: subordination functions

Let
$$m(z) := m_A(\omega_B(z)) = m_B(\omega_A(z)).$$

Claim: m(z) is a Stieltjes transform of a probability measure: $\mu_A \boxplus \mu_B$.

- Algebraic definition: Addition of freely independent random variables [Voiculescu '86].
- Subordination phenomenon: [Voiculescu '93], [Biane '98].

examples

semicircle \boxplus semicircle

semicircle \boxplus Bernoulli

Bernoulli Bernoulli

three point masses **⊞** three point masses

regular bulk: where the density is positive and finite

regular edge: where the density vanishes as a square root

Optimal local law for the regular bulk

Assumption: $||A||, ||B|| \leq C$; $\mu_A \Rightarrow \mu_\alpha$, $\mu_B \Rightarrow \mu_\beta$; μ_α, μ_β not one point mass

Theorem [B-Erdős-Schnelli '15b] local law for Stieltjes transform

$$\left| m_H(E+\mathrm{i}\eta) - m_{A\boxplus B}(E+\mathrm{i}\eta) \right| \prec \frac{1}{N\eta}, \qquad N^{-1+\gamma} \leqslant \eta \leqslant 1, \quad E \in \mathsf{bulk},$$

where m_H is the Stieltjes transform of μ_H .

Theorem [B-Erdős-Schnelli '15b] local law for spectral distribution

$$\frac{|\mu_H(\mathcal{I}) - \mu_A \boxplus \mu_B(\mathcal{I})|}{|\mathcal{I}|} \prec \frac{1}{N|\mathcal{I}|}, \qquad N^{-1+\gamma} \leqslant |\mathcal{I}| \leqslant 1, \qquad \mathcal{I} \subset \mathsf{bulk}$$

Previous works: [Kargin'12] $(\eta \geqslant (\log N)^{-1/2})$, [Kargin'15] $(\eta \geqslant N^{-1/7})$, [B.-Erdős-Schnelli'15a] $(\eta \geqslant N^{-2/3})$.

Notation $A \prec B$: $|A| \leq N^{\varepsilon}|B|$ with high probability for any given $\varepsilon > 0$.

Extension to the edge: Assumption

Assumption: $||A||, ||B|| \le C$; $\mu_A \Rightarrow \mu_\alpha$, $\mu_B \Rightarrow \mu_\beta$ (sufficiently fast), with μ_α, μ_β Jacobi type, i.e., μ_α and μ_β are a.c. with densities ρ_α, ρ_β supported on $[E_-^\alpha, E_+^\alpha]$ and $[E_-^\beta, E_+^\beta]$, respectively, and such that for some $C \geqslant 1$,

$$C^{-1} \leqslant \frac{\rho_{\alpha}(x)}{(x - E_{-}^{\alpha})^{\alpha_{-}}(E_{+}^{\alpha} - x)^{\alpha_{+}}} \leqslant C, \qquad a.e. \quad x \in [E_{-}^{\alpha}, E_{+}^{\alpha}]$$

$$C^{-1} \leqslant \frac{\rho_{\beta}(x)}{(x - E_{-}^{\beta})^{\beta_{-}}(E_{+}^{\beta} - x)^{\beta_{+}}} \leqslant C, \qquad a.e. \quad x \in [E_{-}^{\beta}, E_{+}^{\beta}]$$

with exponents

$$-1 < \alpha_{\pm}, \beta_{\pm} < 1.$$

Theorem [B.-Erdős-Schnelli '18] Let μ_{α} and μ_{β} be of Jacobi type. Then $\operatorname{supp}\mu_{\alpha}\boxplus\mu_{\beta}=[E_{-},E_{+}]$ for some $E_{-}< E_{+}\in\mathbb{R}$, and the density $\rho_{\alpha\boxplus\beta}$ of $\mu_{\alpha}\boxplus\mu_{\beta}$ satisfies

$$C^{-1} \leqslant \frac{\rho_{\alpha \boxplus \beta}(x)}{\sqrt{x - E_{-}} \sqrt{E_{+} - x}} \leqslant C, \quad a.e. \quad x \in [E_{-}, E_{+}].$$

Similar problem was considered in [Olver-Nadakuditi '12].

