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Background

SLE = Schramm(1961-2008)-Loewner(1893-1968) evolution.

Schramm invented SLE in 1999 by adding randomness to the
traditional Loewner’s differential equation in Complex Analysis.

Random fractal curve depending on a parameter κ ∈ (0,∞)

Connection with physics: percolation (SLE6), spin Ising model
(SLE3), FK-Ising model (SLE16/3), loop-erased random walk
(SLE2), uniform spanning tree (SLE8), GFF contour line (SLE4).

Phase transition: simple curve iff κ ≤ 4; space-filling iff κ ≥ 8.
dimH(SLEκ) = min{1 + κ

8 , 2}.
Conformal Markov property (CMP): (i) the law is invariant under
conformal maps; (ii) conditional on an SLE up to a stopping time,
the rest is still an SLE. CMP determines SLE up to κ.

Several versions: chordal (boundary to boundary), radial
(boundary to interior), whole-plane (interior to interior), etc.
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Conformal Markov property

A chordal SLEκ curve grows in a simply connected domain, say D, from
one boundary point a to another boundary point b. If τ is a stopping
time before b is reached, then conditional on γ up to τ , the part of γ
from τ to its end is a chordal SLEκ growing in a complement domain.

A radial SLEκ curve grows in a simply connected domain from one
boundary point to an interior point. It also satisfies CMP, i.e., the
above paragraph holds with the word “radial” in place of “chordal”.

A whole-plane SLEκ curve γ grows in the Riemann sphere Ĉ from one
interior point a to another b. It also satisfies CMP, which is slightly
different from the above. If τ is a nontrivial stopping time, i.e., does
not happen at the initial time, and happens before b is reached, then
conditional on γ up to τ , the part of γ from τ to its end is a radial
SLEκ growing in a complement domain.
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The goal

Goal: construct SLE loops with CMP and other nice properties.

Object: an SLEκ loop is a single “random” closed curve, which
locally looks like an ordinary SLEκ curve.

Caution: unlike other SLEκ curves, the “law” of an SLEκ loop is
not a probability measure, but a σ-finite infinite measure.

CMP of SLE loop: A rooted SLEκ loop measure is expected to
satisfy CMP such that

SLEκ loop : chordal SLEκ = whole-plane SLEκ : radial SLEκ.

This means that, if γ is an SLEκ loop in Ĉ rooted at z, and τ is a
nontrivial stopping time, then conditional on the part of the curve
before τ and the event that τ happens before γ returns to z, the
part of γ from τ to its terminal time is a chordal SLEκ curve.
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Motivation

The project is motivated by the Brownian loop measure constructed by
Lawler-Werner. Here is a brief review.

Planar Brownian motion (started from 0): Bt = Bx
t + iBy

t , where
Bx and By are independent 1-dim Brownian motions.

Brownian Bridge (from 0 to 0 with duration T ): Xt = Bt − t
TBT ,

0 ≤ t ≤ T . Let µBB
T denote the law.

Brownian loop measure rooted at 0: µlp0 :=
∫∞
0

1
2πT µ

BB
T dT . For

other roots, µlpz = z + µlp0 .

Unrooted Brownian loop masure: µlp :=
∫
C

1
T µ

lp
z dA(z).

Möbius invariance: W (µlpz ) = µlpW (z) and W (µlp) = µlp.
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Previous works on SLE loops

Werner used outer boundary of Brownian loop to construct
SLE8/3 loop with conformal restriction property.

Kassel-Kenyon/Benoist-Dubédat constructed SLE2 loop as scaling
limit of the unicycle of a cycle-rooted spanning tree.

The above are examples of Malliavin-Kontsevich-Suhov loop
measure (c = 0, c = −2), which is expected to exist for all c ≤ 1.

Sheffield-Werner constructed conformal loop ensemble (CLEκ) for
κ ∈ (83 , 8), which is a random collection of non-crossing loops in a
simply connected domain. It is different from the SLE loop here.

