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External potential

Let Q: C — R U {+o0}. C¥-smooth where finite.
wp.m.on C

lq[u] = / / log

The equilibrium measure o minimizes /g.
The droplet S = suppo. We assume that

du )du(¢) + / Qdu.

S CInt{Q < +o0}.

Then
do=AQ - 15 - dA.

Note that AQ > 0 on S. We assume that AQ > 0 on the
boundary 0S.



Sakai's theorem

The boundary 05 is regular with possible cusps/double points.

Figure: The figure on the left shows a boundary with two singular points:
one double point and one cusp.

Not all cusps are possible: 3 % are excluded.



RNM-model

Particles/eigenvalues {(;}{ in external field nQ.
Energy:

1 n
H, = I + Q(¢).
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RNM-model

Particles/eigenvalues {(;}{ in external field nQ.
Energy:

1 n
Hn:ZIog TP —i—nZQ(Cj).
itk Tk 1
Probability law:

dPa(¢) = e (O dA,(¢)/ / e M dA,.
(Cn

(dA, Lebesgue measure).
Coulomb gas at § = 1/(kgT): replace H, <> BH,.



Ginibre ensemble

Figure: A sample from the standard Ginibre ensemble.



Correlation kernel

We have a determinantal process, k-point functions

Rok(Cy- -, Ck) = det(Kn(Ciy §)) ek

Here R,(¢) := R, 1(() is expected number of particles per unit
area.
The kernel K,, is reproducing kernel for the subspace of L? of
weighted polynomials

p(Q)e "2

where degree(p) < n.



Put r, =1/4/nAQ(pn). Rescaled system about p, = 0:

-1 .
{Zj}f=17 zi=r, ¢, j=1,...,n

We fix T > 0, take 6, = Tr,, pn closest point to the cusp with
boundary distance §,,.
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Rescaled density function R,(z)

Rescaled droplet as n — oo is strip — T <Rez < T.

Im(z)

D(z,€)

Re(z)

Random sample {z;}7.

expected number of points in D(z, €)

Rn(z) = 5 ,

€



Structure lemma (normal families)

Lemma

Subsequential limits

R(z) :== lim Ry (z)

k—o0

exist. Each such limit determines a unique determinantal point
field {z;}3°.
Each limit point field is determined by a Hermitian-entire function
L(z, w) via
R(z) = L(z,z)e*‘Z‘Z.
L is the Bergman kernel of a contractively embedded subspace of
2
Fock space [2(e~12I%).
Infinite Ginibre ensemble: L(z, w) = e?" is Bargmann-Fock kernel.



Ward's identity

Let ¢ any test-function and {¢;}{ random sample. Random
variable

_ 15 9(G) — ()
Wn[¢] - 2J#Zk JCJ — Ck

+ 0y Q(GI(G) + Y 0v(G)-

Lemma
E,W,[y] = 0.

Proofs: Reparametrization invariance of Z,/integration by parts.
Gives an exact relation between 1- and 2-point functions R, 1 and
R,2.
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Ward's equation, zero-one law,

(AKMW)

© Zero-one law: either R = 0 identically or R > QO everywhere.
@ If the width T is large enough then R > O everywhere.
Q@ /fR >0 then B
0C=R—-1—-AlogR
where B(z,w) = |K(z,w)|?/K(z, z) and
C(z) = [ E2m) dA(w).
Q Ifz=x+1ly then

R(z) < Ce 2= I,
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Limiting correlation kernel

With . .
K(z,w) = L(z, w)e 12IF/2=Iwl*/2

the k-point intensities are given by
Rk(z1,...,zk) = det(K(z;, zj))f‘le.
Often easier to write
L(z,w) = e*"W(z,w)

and look for W.
Then R(z) = V(z, 2).
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Limiting correlation kernel

With . .
K(z,w) = L(z, w)e 12IF/2=Iwl*/2

the k-point intensities are given by
Rk(z1,...,zk) = det(K(z;, zj))f‘le.
Often easier to write
L(z,w) = e*"W(z,w)

and look for V.
Then R(z) = V(z, 2).
Infinite Ginibre: ¥ = 1.

Regular boundary point: W(z, w) = %erfc(zji"_").
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Translation invariant solutions

Suppose

© T is large enough that R > 0,

@ Translation invariance: R(z) depends only on x = Re(z).
Then there is an interval [A, B] C [-2T,2T] such that

B
R(z) =V(z+2) := \/%_W/A e~ (#HZ=10°/2 4y
Can be written

1
V@) =) (0 = e

13 /41



Conjecture of AKMW

We believe that R is nontrivial and translation invariant for every
T > 0 and that [A, B] = [-2T,2T].

Figure: The graph of R(x) := v * 1|7 27)(2x) for T=1/2, T =3/2,
and T =5/2.



The hard edge strip: natural candidates

The limit R = lim R,, for the strip satisfies Ward's equation
dC=R—-1—AlogR.

