Brownian Motion and PDEs （and Fourier series）

Stefan Steinerberger

Peter W．Jones Birthday Conference，KIAS

（玉⿹\zh26工 ${ }^{-1}$ ）Yale University

Undergraduate Seminar (Paul Müller, JKU Linz, 2009)

Universal Local Parametrizations via Heat Kernels and Eigenfunctions of the Laplacian

Peter W Jones * Mauro Maggioni ${ }^{\dagger} \quad$ Raanan Schul ${ }^{\ddagger}$

MAT 280: Laplacian Eigenfunctions: Theory,
Applications, and Computations
Lecture 1: Overture: Motivations, scope and structure of the course

Lecturer: Naoki Saito

The picture on the Yale homepage (still!)

$\Delta u=f$

$\Delta u=f$

jones
 /jōnz/ 4)

us informal

verb
gerund or present participle: jonesing
have a fixation on; be addicted to.
"Palmer was jonesing for some coke again"

Philosophical Overview

- parabolic PDEs make things nice and smooth (easy)
- elliptic PDEs minimize some energy functional (hard)

Alternatively: any solution of

$$
-\operatorname{div}(a(x) \nabla u)+\nabla V \nabla u+c u=0
$$

gives rise to a solution of a heat/diffusion equation

$$
u_{t}+(-\operatorname{div}(a(x) \nabla u)+\nabla V \nabla u+c u)=0
$$

Use Brownian motion to study parabolic (=elliptic) problems!

Quantilized Donsker-Varadhan estimates

M. Donsker, S. Varadhan, On a variational formula for the principal eigenvalue for operators with maximum principle, PNAS 1975

Donsker-Varadhan Inequality

$\Omega \subset \mathbb{R}^{n}$ (but also works on graphs) and

$$
L u=-\operatorname{div}(a(x) \nabla u)+\nabla V(x) \nabla u .
$$

Question. What is the smallest $\lambda>0$ for which

$$
L u=\lambda u \quad \text { has a solution with }\left.u\right|_{\partial \Omega}=0 ?
$$

Example:

$$
\begin{gathered}
L=-\Delta+\nabla\left(\frac{1}{2} x^{2}\right) \quad \text { on }[0,1] . \\
\langle L u, u\rangle \geq ? \cdot\|u\|^{2}
\end{gathered}
$$

Donsker-Varadhan Inequality

$$
L u=-\operatorname{div}(a(x) \nabla u)+\nabla V(x) \nabla u .
$$

Question. What is the smallest $\lambda>0$ for which

$$
L u=\lambda u \quad \text { has a solution with }\left.u\right|_{\partial \Omega}=0 \text { ? }
$$

Donsker-Varadhan: associate a drift diffusion process (wiggle with $a(x)$, drift towards $\nabla V)$ and maximize the expected exit time.
Donsker-Varadhan Inequality

$$
\lambda_{1} \geq \frac{1}{\sup _{x \in \Omega} \mathbb{E}_{x} \tau_{\Omega^{c}}}
$$

Figure: Jianfeng Lu (Duke)

Instead of looking at the mean of the first exist time, we study quantiles: let $d_{p, \partial \Omega}: \Omega \rightarrow \mathbb{R}_{\geq 0}$ be the smallest time t such that the likelihood of exiting within that time is p.
J. Lu and S., 2016

$$
\lambda_{1} \geq \frac{\log (1 / p)}{\sup _{x \in \Omega} d_{p, \partial \Omega}(x)} .
$$

Moreover, as $p \rightarrow 0$, the lower bound converges to λ_{1}.

Proof.

Start drift-diffusion in the point, where the solution assumes its maximum. have (Feynman-Kac)

$$
\|u\|_{L^{\infty}}=u(x)=e^{\lambda t} \mathbb{E}_{\omega}(u(\omega(t)))
$$

with the convention that $u(\omega(t))$ is 0 if the drift-diffusion processes leaves Ω at some point in the interval $[0, t]$. Let now $t=d_{p, \partial \Omega}(x)$, in which case we see that

$$
\mathbb{E}_{\omega}(u(\omega(t))) \leq p\|u\|_{L^{\infty}}+(1-p) 0 .
$$

Altogether, we obtain

$$
\|u\|_{L^{\infty}}=e^{\lambda d_{p}, \partial \Omega(x)} \mathbb{E}_{\omega}(u(\omega(t))) \leq e^{\lambda d_{\partial \Omega}(x)} p\|u\|_{L^{\infty}}
$$

from which the statement follows.

