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Philosophical Overview

I parabolic PDEs make things nice and smooth (easy)

I elliptic PDEs minimize some energy functional (hard)

Alternatively: any solution of

−div(a(x)∇u) +∇V∇u + cu = 0

gives rise to a solution of a heat/diffusion equation

ut + (−div(a(x)∇u) +∇V∇u + cu) = 0.

Use Brownian motion to study parabolic (=elliptic) problems!



Quantilized Donsker-Varadhan estimates



M. Donsker, S. Varadhan, On a variational formula for the principal
eigenvalue for operators with maximum principle, PNAS 1975



Donsker-Varadhan Inequality

Ω ⊂ Rn (but also works on graphs) and

Lu = −div(a(x)∇u) +∇V (x)∇u.

Question. What is the smallest λ > 0 for which

Lu = λu has a solution with u
∣∣
∂Ω

= 0?

Example:

L = −∆ +∇
(

1

2
x2

)
on [0, 1].

〈Lu, u〉 ≥ ? · ‖u‖2



Donsker-Varadhan Inequality

Lu = −div(a(x)∇u) +∇V (x)∇u.

Question. What is the smallest λ > 0 for which

Lu = λu has a solution with u
∣∣
∂Ω

= 0?

Donsker-Varadhan: associate a drift diffusion process (wiggle with

a(x), drift towards ∇V ) and maximize the expected exit time.

Donsker-Varadhan Inequality

λ1 ≥
1

supx∈Ω ExτΩc
.



Figure: Jianfeng Lu (Duke)

Instead of looking at the
mean of the first exist time,
we study quantiles: let
dp,∂Ω : Ω → R≥0 be
the smallest time t such
that the likelihood of exit-
ing within that time is p.

J. Lu and S., 2016

λ1 ≥
log (1/p)

supx∈Ω dp,∂Ω(x)
.

Moreover, as p → 0, the lower bound converges to λ1.



Proof.
Start drift-diffusion in the point, where the solution assumes its
maximum. have (Feynman-Kac)

‖u‖L∞ = u(x) = eλtEω (u(ω(t)))

with the convention that u(ω(t)) is 0 if the drift-diffusion
processes leaves Ω at some point in the interval [0, t]. Let now
t = dp,∂Ω(x), in which case we see that

Eω (u(ω(t))) ≤ p‖u‖L∞ + (1− p)0.

Altogether, we obtain

‖u‖L∞ = eλdp,∂Ω(x)Eω (u(ω(t))) ≤ eλd∂Ω(x)p‖u‖L∞

from which the statement follows.



Example 1

Let us consider
L = −∆ on [0, 1].

Then λ1 = π2.

p 1/2 1/4 10−1 10−2 10−8 Donsker-Varadhan
lower bound 7.28 8.40 8.92 9.39 9.74 8



Example 2

Let us consider

L = −∆ +∇
(

1

2
x2

)
on [0, 1].

Then λ1 = 2.

p 0.5 0.3 0.2 0.1 0.05 Donsker-Varadhan
lower bound 1.52 1.67 1.74 1.79 1.83 1.678



Lieb’s inradius result and the
Polya-Szegő conjecture

Polya



In two dimensions, we have (Osserman, Makai, Hayman,
Polya-Szegő, . . . )

λ1(Ω) = inf
f 6=0

∫
Ω |∇u|

2dx∫
Ω |u|2dx

∼ 1

inradius2

One direction (.) is trivial. The other direction (&) was posed as
a conjecture by Polya & Szegő in 1951 (proven by Makai (1965)
and, independently, Hayman (1978)).



Theorem (M. Rachh and S, CPAM
2017)

Let Ω ⊂ R2 be simply connected and
u : Ω→ R2 vanish on ∂Ω. If u assumes a
global extremum in x0 ∈ Ω, then

inf
y∈∂Ω

‖x0 − y‖ ≥ c

∥∥∥∥∆u

u

∥∥∥∥−1/2

L∞(Ω)

.

x y

Ω



Proof.

‖u‖L∞ = u(x0) = Ex0

(
u(ω(t))e

∫ t
0 V (ω(z))dz

)
≤ (1− px0(t))‖u‖L∞(Ω)Ex0

(
e
∫ t

0 V (ω(z))dz
)

≤ (1− px0(t))‖u‖L∞et‖V ‖L∞ ,

Therefore (1− px0(t))et‖V ‖L∞ ≥ 1.

x1

x2

x0

∂Ω

∂Ω

x1

x2

x0 x1

∂Ω

x2

x0

∂Ω



Lieb’s theorem

Such results are impossible in dimensions ≥ 3: one can take a ball
and remove one-dimensional lines without affecting the PDE.