Natural solutions (AKMW):
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Fyodorov-Khoruzhenko-Sommers setting

Potential
2 2
2 2 X Yy
-7l .
QO) = (¢ = 7Tm () = T + 2
FKS introduced weakly skew-Hermitian regime
(rax)®
= Tph = 1 —
T=rT P

The droplet is a narrow ellipse about the y-axis:

x2 y2

CW+22 _1+O(1)

16 /41



The droplet has width ~ a?/n and area ~ a?/n.

2

2

Let {¢;}] random sample. Particle density is ~ n° so it is natural

to rescale by

1

z = ¢n, ie. Rn(z)= P

Rn(C)-

FKS choice is ¢ = 1/.
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Fyodorov-Khoruzhenko-Sommers theorem

(FKS) R, — R where

s o2\ 2
R(z) = — /e‘zi(y*;) dt.

2o
We make the transformation

Rna(2) == a®Ry(iaz).

Corollary

As n — oo, R, o converges to

T

Ra(z) := _/1 /2T e T 2gy T = =2,
2w J_oT 2

Note: Corollary is equivalent to theorem and is well-suited for our
approach.
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FKS densities

Figure: Density profiles R*(y), o = 1/v/2,1,v/2.

FKS noted that

sin(m(x — y))

lim K%(x,y) = K*"(x,y) = )

., (x,y) € R?

and

. . 1512 /20— w2
lim Ka(Z, W) — KGlnlbI‘e(27 W) — eZW |z|?/2—|w| /2'
a—00
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Model case: thin annular ensembles

Put 1
Qn(¢) = a—n(|<|2 — 2¢, log [¢]).

For suitable choices of a,, ¢, the droplet is a thin annulus S,,.

Fix T > 0 and choose:
o fSn AQ,dA=1, ie a,=Area(S,)=1/AQ,,
Q@ n—n~2T/\V/nAQ,.
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Point fields in a strip

Let r. = \/na,/4T, a, = 1/AQ,.

Then
r I, L r r. T
1 * /7I7AQ’ 2 * /7I7AQ

Note: If AQ =1 then r. ~ /n; if AQ = n then r, ~ 1.

Theorem

(ABS) If we rescale about r, on the scale 1/\/nAQ, we obtain the
rescaled droplet [- T, T| and the limiting 1-point function

T 1 Py
™ J=-2T
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Question of AKMW

Taking a, ~ 1 and rescaling on scale 1/1/n we answer in the
affirmative the question of AKMW for the case of weakly circular
ensembles.

Figure: The graph of RT(x) for T =1/2, T =3/2,and T =5/2.
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Weakly circular case

Taking a, ~ 1/n and rescaling on scale 1/n we again get

RT(z) = e~ (1/2 gp.

1 2T
V27 /—2T
Changing to Ru(z) = @ 2R7 (iz/a), a = 2T /7 we recover the
densities of Fyodorov, Khoruzhenko and Sommers.
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FKS type fields with a hard edge

Our strategy works also for hard edge confinement. Corresponding
FKS density profiles are given here:

Figure: Density profiles R2, 4(y), o = 1/v/2,1,v/2.
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AKMW comparison

What if §, ~ 1/n and we rescale at scale 1/n: z = n(¢ — pn)?

Ral(2) = 5Rul0).

Since R,, < Cn it follows that R, — O.

In thin annular case n =1, n =1+ ¢/n we have R, ~ n? and so
R, ~ 1 which is why we can get nontrivial limits.
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Weakly Hermitian ellipse ensembles: bulk universality

Let V(x) = x?/4. Wigner's semi-circle law:

1
ov(x) = %\/4 —x2. 1_21(x).

Now consider a bulk point x: —2 < x < 2,

x2 y2

1—|—7‘+1—T

Qn(x+iy) = , T=1- a2/2na\/(x)2,

SO

. 1 noyv(x)?
Qulx+ i) ~ 4 VL 2

26 /41



The secret behind the rescaling

The scaling is chosen so that cross-section equation holds:

As n— oo
1 — 00
— R, iy) d .
= (x+iy)dy — ov(x)

This corresponds to the mass-one equation of AKM.

27 /41



Limit of weak Hermiticity

Fix p, =2 < p < 2 and rescale on the scale noy(p):

z=nov(p)(¢ — p)-

(FKS, ACV) The rescaled density function converges to

1 T2 (. a2t)?
Ra(z)Zma/ 2 (eret) g

28 /41



Ward's equations

The Ward's equation for R = R“ reads

GC=R- 2 — AlogR.

a2

However if we transform to R(z) = a?R(az) then Ward's equation
for R = R becomes just

0C=R—-1-AlogR.

This is standard Ward equation.
Furthermore the cross-section equation reduces to

1 [t
/ R(x+iy)dy =1.