Kemppainen-Werner constructed unrooted SLEκ loop measures in
Ĉ for κ ∈ (8/3, 4] as the intensity measure of a nested CLE, which
is used to prove the Möbius invariance of nested CLE on Ĉ.
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Previous works on SLE loops

SLE8/3 bubble (loop rooted at a boundary point) was constructed
by Lawler-Schramm-Werner as boundary of Brownian bubble.
SLEκ bubble for κ ∈ (83 , 4] were constructed by Sheffield-Werner as
a CLEκ loop conditioned to touch a boundary point.

Field-Lawler and Benoist-Dubédat have been working on the
construction of SLE loops using different approaches.
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Main results

We construct several types of SLEκ loop measures for κ ∈ (0, 8).

Highlights:

A new approach works for all κ ∈ (0, 8), simple or nonsimple.

CMP of SLE loops allows applying SLE-based results.

Space-time homogeneity of SLE loop in natural parametrization.

Generalized restriction property similar to chordal SLE.

A 1/d-self similar SLEκ process with stationary increments.

Optimal Hölder continuity of SLE with natural parametrization.

Mckean’s dimension theorem for SLE (with factor d).
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Relations with the previous works

For κ = 8/3, the unrooted SLE8/3 loop measure in Riemann
surfaces agree with Werner’s SLE8/3 loop measure.

For κ = 2, the unrooted SLE2 loop measure after normalization
agrees with the SLE2 measure by Kassel-Kenyon/Benoist-Dubédat.

For κ ∈ (8/3, 4], SLEκ loop measure in Ĉ agrees with the loop
measure by Kemppainen-Werner up to a multiplicative constant
depending on κ.

For κ ∈ [8/3, 4], the SLEκ bubble measure agrees with the bubble
measures by Lawler-Schramm-Werner and Sheffield-Werner up to
a multiplicative constant.

The simple SLEκ loops for κ ∈ (0, 4] give examples of MKS loop

measures with c = (6−κ)(3κ−8)
2κ ∈ (−∞, 1].
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The first attempt

A whole-plane SLEκ curve from 0 to ∞ may be constructed by the
following procedure. Run a radial SLEκ curve in the simply connected
domain Ĉ \ {|z| ≤ ε} from ε to ∞, and take the limit as ε→ 0.

This inspires us to define SLEκ loop rooted at 0 by the following
approach: run a chordal SLEκ curve in Ĉ \ {|z| ≤ ε} from ε to −ε, and
then let ε→ 0. This procedure does not work because of the following
reason. As SLEκ for κ ∈ (0, 8) is not space-filing, almost surely the
curve avoids ∞, i.e., the curve is bounded. By scaling property, we end
up with a single point by taking the limit ε→ 0.

This observation also gives an evidence that the law of an SLEκ loop
can not be a probability measure.
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then let ε→ 0. This procedure does not work because of the following
reason. As SLEκ for κ ∈ (0, 8) is not space-filing, almost surely the
curve avoids ∞, i.e., the curve is bounded. By scaling property, we end
up with a single point by taking the limit ε→ 0.

This observation also gives an evidence that the law of an SLEκ loop
can not be a probability measure.

10 / 39



Kernel
We now construct rooted SLE loops with CMP. To understand CMP
rigorously, we use the notion kernel from modern probability.

Given measurable spaces (U,U) and (V,V), a kernel ν from U to V
is a map ν : U × V→ [0,∞] such that
(i) for every u ∈ U , ν(u, ·) is a measure on V;
(ii) for every F ∈ V, ν(·, F ) is U-measurable.

The kernel ν is said to be σ-finite if V =
⋃
Fn for Fn ∈ V such

that ν(u, Fn) <∞ for all u ∈ U and n ∈ N.

Given a σ-finite measure µ on U and a σ-finite kernel from U to
V , we may define a measure µ⊗ ν on U × V such that

µ⊗ ν(E × F ) =

∫
E
ν(u, F )dµ(u), E ∈ U, F ∈ V.