Theorem (Elliott Lieb, 1984, Inventiones)

Ω contains a (1− ε)-fraction of a ball with radius

r ∼ cε√
λ1(Ω)



x1

x2

Lemma (S, 2014, Comm. PDE)

If you start Brownian motion in the maximum of the eigenfunction
−∆u = λu, then the likelihood of it impacting the nodal set within
time t = λ−1 is less than 64%.

This means that not ’much’ boundary can be close to the
maximum.



Theorem (Rachh and S, 2017, CPAM)

If, with Dirichlet conditions,

−∆u = Vu in Ω

then Ω contains a (1− ε)-fraction of a ball with radius

r ∼ cε√
‖V ‖L∞

centered around the maximum of u.



A ’Real Life’ Application(?)



Anomaly detection

Fiddling with results of this type suggest that for −∆φλ = λφλ,
the quantity

1√
λ

|φλ(x)|
‖φλ‖L∞

is a decent proxy for the distance to the nearest nodal set.

How about summing over distances to nodal lines∑
λ≤N

1√
λ

|φλ(x)|
‖φλ‖L∞

?



Anomaly detection

;



Anomaly detection

On the torus T, the quantity∑
λ≤N

1√
λ

|φλ(x)|
‖φλ‖L∞

simplifies to
n∑

k=1

| sin kπx |
k

.



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 1 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 2 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 3 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 4 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 5 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 6 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.70

1.75

1.80

1.85

1.90

1.95

;

Figure: n = 7 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 8 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 9 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 10 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 20 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 30 on [0.2, 0.8]



Anomaly detection

n∑
k=1

| sin kπx |
k

.
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Figure: n = 100 on [0.2, 0.8]



fn(x) =
n∑

k=1

| sin (kπx)|
k

.

0.1 0.9 0.38 0.39

Figure: Right: the big cusp in the right picture is located at x = 5/13,
the two smaller cusps are at x = 8/21 and x = 7/18.



0.42 0.425

Theorem (S. 2016)

fn has a strict local minimum in x = p/q ∈ Q as soon as

n ≥ (1 + o(1))
q2

π
.



Handwritten digits (ongoing w/ X. Cheng/Gal Mishne)



Seamine (ongoing w/ X. Cheng/Gal Mishne)



Seamines (ongoing w/ X. Cheng/Gal Mishne)



Seamines (ongoing w/ X. Cheng/Gal Mishne)



Homer (ongoing w/ X. Cheng/Gal Mishne)



Strict local maxima, elliptic PDEs, lifetime of Brownian motion
and topological bounds on Fourier coefficients



Level sets of elliptic PDEs

Generally tricky.

Maybe (P.-L. Lions) convex Ω and −∆u = f (u) implies convex
level sets?



Level sets of elliptic PDEs

Maybe (P.-L. Lions) convex Ω and −∆u = f (u) implies convex
level sets?
Yes for −∆u = 1 (Makar-Limanov, 70s)
Yes for −∆u = λ1u (Brascamp-Lieb, 70s).
Yes, for some other f (various).
No: Hamel, Nadirashvili & Sire (2016).



Level sets of elliptic PDEs

Can level sets ever be fundamentally more eccentric than the
domain?



Let Ω ⊂ R2 be convex and consider

−∆u = 1 with Dirichlet boundary conditions.

This is the expected lifetime of Brownian motion. It also has some
meaning in mechanics (St. Venant torsion).



The three basic questions in hiking

1. How big is the mountain? (‖u(x0)‖L∞ ∼ inrad(Ω)2)

2. Where is the maximum? (x0, maximal lifetime)

3. What’s the view from the top? (D2u(x0)?)



The three basic questions in hiking

Let Ω ⊂ R2 be convex and consider

−∆u = 1 with Dirichlet boundary conditions.

Some facts.

I ‖u‖L∞ ∼ inrad(Ω)2

I Maximum is in unique x0 ∈ Ω (Makar-Limanov, 1971)

I Eccentricity of level sets close to the maximum is determined
by the Hessian D2u(x0) in the maximum.

I D2u(x0) is negative semi-definite. trD2u(x0) = ∆u(x0) = −1.

I How close can the eigenvalues of D2u(x0) be to 0?