Example 1

Let us consider

$$
L=-\Delta \quad \text { on }[0,1] .
$$

Then $\lambda_{1}=\pi^{2}$.

p	$1 / 2$	$1 / 4$	10^{-1}	10^{-2}	10^{-8}	Donsker-Varadhan
lower bound	7.28	8.40	8.92	9.39	9.74	8

Example 2

Let us consider

$$
L=-\Delta+\nabla\left(\frac{1}{2} x^{2}\right) \quad \text { on }[0,1] .
$$

Then $\lambda_{1}=2$.

p	0.5	0.3	0.2	0.1	0.05	Donsker-Varadhan
lower bound	1.52	1.67	1.74	1.79	1.83	1.678

Lieb's inradius result and the Polya-Szegő conjecture

In two dimensions, we have (Osserman, Makai, Hayman, Polya-Szegő, ...)

$$
\lambda_{1}(\Omega)=\inf _{f \neq 0} \frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega}|u|^{2} d x} \sim \frac{1}{\text { inradius }^{2}}
$$

One direction (\lesssim) is trivial. The other direction (\gtrsim) was posed as a conjecture by Polya \& Szegő in 1951 (proven by Makai (1965) and, independently, Hayman (1978)).

Theorem (M. Rachh and S, CPAM 2017)

Let $\Omega \subset \mathbb{R}^{2}$ be simply connected and $u: \Omega \rightarrow \mathbb{R}^{2}$ vanish on $\partial \Omega$. If u assumes a global extremum in $x_{0} \in \Omega$, then

$$
\inf _{y \in \partial \Omega}\left\|x_{0}-y\right\| \geq c\left\|\frac{\Delta u}{u}\right\|_{L^{\infty}(\Omega)}^{-1 / 2}
$$

Proof.

$$
\begin{aligned}
\|u\|_{L^{\infty}}=u\left(x_{0}\right) & =\mathbb{E}_{x_{0}}\left(u(\omega(t)) e^{\int_{0}^{t} V(\omega(z)) d z}\right) \\
& \leq\left(1-p_{x_{0}}(t)\right)\|u\|_{L^{\infty}(\Omega)} \mathbb{E}_{x_{0}}\left(e^{\int_{0}^{t} V(\omega(z)) d z}\right) \\
& \leq\left(1-p_{x_{0}}(t)\right)\|u\|_{L^{\infty}} e^{t\|V\|_{L^{\infty}}},
\end{aligned}
$$

Therefore $\left(1-p_{x_{0}}(t)\right) e^{t\|V\|_{L} \infty} \geq 1$.

Lieb's theorem

Such results are impossible in dimensions ≥ 3 : one can take a ball and remove one-dimensional lines without affecting the PDE.

Theorem (Elliott Lieb, 1984, Inventiones)
Ω contains a $(1-\varepsilon)$-fraction of a ball with radius

$$
r \sim \frac{c_{\varepsilon}}{\sqrt{\lambda_{1}(\Omega)}}
$$

Lemma (S, 2014, Comm. PDE)

If you start Brownian motion in the maximum of the eigenfunction $-\Delta u=\lambda u$, then the likelihood of it impacting the nodal set within time $t=\lambda^{-1}$ is less than 64%.

This means that not 'much' boundary can be close to the maximum.

Theorem (Rachh and S, 2017, CPAM)
If, with Dirichlet conditions,

$$
-\Delta u=V u \quad \text { in } \Omega
$$

then Ω contains a $(1-\varepsilon)$-fraction of a ball with radius

$$
r \sim \frac{c_{\varepsilon}}{\sqrt{\|V\|_{L^{\infty}}}}
$$

centered around the maximum of u.