We use
∫
ν(u, ·)µ(du) to denote the margimal of µ⊗ ν on V .

Use ν
←−⊗µ if we want to switch the order of U and V .
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Kernel

We may describe the sampling of (X,Y ) according to the measure
µ⊗ ν in two steps.

First, “sample” X according to the measure µ.

Second, “sample” Y according to the kernel ν and the value of X.

Caution: After the second step, the marginal measure of X is changed
unless ν is µ-a.s. a probability kernel, i.e., ν(u, V ) = 1 for µ-a.s. u ∈ U .
In fact, if ν is finite, then the new marginal measure of X is absolutely
continuous w.r.t. the old law: µ, and the RN derivative is ν(·, V ).
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CMP and kernel

The rigorous statement of the CMP for a chordal SLEκ measure
µ#D;a→b in D from a to b is as follows. Let Tb be the time that the curve
ends at b. If τ is a stopping time, then

Kτ (µ#D;a→b|{τ<Tb})(dγτ )⊕ µ#D(γτ ;b);(γτ )tip→b(dγ
τ ) = µ#D;a→b|{τ<Tb},

where

Kτ (γ) is the truncation of γ at time τ .

µ⊕ ν is the pushforward of µ⊗ ν under the concatenation map
(β, γ) 7→ β ⊕ γ.

D(γτ ; b) is the connected component of D \ γτ whose boundary
contains b and (γτ )tip, the tip of γτ .

µ#D(γτ ;b);(γτ )tip→b is a chordal SLEκ measure in D(γτ ; b).
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CMP and kernel

Using the same spirit, we may rigorously define the CMP for an SLEκ
loop measure µ1z in Ĉ rooted at z as follows. Let Tz be the time that
the loop returns to z. If τ is a nontrivial stopping time, then

Kτ (µ1z|{τ<Tz})(dγτ )⊕ µ#
Ĉ(γτ ;z);(γτ )tip→z

(dγτ ) = µ1z|{τ<Tz},

where

Kτ (γ) and µ⊕ ν have the same meaning as before.

Ĉ(γτ ; z) is the connected component of Ĉ \ γτ whose boundary
contains z and (γτ )tip, the tip of γτ .

µ#
Ĉ(γτ ;z);(γτ )tip→z

is a chordal SLEκ measure in Ĉ(γτ ; z).
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contains z and (γτ )tip, the tip of γτ .

µ#
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Natural parametrization

Our construction of SLE loops is built on the natural parametrization
of SLE developed by Lawler, Sheffield, Zhou, Rezaei, Viklund....

SLE defined from Loewner’s equation has the built-in capacity
parametrization (CP). Lawler initiated the study of natural
parametrization (NP) in order to improve the scaling limits results
about SLE to capture the original length of the random lattice curves.
The existence of NP of SLE for κ ∈ (0, 8) was proved in
[Lawler-Sheffield] and [Lawler-Zhou]. Lawler and Viklund proved that
LERW with natural length converges to SLE2 with NP.

Lawler and Rezaei proved that NP of SLE agrees with the
d-dimensional Minkowski content of SLE, where d = 1 + κ

8 is the
Hausdorff dimension of SLE ([Beffara]). So NP of SLE is determined
by the curve itself, and independent of the domain or equation.
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Minkowski content measure

Now we recall the Minkowski content and introduce the Minkowski
content measure. We fix d ∈ (1, 2). Let S ⊂ C be a closed set. The
(d-dimensional) Minkowski content of S is defined to be

Cont(S) = lim
ε↓0

εd−2A(Sε),

where A is the area measure, and Sε is the ε-neighborhood of S.