Extension to the edge: Results

Assumption: $||A||, ||B|| \le C$; $\mu_A \Rightarrow \mu_\alpha$, $\mu_B \Rightarrow \mu_\beta$ (sufficiently fast), with μ_α, μ_β Jacobi type

Theorem [B.-Erdős-Schnelli '16-'18] Under the above assumption

(i)(local law) For any fixed $\gamma > 0$, and any compact interval $\mathcal{I} \subset \mathbb{R}$ with $|\mathcal{I}| \geqslant N^{-1+\gamma}$,

$$\frac{|\mu_H(\mathcal{I}) - \mu_A \boxplus \mu_B(\mathcal{I})|}{|\mathcal{I}|} \prec \frac{1}{N|\mathcal{I}|}$$

(ii) (convergence rate)

$$\sup_{\mathcal{I}\subset\mathbb{R}}\left|\mu_{H}(\mathcal{I})-\mu_{A}\boxplus\mu_{B}(\mathcal{I})\right|\prec\frac{1}{N}$$

(iii) (rigidity) For any i = 1, ..., N,

$$|\lambda_i - \gamma_i| \prec \max\{i^{-\frac{1}{3}}, (N - i + 1)^{-\frac{1}{3}}\}N^{-\frac{2}{3}}$$

Local law of Green function

Green function: $G(z) := (H - z)^{-1}$, note

$$m_H(z) = \frac{1}{N} \sum \frac{1}{\lambda_i - z} = \operatorname{tr} G(z) = \frac{1}{N} \sum G_{ii}(z), \qquad \operatorname{tr} = \frac{1}{N} \operatorname{Tr}.$$

Theorem [B.-Erdős-Schnelli '16-'18] Let $z=E+\mathrm{i}\eta$. Under the previous assumption, for any $N^{-1+\gamma}\leqslant\eta\leqslant1$ with any small $\gamma>0$

(i) (Green function subordination)

$$\max_{i,j} \left| G_{ij}(z) - rac{\delta_{ij}}{a_i - \omega_B(z)}
ight| \prec rac{1}{\sqrt{N\eta}}$$

(ii) (Local law for Stieltjes transform)

$$\left| m_H(z) - m_{A \boxplus B}(z)
ight| \prec rac{1}{N \eta}$$

(iii) (Improvement of (ii) outside the support)

$$\left| m_H(z) - m_{A \boxplus B}(z)
ight| \prec rac{1}{N(\kappa + \eta)}, \qquad \kappa := \mathsf{dist}(E, \partial \operatorname{\mathsf{supp}}(\mu_A \boxplus \mu_B))$$

when $E \in \mathbb{R} \setminus \text{supp}(\mu_A \boxplus \mu_B)$ and $\kappa \geqslant N^{-\frac{2}{3} + \varepsilon}$.

Local laws in RMT

Local laws for Wigner type matrices were widely studied in the last ten years. A key difference for the additive model is the complicated dependence structure of the entries of the Haar unitary.

For the model discussed: Universality of local bulk eigenvalue statistics was proved in [Che-Landon '17]

Some reference (on optimal scale)

- (Wigner type) [Erdös-Schlein-Yau '07-'09], [Tao-Vu '09-'12], [Erdös-Yau-Yin '10-'12], [Erdös-Knowles-Yau-Yin '13], [Götze-Naumov-Tikhomirov-Timushev '16], [Götze-Naumov-Tikhomirov '15-'19],...
- (Addition of Wigner type) [Lee-Schnelli '13], [Knowles-Yin '14], [He-Knowles-Rosenthal '16], [Ajanki-Erdös-Krüger '16], [Erdös, Krüger, Schröder, '18]...
- (Random d-regular graph) [Bauerschmidt-Knowles-Yau '15]...

Perturbed subordination equation for random matrix

Subordination equation: $\Phi_{\mu_A,\mu_B}(\omega_A(z),\omega_B(z),z)=0$, where

$$\Phi_{\mu_A,\mu_B}(\omega_1,\omega_2,z) := \begin{pmatrix} -(m_A(\omega_2))^{-1} - \omega_1 - \omega_2 + z \\ -(m_B(\omega_1))^{-1} - \omega_1 - \omega_2 + z \end{pmatrix}$$

Approximate subordination functions

$$\omega_A^c(z) := z - rac{\mathsf{tr} A G(z)}{m_H(z)}, \qquad \omega_B^c(z) := z - rac{\mathsf{tr} U B U^* G(z)}{m_H(z)}.$$

By $(A + UBU^* - z)G = I$, we have

$$(m_H(z))^{-1} = -\omega_A^c(z) - \omega_B^c(z) + z.$$

Observe that

$$\begin{pmatrix} \left(m_H(z)\right)^{-1} - \left(m_A(\omega_B^c(z))\right)^{-1} \\ \left(m_H(z)\right)^{-1} - \left(m_B(\omega_A^c(z))\right)^{-1} \end{pmatrix} = \Phi_{\mu_A,\mu_B}(\omega_A^c,\omega_B^c,z)$$