A 'Real Life' Application(?)

Anomaly detection

Fiddling with results of this type suggest that for $-\Delta \phi_{\lambda}=\lambda \phi_{\lambda}$, the quantity

$$
\frac{1}{\sqrt{\lambda}} \frac{\left|\phi_{\lambda}(x)\right|}{\left\|\phi_{\lambda}\right\|_{L^{\infty}}}
$$

is a decent proxy for the distance to the nearest nodal set.

How about summing over distances to nodal lines

$$
\sum_{\lambda \leq N} \frac{1}{\sqrt{\lambda}} \frac{\left|\phi_{\lambda}(x)\right|}{\left\|\phi_{\lambda}\right\|_{L^{\infty}}}
$$

Anomaly detection

Anomaly detection

On the torus \mathbb{T}, the quantity

$$
\sum_{\lambda \leq N} \frac{1}{\sqrt{\lambda}} \frac{\left|\phi_{\lambda}(x)\right|}{\left\|\phi_{\lambda}\right\|_{L^{\infty}}}
$$

simplifies to

$$
\sum_{k=1}^{n} \frac{|\sin k \pi x|}{k}
$$

Anomaly detection

$$
\sum_{k=1}^{n} \frac{|\sin k \pi x|}{k}
$$

Figure: $n=1$ on $[0.2,0.8]$

Anomaly detection

$$
\sum_{k=1}^{n} \frac{|\sin k \pi x|}{k}
$$

Figure: $n=2$ on $[0.2,0.8]$

Anomaly detection

Figure: $n=3$ on $[0.2,0.8]$

Anomaly detection

Figure: $n=4$ on $[0.2,0.8]$

Anomaly detection

Figure: $n=5$ on $[0.2,0.8]$

Anomaly detection

$$
\sum_{k=1}^{n} \frac{|\sin k \pi x|}{k}
$$

Figure: $n=6$ on $[0.2,0.8]$

Anomaly detection

Figure: $n=7$ on $[0.2,0.8]$

Anomaly detection

Figure: $n=8$ on $[0.2,0.8]$

Anomaly detection

Figure: $n=9$ on $[0.2,0.8]$

Anomaly detection

$$
\sum_{k=1}^{n} \frac{|\sin k \pi x|}{k}
$$

Figure: $n=10$ on [0.2, 0.8]

Anomaly detection

Figure: $n=20$ on [0.2, 0.8]

Anomaly detection

$$
\sum_{k=1}^{n} \frac{|\sin k \pi x|}{k}
$$

Figure: $n=30$ on [0.2, 0.8]

Anomaly detection

Figure: $n=100$ on $[0.2,0.8]$

$$
f_{n}(x)=\sum_{k=1}^{n} \frac{|\sin (k \pi x)|}{k}
$$

Figure: Right: the big cusp in the right picture is located at $x=5 / 13$, the two smaller cusps are at $x=8 / 21$ and $x=7 / 18$.

Theorem (S. 2016)
f_{n} has a strict local minimum in $x=p / q \in \mathbb{Q}$ as soon as

$$
n \geq(1+o(1)) \frac{q^{2}}{\pi}
$$

Handwritten digits (ongoing w/ X. Cheng/Gal Mishne)

$$
\begin{array}{llllllll}
9 & 9 & 9 & 9 & 9 & 4 & 4 & 4 \\
9 & 9 & 4 & 4 & 9 & 9 & 9 & 4
\end{array}
$$

Seamine (ongoing w/ X. Cheng/Gal Mishne)

Seamines (ongoing w/ X. Cheng/Gal Mishne)

Seamines (ongoing w/ X. Cheng/Gal Mishne)

Homer (ongoing w/ X. Cheng/Gal Mishne)

n-eigs $=39$

n-eigs $=48$

Strict local maxima, elliptic PDEs, lifetime of Brownian motion and topological bounds on Fourier coefficients

Level sets of elliptic PDEs

Generally tricky.

Maybe (P.-L. Lions) convex Ω and $-\Delta u=f(u)$ implies convex level sets?