Definition

Let S ⊂ C. Suppose M is a measure supported by S such that for
every compact set K ⊂ C, Cont(K ∩ S) = M(K) <∞. Then we say
that M is the Minkowski content measure on S, or S possesses
Minkowski content measure. We will use MS to denote this measure.
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Space-time homogeneity

Lawler conjectured that an SLEκ loop measure should satisfy
space-time homogeneity: Suppose γ follows the SLEκ loop measure µ1z
rooted at z, and is parameterized periodically by its Minkowski content
measure. Then for any deterministic number a ∈ R, if we reroot the
loop at γ(a), i.e., we define a new loop: Ta(γ)(t) := z + γ(a+ t)− γ(a),
then the “law” of the new loop Ta(γ) is still µ1z.

Here we say that a loop γ is parameterized periodically by its
Minkowski content measure if γ is defined on R with period
T = Cont(γ) such that for any a ≤ b ≤ a+ T , Cont(γ([a, b]) = b− a.
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Minkowski content measure

The work by Lawler and Rezaei showed that a chordal SLEκ curve in
H := {z : Im z > 0} a.s. possesses Minkowski content measure, which is
the pushforward measure of NP under the curve function. Moreover,
the measure is supported by H, and is parameterizable for the curve.

Minkowski content measure satisfies conformal covariance with factor
d. This means that, if S possesses Minkowski content measure MS , and
if f is a conformal map defined on a domain D ⊃ S, then f(S) also
possesses Minkowski content measure, which is absolutely continuous
w.r.t. f∗(MS), and the RN derivative is |f ′(f−1(·))|d.

In particular, we see that SLEκ curve in any simply connected domain
possesses Minkowski content measure.
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Two-sided radial SLE and Green’s function

We will uses the decomposition of chordal SLEκ in terms of two-sided
radial SLEκ initiated by Laurie Field.

A two-sided radial SLEκ curve grows in a simply connected
domain from one boundary point to another boundary point
passing through a marked interior point.

It may be viewed as a chordal SLEκ curve conditioned on the
event that it passes through the marked interior point.

The Green’s function for a chordal SLEκ curve is the limit as
ε→ 0 of the probability of the event that a chordal SLEκ curve
visits a disc of radius ε divided by the scaling factor ε2−d.

We use µ#D;a→b, ν
#
D;a→z→b and GD;a→b to denote chordal SLE,

two-sided radial SLE and chordal SLE Green’s function.

19 / 39



Two-sided radial SLE and Green’s function

We will uses the decomposition of chordal SLEκ in terms of two-sided
radial SLEκ initiated by Laurie Field.

A two-sided radial SLEκ curve grows in a simply connected
domain from one boundary point to another boundary point
passing through a marked interior point.

It may be viewed as a chordal SLEκ curve conditioned on the
event that it passes through the marked interior point.

The Green’s function for a chordal SLEκ curve is the limit as
ε→ 0 of the probability of the event that a chordal SLEκ curve
visits a disc of radius ε divided by the scaling factor ε2−d.

We use µ#D;a→b, ν
#
D;a→z→b and GD;a→b to denote chordal SLE,

two-sided radial SLE and chordal SLE Green’s function.

19 / 39



Two-sided radial SLE and Green’s function

We will uses the decomposition of chordal SLEκ in terms of two-sided
radial SLEκ initiated by Laurie Field.

A two-sided radial SLEκ curve grows in a simply connected
domain from one boundary point to another boundary point
passing through a marked interior point.

It may be viewed as a chordal SLEκ curve conditioned on the
event that it passes through the marked interior point.

The Green’s function for a chordal SLEκ curve is the limit as
ε→ 0 of the probability of the event that a chordal SLEκ curve
visits a disc of radius ε divided by the scaling factor ε2−d.

We use µ#D;a→b, ν
#
D;a→z→b and GD;a→b to denote chordal SLE,

two-sided radial SLE and chordal SLE Green’s function.

19 / 39



Two-sided radial SLE and Green’s function

We will uses the decomposition of chordal SLEκ in terms of two-sided
radial SLEκ initiated by Laurie Field.

A two-sided radial SLEκ curve grows in a simply connected
domain from one boundary point to another boundary point
passing through a marked interior point.