Denote by

$$\Lambda_i(z) := \omega_i^c(z) - \omega_i(z), \quad i = A, B,$$

In order to estimate $\Lambda_i(z)$, we need two ingredients:

- (i): A stability analysis of the equation $\Phi_{\mu_A,\mu_B}(\omega_A(z),\omega_B(z),z)=0$.
- (ii): An estimate of $\Phi_{\mu_A,\mu_B}(\omega_A^c,\omega_B^c,z)=(\Phi_1^c,\Phi_2^c)^T$, where

$$\Phi_1^c = (m_H)^{-1} - (m_A(\omega_B^c))^{-1}, \qquad \Phi_2^c = (m_H)^{-1} - (m_B(\omega_A^c))^{-1}.$$

Local stability for subordination equation

Expansion of the perturbed subordination eq. around $(\omega_A(z), \omega_B(z), z)$ gives

$$\mathcal{S}\Lambda_A + \mathcal{T}_A\Lambda_A^2 + \dots = \Phi_1^c + (F_A'(\omega_B) - 1)\Phi_2^c$$

 $\mathcal{S}\Lambda_B + \mathcal{T}_B\Lambda_B^2 + \dots = \Phi_2^c + (F_B'(\omega_A) - 1)\Phi_1^c$

where $F_i(\cdot) = -1/m_i(\cdot), i = A, B$ are the negative reciprocal Stieltjes transforms, and

$$S = (F_A'(\omega_B(z)) - 1)(F_B'(\omega_A(z)) - 1) - 1$$

$$\mathcal{T}_A = \frac{1}{2} (F_A''(\omega_B(z))(F_B'(\omega_A(z)) - 1)^2 + F_B''(\omega_A(z))(F_A'(\omega_B(z)) - 1))$$

and \mathcal{T}_B is defined analogously.

Basic facts:

$$\mathcal{S}(z) \sim \sqrt{\kappa + \eta}, \qquad \mathcal{T}_A(z) \sim 1, \qquad \mathcal{T}_B(z) \sim 1$$

Estimate of the random Φ

Roughly, our aim is to show that

$$egin{aligned} |\Phi_1^c + (F_A'(\omega_B) - 1)\Phi_2^c| &\prec rac{\Im m_{A \boxplus B}}{N\eta}, \ |\Phi_2^c + (F_B'(\omega_A) - 1)\Phi_1^c| &\prec rac{\Im m_{A \boxplus B}}{N\eta}, \end{aligned} \qquad \eta = \Im z.$$

Basic facts:

$$\Im m_{A \boxplus B}(z) \sim \Im \omega_A(z) \sim \Im \omega_B(z) \sim \left\{ egin{array}{ll} \sqrt{\kappa + \eta}, & E \in \operatorname{supp}(\mu_A \boxplus \mu_B) \ rac{\eta}{\sqrt{\kappa + \eta}}, & E \in \mathbb{R} \setminus \operatorname{supp}(\mu_A \boxplus \mu_B) \end{array}
ight.$$

Recall

$$\Phi_1^c = (m_H(z))^{-1} - (m_A(\omega_B^c(z)))^{-1}, \qquad \Phi_2^c = (m_H(z))^{-1} - (m_B(\omega_A^c(z)))^{-1}$$

Hence, essentially, one needs to bound

$$m_H - m_A(\omega_B^c) = \frac{1}{N} \sum_i \left(G_{ii} - \frac{1}{a_i - \omega_B^c} \right).$$

and its analogue via switching the role of A and B.

Heuristic of Green function subordination

Goal:

$$G_{ii} \sim \frac{1}{a_i - \omega_B^c}, \qquad \omega_B^c = z - \frac{\mathsf{tr} \widetilde{B} G(z)}{\mathsf{tr} G(z)}, \quad \widetilde{B} := UBU^*$$

By $(A + \widetilde{B} - z)G(z) = I$, we have $(a_i - z)G_{ii} + (\widetilde{B}G)_{ii} = 1$, so that

$$G_{ii} = \frac{1}{a_i - z + \frac{(\widetilde{B}G)_{ii}}{G_{ii}}}.$$

We shall show

$$\left| (\widetilde{B}G)_{ii} \operatorname{tr} G - G_{ii} \operatorname{tr} \widetilde{B}G \right| \prec \frac{1}{\sqrt{N\eta}},$$

and

$$\left|\frac{1}{N}\sum_{i}d_{i}\left((\widetilde{B}G)_{ii}\mathsf{tr}G-G_{ii}\mathsf{tr}\widetilde{B}G\right)\right|\prec\frac{\Im m_{H}}{N\eta}$$

for some specifically chosen (random) d_i 's.