Let Ω ⊂ R2 be convex and consider

−∆u = 1 with Dirichlet boundary conditions.

Theorem (Spectral gap in the maximum, S, 2017)

There are universal constants c1, c2 > 0 such that

λmax

(
D2u(x0)

)
≤ −c1 exp

(
−c2

diam(Ω)

inrad(Ω)

)
.

This is the sharp scaling.



Theorem (S, 2017)

There are universal constants c1, c2 > 0 such that

λmax

(
D2u(x0)

)
≤ −c1 exp

(
−c2

diam(Ω)

inrad(Ω)

)
.

On domains Ω where ∂Ω has strictly positive curvature

λmax

(
D2u(x0)

)
≤ − c

inrad(Ω)2

min∂Ω κ

max∂Ω κ3
.



Build a suitable rectangle and solve ∆v = −1 on the rectangle.
Imitate the local structure around the maximum up to and

including the Hessian.

x0 = (0, 0)

∆(u − v) = 0 on the intersection. Riemann mapping to the disk
gives a harmonic function on the disk that is flat around the origin.

A B

C D

φ
φ(A)

φ(C )

φ(B)

φ(D)



A Fourier series surprise

Harmonic function

∆u = 0 on the unit disk D.

We know that

I u(0, 0) = 0

I ∇u = 0

I u is continuous on ∂D and has exactly 4 roots.

Does this force the D2u(0, 0) to have a large eigenvalue?

Yes (in all the ways that it could possibly be true) .



A Fourier series surprise

Proposition (New?)

If f : T→ R is continuous, orthogonal to 1, sin x , cos x and has 4
roots, then f cannot be orthogonal to both sin 2x and cos 2x .

Complex Analysis.

Consider the harmonic conjugate and perform a Poisson extension.
The multiplicity of the root in the origin is at least 3. The
argument principle implies that

f (t) + f̃ (t) winds around the origin at least 3-times,

which creates at least 6 roots.



A Fourier series surprise

Proposition (New?)

If f : T→ R is continuous, orthogonal to 1, sin x , cos x and has 4
roots, then f cannot be orthogonal to both sin 2x and cos 2x .

PDEs.
This means that the solution of the Dirichlet problem vanishes at
least to third order in the origin.

x0

u > 0u < 0

u > 0
u < 0

u < 0
u > 0

This lines can never meet (maximum principle), therefore at least 6
roots on the boundary.



Topological bounds on the Fourier coefficients

Theorem (S. 2017)

Let f : T→ R be a continuous function that changes sign n times.
Then

n/2∑
k=0

|〈f , sin kx〉|+ |〈f , cos kx〉| &n

|f ‖n+1
L1(T)

‖f ‖nL∞(T)

.



Topological bounds on the Fourier coefficients

Theorem (S. 2017)

Let f : T→ R be a continuous function that changes sign n times.
Then

n/2∑
k=0

|〈f , sin kx〉|+ |〈f , cos kx〉| &n

|f ‖n+1
L1(T)

‖f ‖nL∞(T)

.

Theorem (Harmonic function formulation)

Let u : D→ R be harmonic, let u
∣∣
∂D be continuous and assume it

changes sign n times. Then

n/2∑
k=0

∣∣∣∣∂ku∂xk

∣∣∣∣+

∣∣∣∣∂ku∂yk

∣∣∣∣ ≥ cn
‖u
∣∣
∂D‖

n+1
L1(T)

‖u
∣∣
∂D‖

n
L∞(T)

.



Topological bounds on the Fourier coefficients

Theorem (S. 2017)

Let f : T→ R be a continuous function that changes sign n times.
Then

n/2∑
k=0

|〈f , sin kx〉|+ |〈f , cos kx〉| &n

|f ‖n+1
L1(T)

‖f ‖nL∞(T)

.

Theorem (Heat equation formulation)

Let f : T→ R be a continuous function that changes sign n times.
Then

‖et∆f ‖L1(T) &n,t

‖f ‖n+1
L1(T)

‖f ‖nL∞(T)

.



Sketch of proof

Show

‖et∆f ‖L1(T) &n,t

‖f ‖n+1
L1(T)

‖f ‖nL∞(T)

and then recover all the other statements. Proof is based on using
multiple interpretations:

I semigroup (to get many related families of estimates)

I Fourier multiplier (keeps Fourier eigenspaces separated)

I convolution with the Jacobi theta function θt
I diffusion process (does not increase the number of roots).



Happy Birthday!