It may be viewed as a chordal SLEκ curve conditioned on the
event that it passes through the marked interior point.

The Green’s function for a chordal SLEκ curve is the limit as
ε→ 0 of the probability of the event that a chordal SLEκ curve
visits a disc of radius ε divided by the scaling factor ε2−d.

We use µ#D;a→b, ν
#
D;a→z→b and GD;a→b to denote chordal SLE,

two-sided radial SLE and chordal SLE Green’s function.

19 / 39



Two-sided radial SLE and Green’s function

We will uses the decomposition of chordal SLEκ in terms of two-sided
radial SLEκ initiated by Laurie Field.

A two-sided radial SLEκ curve grows in a simply connected
domain from one boundary point to another boundary point
passing through a marked interior point.

It may be viewed as a chordal SLEκ curve conditioned on the
event that it passes through the marked interior point.

The Green’s function for a chordal SLEκ curve is the limit as
ε→ 0 of the probability of the event that a chordal SLEκ curve
visits a disc of radius ε divided by the scaling factor ε2−d.

We use µ#D;a→b, ν
#
D;a→z→b and GD;a→b to denote chordal SLE,

two-sided radial SLE and chordal SLE Green’s function.

19 / 39



Decomposition of SLE

Field proved that, for κ ∈ (0, 4], a bounded domain D with analytic
boundary, and distinct points a, b ∈ ∂D,∫

D
ν#D;a→z→bGD;a→b(z)A(dz) = Cont ·µ#D;a→b.

This means, if one integrates the laws of two-sided radial SLEκ curves
in D from a to b passing through different interior points against the
Green’s function for the chordal SLEκ curve in D from a to b, then one
gets the law of a chordal SLEκ curve in D from a to b biased by the
Minkowski content of the whole curve.
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Decomposition of SLE

Field’s result was later extended to all κ ∈ (0, 8) in a more general form.

Theorem (Z, 2016)

Let κ ∈ (0, 8). Let D be a simply connected domain with two distinct
prime ends a and b. Then

µ#D;a→b(dγ)⊗Mγ;D(dz) = ν#D;a→z→b(dγ)
←−⊗(GD;a→b ·A)(dz).

By looking at the first marginal measure, we recover Field’s result.

The above results show that the law of a chordal SLEκ curve in D from
a to b may be constructed by integrating the laws of two-sided radial
SLEκ curves in D from a to b passing through different points z against
the Green’s function for the chordal SLEκ, and then unweighting the
integrated measure by the Minkowski content of the curve.
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Construction of rooted SLE loop

The construction of rooted SLEκ loops is inspired by the above
observation. Since an SLEκ loop rooted at z may be viewed as a
degenerate chordal SLEκ in Ĉ from z to z, we expect that its law can
be constructed by integrating the laws of degenerate two-sided radial
SLEκ curves in Ĉ from z to z passing through different points w
against some suitable function, and then unweighting the integrated
measure by the Minkowski content.

A degenerate two-sided radial SLEκ curve in Ĉ from z to z passing
through w is a two-sided whole-plane SLEκ curve, which is composed
of two arms connecting two points in Ĉ. A two-sided whole-plane SLEκ
satisfies some CMP such that

two-sided whole-plane : two-sided radial = whole-plane : radial.
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SLEκ curves in Ĉ from z to z passing through different points w
against some suitable function, and then unweighting the integrated
measure by the Minkowski content.

A degenerate two-sided radial SLEκ curve in Ĉ from z to z passing
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Rooted loops I

Below is the main theorem on rooted SLE loop measure µ1z: the
superscript 1 denotes the number of root; the subscript z is the root.

Theorem

Let GC(w) = |w|−2(2−d), w ∈ C \ {0}. Let ν#z
w denote the law of the
two-sided whole-plane SLEκ curve from z to z passing through w
(modulo a time change). Define

µ1z = Cont(·)−1 ·
∫
C\{z}

ν#z
wGC(w − z)A(dw), z ∈ C.

