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statistical physics:
macroscopic effects of microscopic interactions
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The Lenz-Ising model

To explain the phase transition in ferromagnetics,
Lenz with his student Ising,
suggested a model:

Squares of two colors,
representing spins s=x1

Nearby spins want to align,
temperature parameter x :

W(COnﬁg)=x#{+-neighbors}

Partition function

Z=}) config W (config)

Probability P(cfg) =W(cfg)/Z
_




The Lenz-Ising model

To explain the phase transition in ferromagnetics,
Lenz with his student Ising,

suggested a model:
Often written :
W /(config)=x#{+-neighbors}
= eXP(-BZ neighvors S(U)s(v))
Here spins s(u)=*1
and x= exp(2f3)
In magnetic field multiply

by exp(-uZ .s(u))
_




The 2D Ising model

Ising, 1924 There is no phase transition in 1D
Peierls, 1936 There is a phase transition in 2D
Kramers-Wannier, 1941 Derive X_., = 1/(1+ \/E)

Onsager, Kaufman, K-O, 1944-50
Derive the partition function, magnetization,...

Yang, Kac, Ward, Potts, Montroll, Hurst, Green,
Kasteleyn, McCoy, Wu, Tracy, Widom, Vdovichenko,
Fisher, Baxter, ... many results by different methods.
“Exact solvability” (not always rigorous!)

Petermann-Stueckelberg, Fisher, Kadanoff, Wilson,
1951-66, renormalization group

Belavin-Polyakov-Zamolodchikov, Cardy, 1985,
Conformal Field Theory _



The phase transition in 2D

X<XCI‘ 1t X=X CI' It X> XCI' 1t

Dobrushin BC: boundary is Prob = x*{+-neighbors}
red below, blue above.

Remark. For square lattice x_. =1/(1++/2) -




The renormalization picture

[Stueckelberg, Fisher, Kadanoff, Wilson]
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3 fixed points on [0,o°[ O < Xcrit < X crit
Well understood: interfaces for x< x_

it [Pfister-Velenik],
at X_;. [Chelkak-Smirnov], for x> x_,. should get percolation.



Conformal Field Theory

- a physics approach to critical points

Conformal transformations
= those preserving angles

= analytic maps

Locally translation +

+ rotation + rescaling

CFT [Belavin, Polyakov,
Zamolodchikov 1984]:.

In the scaling limit, postulate
conformal invariance
Infinite symmetries allow to
(unrigorously) derive many
quantities [Cardy, ...]




Phase transition in D>1

Physics of the Ising model

e Curie point and exponents arise from

renormalization
Exact solvability in D=2
(incl. some math results)

E.g. magnetization exponent =

1/8

Conformal Field Theory in D=2
D=3 expected to be similar, recent

advances of CFT [Rychkov, ...]
D24 easier



e Schramm-Loewner
Evolution: a
geometric description
of the interfaces
scaling limits at
criticality — an SLE(k)
random curve

e Discrete complex
analysis: a way to
rigorously establish
existence and
conformal invariance
of the scaling limit

Mathematical approaches
- a recent rigorous alternative




Loewner Evolution

A tool to study variation of conformal
maps and domains, introduced
to attack Bieberbach’s conjecture
th, K. Lowner (1923), "Untersuchungen
Uber schlichte konforme Abbildungen
des Einheitskreises. ", Math. Ann. 89
Instrumental in the eventual proof
L. de Branges (1985), "A proof of the Bieberbach
conjecture", Acta Mathematica 154 (1): 137-152
Thm Let F(z)=2XY a,z" be a map of unit disk into
the plane. Then /a, /< n, equality for a slit map.
Wide open: find y s.t./a, /< n¥ for bounded maps.



Schramm-Loewner Evolution

Loewner Equation
m 0,(G,+ Uy = %
Schramm’s SLE: a %ractal curve
conformal G gptained for random U. =\/kB,
- a Brownian motion
SLE=BM on the moduli space.
Calculations from 1t0 calculus,

interesting fractal properties

Lemma [Schramm] If an
interface has a conformally
invariant scaling limit, it is SLE(k)




Schramm-Loewner Evolution
m e Draw theslit

7
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Schramm-Loewner Evolution

e Draw the slit
e Stop at € capacity increments




Schramm-Loewner Evolution

e Draw the slit
e Stop at € capacity increments
e QOpen it up by a conformal

2
map G,=z— U, + 78+




Schramm-Loewner Evolution

e Draw the slit
e Stop at € capacity increments
e QOpen it up by a conformal

2
map G,=z— U, + 78+

e Composition of iid maps

2NE
Gng_z_ l]m:_l_T_l_ .