Level sets of elliptic PDEs

Maybe (P.-L. Lions) convex Ω and $-\Delta u=f(u)$ implies convex level sets?
Yes for $-\Delta u=1$ (Makar-Limanov, 70s)
Yes for $-\Delta u=\lambda_{1} u$ (Brascamp-Lieb, 70s).
Yes, for some other f (various).
No: Hamel, Nadirashvili \& Sire (2016).

Level sets of elliptic PDEs

Can level sets ever be fundamentally more eccentric than the domain?

Let $\Omega \subset \mathbb{R}^{2}$ be convex and consider

$$
-\Delta u=1 \quad \text { with Dirichlet boundary conditions. }
$$

This is the expected lifetime of Brownian motion. It also has some meaning in mechanics (St. Venant torsion).

The three basic questions in hiking

1. How big is the mountain? $\left(\left\|u\left(x_{0}\right)\right\|_{L^{\infty}} \sim \operatorname{inrad}(\Omega)^{2}\right)$
2. Where is the maximum? (x_{0}, maximal lifetime)
3. What's the view from the top? $\left(D^{2} u\left(x_{0}\right) ?\right)$

The three basic questions in hiking

Let $\Omega \subset \mathbb{R}^{2}$ be convex and consider
$-\Delta u=1 \quad$ with Dirichlet boundary conditions.
Some facts.

- $\|u\|_{L \infty} \sim \operatorname{inrad}(\Omega)^{2}$
- Maximum is in unique $x_{0} \in \Omega$ (Makar-Limanov, 1971)
- Eccentricity of level sets close to the maximum is determined by the Hessian $D^{2} u\left(x_{0}\right)$ in the maximum.
- $D^{2} u\left(x_{0}\right)$ is negative semi-definite. $\operatorname{tr} D^{2} u\left(x_{0}\right)=\Delta u\left(x_{0}\right)=-1$.
- How close can the eigenvalues of $D^{2} u\left(x_{0}\right)$ be to 0 ?

Let $\Omega \subset \mathbb{R}^{2}$ be convex and consider

$$
-\Delta u=1 \quad \text { with Dirichlet boundary conditions. }
$$

Theorem (Spectral gap in the maximum, S, 2017)
There are universal constants $c_{1}, c_{2}>0$ such that

$$
\lambda_{\max }\left(D^{2} u\left(x_{0}\right)\right) \leq-c_{1} \exp \left(-c_{2} \frac{\operatorname{diam}(\Omega)}{\operatorname{inrad}(\Omega)}\right)
$$

This is the sharp scaling.

Theorem (S, 2017)
There are universal constants $c_{1}, c_{2}>0$ such that

$$
\lambda_{\max }\left(D^{2} u\left(x_{0}\right)\right) \leq-c_{1} \exp \left(-c_{2} \frac{\operatorname{diam}(\Omega)}{\operatorname{inrad}(\Omega)}\right) .
$$

On domains Ω where $\partial \Omega$ has strictly positive curvature

$$
\lambda_{\max }\left(D^{2} u\left(x_{0}\right)\right) \leq-\frac{c}{\operatorname{inrad}(\Omega)^{2}} \frac{\min _{\partial \Omega} \kappa}{\max _{\partial \Omega} \kappa^{3}} .
$$

Build a suitable rectangle and solve $\Delta v=-1$ on the rectangle. Imitate the local structure around the maximum up to and including the Hessian.

$\Delta(u-v)=0$ on the intersection. Riemann mapping to the disk gives a harmonic function on the disk that is flat around the origin.

A Fourier series surprise

Harmonic function

$$
\Delta u=0 \quad \text { on the unit disk } \mathbb{D} .
$$

We know that

- $u(0,0)=0$
- $\nabla u=0$
- u is continuous on $\partial \mathbb{D}$ and has exactly 4 roots.

Does this force the $D^{2} u(0,0)$ to have a large eigenvalue?
Yes (in all the ways that it could possibly be true).

A Fourier series surprise

Proposition (New?)