Then we have the following facts:
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Rooted loops II

Theorem

(i) Each µ1z is supported by non-degenerate loops in Ĉ rooted at z
which possess Minkowski content measure that is parameterizable.
Moreover, we have the decomposition formula

µ1z(dγ)⊗Mγ(dw) = ν#z
w(dγ)
←−⊗GC(w − z) ·A(dw), z ∈ C.

(ii) Each µ1z satisfies CMP.

(iii) Each µ1z satisfies the space-time homogeneity.

(iv) Möbius covariance: W (µ1z) = |W ′(z)|2−dµ1W (z).

(v) For each r > 0, (a) µ1z({γ : diam(γ) > r}) <∞;
(b) µ1z({γ : Cont(γ) > r}) <∞.

(vi) If a measure µ′ supported by non-degenerate loops rooted at z
satisfies (II) and (V.a), then µ′ = cµ1z for some c ≥ 0.
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Self similarity and stationary increments

There is an interseting byproduct of the SLE loop measures: Hölder
continuity and dimension property of SLE with NP.

Below is a list of previous works.

Rohde and Schramm proved that SLE in CP is Hölder continuous
for κ 6= 8.

Lind improved the Hölder exponents of SLE in CP, which was
later proved to be optimal by Lawler and Viklund.

Werness proved that, for κ ≤ 4, for any α < 1/d, an SLEκ curve
may be reparametrized to be α-Hölder continuous.

Lawler and Rezaei proved that, if SLEκ curve γ is parameterized
by CP, and if Θt is such that γ ◦Θ−1 is γ parameterized by NP,
then Θ is Hölder continuous.

No result on the Hölder continuity of SLE with NP was known.
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for κ 6= 8.
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If we apply the map z 7→ 1/z to the formula:

µ10(dγ)⊗Mγ(dw) = ν#0
w(dγ)
←−⊗(|w|−2(2−d) ·A)(dw),

then we get

µ1∞(dγ)⊗Mγ(dw) = ν#∞
w(dγ)
←−⊗A(dw).

Since ν#∞
w = w + ν#∞
0, using the above formula, we can prove that,

if a two-sided whole-plane SLEκ curve γ with law ν#∞
0 is parametrized
by its Minkowski content measure such that γ(0) = 0, then it is a
1/d-self similar process defined on R with stationary increments, i.e.,

(γ(at)) ∼ (a1/dγ(t)), ∀a > 0;

(γ(a+ t)− γ(a)) ∼ (γ(t)), ∀a ∈ R.
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Hölder continuity and dimension theorem
We want to study the Hölder continuity and dimension properties of γ.
The problem boils down to the finiteness of momentums of |γ(1)|:

Lemma

For any c ∈ (−d,∞), E[|γ(1)|c] <∞.

Following the parallel argument on Brownian motion, we obtain

Theorem (Hölder Continuity)

γ is locally α-Hölder continuous for any α < 1/d.

Theorem (Mckean’s Dimension Theorem)

For any deterministic closed set A ⊂ R, a.s. dim(γ(A)) = d · dim(A).
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Unrooted loop

We use rooted SLEκ loop measures to construct unrooted SLEκ loop
measure in Ĉ. It is a σ-finite measure on unrooted loops. An unrooted
loop is a continuous function defined on the circle S1, modulo an
orientation-preserving auto-homeomorphism of S1.

We may view the two-sided whole-plane SLEκ measure ν#z
w as a
measure on unrooted loops. By the work of Miller and Sheffield, a
two-sided whole-plane SLEκ satisfies reversibility, i.e., we have
ν#z
w = ν#w
z as measures on unrooted loops.
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Unrooted loop

Theorem

Define the measure µ0 on unrooted loops by

µ0 = Cont(·)−2 ·
∫
C

∫
C
ν#z
w|w − z|−2(2−d)A(dw)A(dz).