=G (G (G(..-))) =
2NE
=z- U+ +U)+—+




Schramm-Loewner Evolution

Draw the slit
Stop at € capacity increments
Open it up by a conformal

2
map G,=z— U+ 78+

Composition of iid maps

2NE
Gng_z_ []11£+7+ .

=G (GG (-)) =

2NE
=z— (U +  + Ug)+7+...

U,1s a Brownian motion!
“Arandom walk on the

modull space” D



Schramm-Loewner Evolution

Differentiate the slit map

2
Gi=z— U+ 7t+

here 2t is the slit capacity
2,(G,+ U) =

= limi (Gopet+ Upye— G — U)

= lim3, ((G,— 1d) o G+ (Upye— U)

= lim , ((—Ug+ =+ )o G+ (Ug))
= lim%, (2780 G, + Z =%t

Loewner Equation 0,(G,+ U,) = e

e t [
Schramm LE: U, =/kB,, a Brownian motion
Leads to a random fractal curve I



Schramm-Loewner Evolution

SLE=BM on the moduli space. Calculations reduce
to I1t6 calculus, interesting fractal properties
Lemma [Schramm)] If an interface has a
conformally invariant scaling limit, it is SLE(k)
Theorem [Schramm-Rohde] SLE phases:

) . < L L S \,' oo -,4
. f<

e "\-\.\_I jf’

L L) ()

Theorem [Beffara]
HDim(SLE(k)) = 1+

Theorem [Zhan, Dubedat]
SLE(k) = 0(SLE(16/x)), k<4

K
8;




Discrete complex analysis

For 2D models (pioneered by Kenyon for dimers)

 Find an observable F (edge density, spin
correlation, exit probability,...) which is

discrete analytic (preholomorphic) or harmonic

 Deduce scaling limit and conformal invariance.
Relation to SLE and exponents

Discrete analytic function

(on a planar graph) =

a flow which satisfies 2 v\l‘

two Kirchhoff laws. b pl

Local relations but

leads to global info!




Ising and SLE

[Chelkak, S] Critical Ising and FK-Ising models have
preholomorphic observables. Interfaces converge weakly
to SLE(3) & SLE(16/3). Strong convergence — more work

[Chelkak DumlmI-Copm Hongler Kemppainen, S]

Hdlm 11/8 Hdim =5/3




Random cluster (FK) model

Fortuin-Kasteleyn mapping
(to the random cluster model)

Rewrite Ising probability: /Q

P ~ N

rob < ] ( + P 8ai)—s(5) .
<ij> \*

-.-

Expand, to each term prescribe an edge configuration:

p — edge is open, — edge is

Edges only connect neighbors of same spin, but not all of them

Erase spins, probability of edge configuration is

-

Prob ~ p# open edges q# open clusters

All sites in a cluster are of the same spin, ¢ ways to chose it.
. . : ~qa—1 1
Probpgtis (s(2) = s(7)) = Probrxk (72 < 3) T + E



FK loop model

Loop representation of the FK model

Configurations are dense loop collections on the medial lattice
Loops separate clusters from

Dobrushin b.c.: besides loops an interface v: a < b 1
For p = ,/q/(1 + /q) the probability Prob = (\/ﬁ)# o



A preholomorphic observable

Which observable is discrete analytic for the FK Ising?
1
F(z) :=E x2e~ - xp (—i > winding(vy,b — z))
¢ A fermion, spin o = 1/2 a
e For general g-FK model take spin
o =1 — 2arccos(,/q/2) O O
Motivation:  orient loops randomly Q

< height function changing by =+1 C .

whenever crossing a loop U b
(geographic map with contour lines)
Orient interface b — z and ¢« — >~ < +2 monodromy at 2

F(E) — Z—l—ﬂ monodromy at z
Complex weights per loop and interface make Z local (cf. [Baxter])



A preholomorphic observable

FK Ising preholomorphic observable: F'(z) :=E x,c~ - W

e Fermionic weight VWV = exp (—i % winding(vy,b — z)/Z)
weight W 1

—1 —1
a 2 b a \ :a:; ) &@?