If $f: \mathbb{T} \rightarrow \mathbb{R}$ is continuous, orthogonal to $1, \sin x, \cos x$ and has 4 roots, then f cannot be orthogonal to both $\sin 2 x$ and $\cos 2 x$.

Complex Analysis.
Consider the harmonic conjugate and perform a Poisson extension. The multiplicity of the root in the origin is at least 3 . The argument principle implies that

$$
f(t)+\tilde{f}(t) \quad \text { winds around the origin at least 3-times, }
$$

which creates at least 6 roots.

A Fourier series surprise

Proposition (New?)

If $f: \mathbb{T} \rightarrow \mathbb{R}$ is continuous, orthogonal to $1, \sin x, \cos x$ and has 4 roots, then f cannot be orthogonal to both $\sin 2 x$ and $\cos 2 x$.

PDEs.
This means that the solution of the Dirichlet problem vanishes at least to third order in the origin.

This lines can never meet (maximum principle), therefore at least 6 roots on the boundary.

Topological bounds on the Fourier coefficients

Theorem (S. 2017)
Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a continuous function that changes sign n times. Then

$$
\sum_{k=0}^{n / 2}|\langle f, \sin k x\rangle|+|\langle f, \cos k x\rangle| \gtrsim n \frac{\mid f \|_{L^{1}(\mathbb{T})}^{n+1}}{\|f\|_{L^{\infty}(\mathbb{T})}^{n}} .
$$

Topological bounds on the Fourier coefficients

Theorem (S. 2017)
Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a continuous function that changes sign n times. Then

$$
\sum_{k=0}^{n / 2}|\langle f, \sin k x\rangle|+|\langle f, \cos k x\rangle| \gtrsim_{n} \frac{\mid f \|_{L^{1}(\mathbb{T})}^{n+1}}{\|f\|_{L^{\infty}(\mathbb{T})}^{n}} .
$$

Theorem (Harmonic function formulation)
Let $u: \mathbb{D} \rightarrow \mathbb{R}$ be harmonic, let $\left.u\right|_{\partial \mathbb{D}}$ be continuous and assume it changes sign n times. Then

$$
\sum_{k=0}^{n / 2}\left|\frac{\partial^{k} u}{\partial x^{k}}\right|+\left|\frac{\partial^{k} u}{\partial y^{k}}\right| \geq c_{n} \frac{\left\|\left.u\right|_{\partial \mathbb{D}}\right\|_{L^{1}(\mathbb{T})}^{n u}}{\left\|\left.u\right|_{\partial \mathbb{D}}\right\|_{L^{\infty}(\mathbb{T})}^{n+1}} .
$$

Topological bounds on the Fourier coefficients

Theorem (S. 2017)
Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a continuous function that changes sign n times. Then

$$
\sum_{k=0}^{n / 2}|\langle f, \sin k x\rangle|+|\langle f, \cos k x\rangle| \gtrsim n \frac{\mid f \|_{L^{1}(\mathbb{T})}^{n+1}}{\|f\|_{L^{\infty}(\mathbb{T})}^{n}} .
$$

Theorem (Heat equation formulation)
Let $f: \mathbb{T} \rightarrow \mathbb{R}$ be a continuous function that changes sign n times. Then

$$
\left\|e^{t \Delta} f\right\|_{L^{1}(\mathbb{T})} \gtrsim n, t \frac{\|f\|_{L^{1}(\mathbb{T})}^{n+1}}{\|f\|_{L^{\infty}(\mathbb{T})}^{n}}
$$

Sketch of proof

Show

$$
\left\|e^{t \Delta} f\right\|_{L^{1}(\mathbb{T})} \gtrsim n, t \frac{\|f\|_{L^{1}(\mathbb{T})}^{n+1}}{\|f\|_{L^{\infty}(\mathbb{T})}^{n}}
$$

and then recover all the other statements. Proof is based on using multiple interpretations:

- semigroup (to get many related families of estimates)
- Fourier multiplier (keeps Fourier eigenspaces separated)
- convolution with the Jacobi theta function θ_{t}
- diffusion process (does not increase the number of roots).

Happy Birthday!