Then µ0 is a σ-finite measure that satisfies:

(i) the decomposition formulas:

µ0(dγ)⊗Mγ(dz) = µ1z(dγ)
←−⊗A(dz);

µ0(dγ)⊗(Mγ)2(dz⊗dw) = ν#z
w(dγ)
←−⊗|w−z|−2(2−d)·(A)2(dz⊗dw).

(ii) Möbius invariance: W (µ0) = µ0.
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SLE loops in subdomains of Ĉ
For SLE loops in subdomains of Ĉ, we follow Lawler’s approach.

Let LD(V1, V2) = {loops in D that intersect both V1 and V2}. Let

c = (6−κ)(3κ−8)
2κ . Recall µlp is the Brownian loop measure.

Let U be a multiply connected domain with two boundary points
a, b on the same boundary component. We may find a simply
connected domain D ⊃ U such that ∂D is the component of ∂U
containing a, b. Lawler defined the SLEκ in U from a to b as

µDU ;a→b = 1{·⊂U}e
cµlp(LD(·,Uc)) · µ#D;a→b.

Conformal covariance: if Uj ⊂ Dj , aj , bj ∈ ∂Uj , j = 1, 2, and

f : (U1; a1, b1)
Conf
� (U2; a2, b2), then

f(µDU1;a1→b1) = |f ′(a1)|
6−κ
2κ |f ′(b1)|

6−κ
2κ µDU2;a2→b2 .

If µDU ;a→b is finite, we may normalize it to get a probability
measure with conformal invariance.
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SLE loops in subdomains of C
For D ⊂ Ĉ, we wanted to define

µ1D;z = 1{·⊂D}e
cµlp(LĈ(·,D

c)) · µ1z, µ0D = 1{·⊂D}e
cµlp(LĈ(·,D

c)) · µ0.

However, µlp(L(γ,Dc)) is not finite for any curve γ in D. The
correct alternative is the normalized Brownian loop measure
introduced in [Field-Lawler], i.e.,

Λ∗(V1, V2) := lim
r↓0

[µlp{|z−z0|>r}(L(V1, V2))− log log(1/r)],

The limit converges if V1 and V2 are disjoint compact subsets of Ĉ;
and the value does not depend on the z0 ∈ Ĉ.

The correct way to define SLEκ loop measures in D ⊂ Ĉ is using
Λ∗(·, Dc) in place of µlp(LĈ(·, Dc)).
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SLE loops in subdomains of Ĉ
Theorem

The µ1D;z and µ0D defined using normalized Brownian loop measure
satisfy conformal covariance and conformal invariance, respectively: if

W : U
Conf
� V , and z ∈ U , then

W (µ1U ;z) = |W ′(z)|2−dµ1V ;W (z);

W (µ0U ) = µ0V .

The proof uses CMP of rooted SLEκ loop in Ĉ and the generalized
restriction property of chordal SLEκ.
SLE loop satisfies generalized restriction property:

µ0U1
= 1{·⊂U1}e

cµlp(LU2
(·,Uc1 )) · µ0U2

, U1 ⊂ U2 ⊂ Ĉ.

So this is an MKS loop measure with central charge c.
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SLE loops in Riemann surfaces

The generalized restriction property of SLEκ loop measures allows
to define SLE loops in Riemann surfaces.

The definition uses regular or normalized Brownian loop measure.

The generalized restriction property implies a consistency formula:
we may define SLE loops on charts, and glue them together.

There exist other ways of defining SLE loop measures in Riemann
surfaces (e.g., using SLE8/3 loops instead of Brownian loops).
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SLE bubbles

Finally, we construct SLE bubbles, which resemble Brownian bubbles.

An SLEκ bubble is a “random” loop in a simply connected domain
rooted at a boundary point.

It satisfies the CMP similarly as a rooted SLEκ loop in Ĉ.

The construction is also similar, except that we now use the
degenerate two-sided radial SLEκ curve in place of two-sided
whole-plane SLEκ curve.