T J -0

29 /41



Translation invariance and AKM theorem

A 1-point function R is called horizontal translation invariant if
R(x + iy) = R(iy) for all x, symmetric if also R(—iy) = R(iy).

Theorem

(AKM) If R is translation invariant, symmetric and satisfies
cross-section equation then we obtain precisely the FKS limits,
after transforming back via RY(z) = a 2R, (z/a).

Proof.

Uniqueness of solution to Ward's equation under these conditions
is proven in AKM, using Fourier analysis. O

So we need merely prove translation invariance in order to obtain a
new proof.
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New proof of FKS theorem

We must show translation invariance 0xR(x + iy) = 0 i.e.
OxRn(x + iy) — 0, (n — o0).

However R, is expressible by Hermite polynomials H;,

qi(¢) = (1_\15)1/4\%\/@"_/’ (\/ZC) ’

n—1
R (¢) = e (O3 ")
j=0
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Rescaling we find that translation invariance is equivalent to the
convergence

(Z)" Re [Hp-1(cnz)Hn(cnZ)]
2 Vn(n—1)!

which follows from standard properties of Hermite polynomials.
O]

Advantages of this proof:

—0, (n— o0).

@ It is a good deal easier to show translation invariance rather
than full convergence.

@ Possibly generalizes to potentials of the form
Q(z +iy) = V(x) + cny?.

Role of Hermite polynomials is then believed to be o.p.’s with
respect to V/(x) continued analytically to C.
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Bender's theorem

Put

2 y2

1—|—T+1—T

Q(x+iy) =

where 7 =1 — a?/n1/3.
Rescale at the right edge p =1+ 7 by

z=(¢—p)n/3.

Theorem
R, — R* where

2

mz oo
Ro(z) = YT e ad b (Re”é)/ et dt.
0

(67

a2
A(z—i—t-l— )

NOT translation invariant!
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Twisted convolution formulation

If we change to R.(z) = 2a?R“(/2a.z) we obtain a solution to

Ward's equation B
0C=R—-1-AlogR.

Two-dimensional Fourier transform
F(w) = /C f(z)e 2o (2% dA(z).
We represent the Fourier transform of R, in the form
R (w) = P¥(w) - e 1"1*/2

for some function r%(z).
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The twisted convolution form of Ward's equation means that there
shall exist a smooth function P%*(z) whose Fourier transform takes
the form P(w) = p%(w) - e~ 1"I*/2 where p®(z) solves the twisted
convolution problem

P*% p* = 0.

Here twisted convolution is

fxg(z) = /C f(z — w)g(w)e™ W) dA(w).
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Let d a positive integer and define the energy of a configuration

{Cl)"'?é_n}

Z|Og +n ZQCJ
¢/ Ck

J#k

If there is a particle at ¢ then there are particles at (e2”ik/d,

k=1,..,d.

e Case d = 2 occurs in connection with QCD: Akemann, Osborn
and Katori's recent work.

e Jellium of HW and others seems somewhat different.

Lemma

For each d, the density behaves as R,(¢) ~ 7AQ(¢)1s,(C) where
S4 is solution to a modified obstacle problem.
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QCD setting

Qu(€) =~ log (<€, (alc )] +?)
anr n2/4/<c
b ~ n?/4k?
a® — b?
2b

~ n/4.

Let d = 2 and {¢;}{ random sample and rescale about 0 on
1/n-scale.
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Akemann-Osborn theorem

If Qo(z) = limnQx(z/n) then
Qo(z) = —Re (22)/41432 — log [K,,(|z|2/4/<;2)|z|21’+2] ]

Note! [ e~ @ = 400 s0 it is NOT clear that limiting distribution
should be rotationally symmetric.

Theorem

I _ z —2v —2K?
R(z) = ¢ e Q(2) |52 /0 o2t

|

Jl,(\/?z)‘2 dt.
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Remark: equilibrium measure with d-interaction

Energy functional

1
1§11 = / log —5—— du(¢)dp(n).
€9 = n9]
Minimizer o4 takes the form

dog(¢) = d 'AQ(¢)1s,(¢) dA(Q).

Euler-Lagrange eq's
- [log 16!~ | doa(n) + Q)2 = F§, ¢ S,

- / l0g|¢? — 1| dog(n) + Q(C)/2 > FS, ¢ & Sa.
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Thin ellipse ensembles: under investigation

For fixed 7, 0 < 7 < 1 let
@T(X +iy)=(1- T)_1X2 +(1+ 7')_1_)/2.

Droplet is the elliptic disk

x2 y2

a-2"

Now set

Qn(C) = anQT(C) + ¢Cn Iog(l/éT(C))‘
For suitable values of a,, ¢, the droplet is a thin ellipse

2 2
X Y
5 T

< <
" (1+7)2 "~ 2

“(1-17)
where r, — rp ~ 1/y/nAQp.
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THANK YOU!
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