Ward Identity

For $t \in \mathbb{R}$, set

$$G_t(z) := \frac{1}{A + e^{itX}UBU^*e^{-itX} - z}, \qquad X = X^*$$

Left invariance of Haar measure implies

$$0 = \frac{\mathsf{d}}{\mathsf{d}t}\Big|_{t=0} \mathbb{E}G_t(z) = -\mathsf{i}\mathbb{E}\big(G_0(z)[X, UBU^*]G_0(z)\big),$$

which further implies

$$\mathbb{E}G\otimes(\widetilde{B}G)=\mathbb{E}(G\widetilde{B})\otimes G$$

Therefore,

$$\mathbb{E}(\widetilde{B}G)_{ii}\mathsf{tr}G = \mathbb{E}G_{ii}\mathsf{tr}\widetilde{B}G$$

First try for concentration: use the randomness of U at once: Gromov-Milman, can only reach $\eta \gg N^{-\frac{1}{4}}$.

Recursive moment estimate

Let
$$Q_i := (\widetilde{B}G)_{ii} \operatorname{tr} G - G_{ii} \operatorname{tr} \widetilde{B}G$$

Set for $k, \ell \in \mathbb{N}$, and some specifically chosen d_i 's,

$$\mathfrak{m}_i^{(k,\ell)} := (Q_i)^k (\overline{Q_i})^\ell, \qquad \mathfrak{m}^{(k,\ell)} := \left(\frac{1}{N} \sum_i d_i Q_i\right)^k \left(\frac{1}{N} \sum_i \overline{d_i Q_i}\right)^\ell$$

Proposition For any $N^{-1+\gamma} \leqslant \eta \leqslant 1$, and $k \geqslant 2$,

$$\begin{split} \mathbb{E}\left[\mathfrak{m}_{i}^{(k,k)}\right] &= \mathbb{E}\left[O_{\prec}\left(\frac{1}{\sqrt{N\eta}}\right)\mathfrak{m}_{k}^{(k-1,k)}\right] + \mathbb{E}\left[O_{\prec}\left(\frac{1}{N\eta}\right)\mathfrak{m}_{i}^{(k-2,k)}\right] \\ &+ \mathbb{E}\left[O_{\prec}\left(\frac{1}{N\eta}\right)\mathfrak{m}_{i}^{(k-1,k-1)}\right] \\ \mathbb{E}\left[\mathfrak{m}^{(k,k)}\right] &= \mathbb{E}\left[O_{\prec}\left(\frac{\Im m_{H}}{N\eta}\right)\mathfrak{m}_{k}^{(k-1,k)}\right] + \mathbb{E}\left[O_{\prec}\left(\left(\frac{\Im m_{H}}{N\eta}\right)^{2}\right)\mathfrak{m}_{i}^{(k-2,k)}\right] \\ &+ \mathbb{E}\left[O_{\prec}\left(\left(\frac{\Im m_{H}}{N\eta}\right)^{2}\right)\mathfrak{m}_{i}^{(k-1,k-1)}\right] \end{split}$$

Then the desired estimates of Q_i and $\frac{1}{N} \sum d_i Q_i$ follow by using Young and Markov inequalities.

Householder reflection as partial randomness

Proposition [Diaconis-Shahshahani '87] U: Haar on $\mathcal{U}(N)$,

$$U = -e^{i\theta_1} (I - \mathbf{r}_1 \mathbf{r}_1^*) \begin{pmatrix} 1 \\ U^1 \end{pmatrix}, \qquad \mathbf{r}_1 := \sqrt{2} \frac{\mathbf{e}_1 + e^{-i\theta_1} \mathbf{v}_1}{\|\mathbf{e}_1 + e^{-i\theta_1} \mathbf{v}_1\|_2}$$

$$\mathbf{v}_1 \in \mathcal{S}_{\mathbb{C}}^{N-1}$$
: uniform, $U^1 \in \mathcal{U}(N-1)$: Haar, \mathbf{v}_1 , U^1 independent.

Remark: Analogously, we have independent pair \mathbf{v}_i and U^i for all i. Actually, $-\mathrm{e}^{\mathrm{i}\theta_i}(I-\mathbf{r}_i\mathbf{r}_i^*)$ is the Householder reflection sending \mathbf{e}_i to \mathbf{v}_i .

THANK YOU!