A degenerate two-sided radial SLEκ curve grows in a simply
connected domain starting and ending at the same boundary
point, and passing through a marked interior point. It can be
constructed from two-sided radial SLEκ by merging the two end
points. We use the symbol ν#D;a
w, where a ∈ ∂D, b ∈ D.
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Theorem

Let GH(w) = |w|
2
κ
(κ−8)(=w)

(κ−8)2

8κ . Then the following are true.

(i) There is a unique σ-finite measure µ1H;a (SLEκ bubble in H),

which is supported by non-degenerate loops in H rooted at a which
possess Minkowski content measure in C \ {a}, and satisfies

µ1H;a(dγ)⊗Mγ;C\{0}(dw) = ν#H;a
w(dγ)
←−⊗GH(w − a) ·A(dw).

(ii) Every µ1H;a satisfies CMP.

(iii) If W : H
Conf
� H, then W (µ1H;a) = |W ′(a)|

8
κ
−1µ1H;W (a).

(iv) For any r > 0, µ1H;a({γ : diam(γ) > r}) <∞.

(v) If a measure µ′ supported by non-degenerate loops in H rooted at
a satisfies (II) and (IV), then µ′ = cµ1H;a for some c ≥ 0.
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SLE bubbles

We may use Brownian loop measure to define SLE bubble measures on
subdomains of H, and extend them to general multiply connected
domains via conformal maps.

For κ ∈ (0, 4], an SLEκ bubble intersects the boundary at only one
point. For κ ∈ (4, 8), there are infinitely many intersection points. In
the later case, there is another way to define SLEκ bubbles, and it
makes sense to construct unrooted SLEκ bubble measures.

We use a result by Lalwer that, for κ ∈ (4, 8), the intersection of a
chordal SLEκ curve with the boundary of the domain has
(2− 8

κ)-dimensional Minkowski content.

36 / 39



SLE bubbles

We may use Brownian loop measure to define SLE bubble measures on
subdomains of H, and extend them to general multiply connected
domains via conformal maps.

For κ ∈ (0, 4], an SLEκ bubble intersects the boundary at only one
point. For κ ∈ (4, 8), there are infinitely many intersection points. In
the later case, there is another way to define SLEκ bubbles, and it
makes sense to construct unrooted SLEκ bubble measures.

We use a result by Lalwer that, for κ ∈ (4, 8), the intersection of a
chordal SLEκ curve with the boundary of the domain has
(2− 8

κ)-dimensional Minkowski content.

36 / 39



SLE bubbles

We may use Brownian loop measure to define SLE bubble measures on
subdomains of H, and extend them to general multiply connected
domains via conformal maps.

For κ ∈ (0, 4], an SLEκ bubble intersects the boundary at only one
point. For κ ∈ (4, 8), there are infinitely many intersection points. In
the later case, there is another way to define SLEκ bubbles, and it
makes sense to construct unrooted SLEκ bubble measures.

We use a result by Lalwer that, for κ ∈ (4, 8), the intersection of a
chordal SLEκ curve with the boundary of the domain has
(2− 8

κ)-dimensional Minkowski content.

36 / 39



SLE bubbles

The construction uses degenerate two-sided chordal SLEκ measure
supported by loops rooted at two boundary points, which is defined by
ν#D;a
b = limD3w→b ν

#
D;a
w.

To define SLEκ bubble in H rooted at x ∈ R, we integrate ν#H;x
y

against the function GH(y − x) := |x− y|−2(
8
κ
−1), and then unweight

the integrated measure by the (2− 8
κ)-dimensional Minkowski content

of the intersection of the loop with R. This agrees with the previous
SLEκ bubble measure up to a multiplicative constant.

If we further integrate the laws of SLEκ bubble in H rooted at x against
the Lebesgue measure, and then unweight the integrated measure by
the (2− 8

κ)-dimensional Minkowski content of the intersection of the
loop with R, we then get the unrooted SLEκ bubble measure in H.
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Happy Birthday,

Peter!
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Thank you!
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