Note: through a given edge interface always goes in the same
direction, so complex weight is uniquely defined up to sign.

Theorem [S, Chelkak & S). For FK Ising when lattice mesh ¢ — 0
F(z) /e = /®'(z) inside Q,

where ® maps conformally ) to a horizontal strip, a, b — ends.




A preholomorphic observable

Proof: discrete analyticity by local rearrangement

If a-b interface passes through z,
changing connections at x creates two configurations.

Additional loop on the right = weights differ by a factor of | /g — V2



A preholomorphic observable

Proof: discrete CR relation F(N) + F(S) = F(E) + F(W)

N NN F(N)|O N
® - =
W ). E X F(S) | X2 W oA E
L L & L
to a u?S XA [ FW)| XAv2 to a QJS
1 YA FE) |0 !
to b to b

A = exp(—in/4) is the weight per /2 turn. Two configurations
together contribute equally to both sides of the relation:

N2+ XN 4+ XV2=X 14X+ X2
+14VE= (G- )+ (Bt )+ () VB O

WS W=




A preholomorphic observable

Proof: Riemann-Hilbert boundary value problem

When z is on the boundary, winding of the interface b — 2z is uniquely
determined, same as for 9€2 = determine Arg(F') on 9X).

F' solves the discrete version of the covariant Riemann BVP
Im (F(z) - (tangent to 92)7) = 0 with o = 1/2.

Continuum case: F' = (®')7, where ® : 2 — horizontal strip.
Proof: convergence Consider f; F?(u)du — solves Dirichlet BVP.

Big problem: in the discrete case F'? is no longer analytic!!!




A preholomorphic observable

Proof of convergence: set H := 5-Im [~ F(2)?dz
e well-defined

e approximately discrete harmonic: AH = + |8F\2

e H =0 on the arc ab, H = 1 on the arc ba

= H—=Im® where ® is a conformal map to a strip

= VH=®' = =F=3V/¢ O
Problems: we must do all sorts of estimates (Harnack inequality,
normal familes, harmonic measure estimates, . . . ) for approzimately

discrete harmonic or holomorphic functions in the absence of the usual
tools. For more general graphs even worth.

Question: what is the most general discrete setup when one can
get the usual complex analysis estimates? (while being unable to
multiply functions)




Interfaces and SLEs

Proof: convergence of interfaces. Assume J observable
with a conformally invariant limit = [Kemppainen-Smirnov]

= a priori estimates = {~} .. is precompact in a nice space.
Enough to show: limit of any converging subsequence = SLE.

Pick a subsequential limit, map to C, describe by

Loewner Evolution with unknown random driving force w(t).

From the martingale property F(z,Q) = E/F(z,€ \ ~’) of the
observable extract expectation of increments of (7) and w(t)?,
conclude that (/) and w(t)? — 2L are martingales.

o+
By Lévy characterization th (t) 5 B
évy characterization theorem w(t) = :
y Levy o1t
So interface converges to SLE (JLH) i.e. SLE (1—3'.5) when o = % ]



Interfaces and SLEs

Proof: convergence of interfaces. Recall normalization
Gi(z) =z —w(t) +2t/z + O (1/2?) at oc.

z, z.
F = Eqjo,g F f
|
(log(=)")? Eg, (log(Gt)")”
||
zla use expansion of G at oo
[
(50422 ) ()
Eq,— (1 + —w(t t)* — Ol
Gtz”’( +z“(}+ 222 (w() o+1 T z3

Rem A posteriori the method calculates all martingale observables for SLE!



How to describe the full scaling limit?

<~

Spin correlations.
(Chelkak, Hongler, Izyurov, Smirnov, . . .)

A collection of clusters or crossings.
(Schramm, Smirnov)

A collection of loops.
(Lawler, Werner, Sheffield, Miller, Wu, . . .)

A branching tree of SLEs.
(Camia-Newman, Sheffield, Kemppainen-Smirnoy, ...)



Exploration tree

cf. Sheffield:

Continuum version

and hexagonal lattice version

(definition less starlight-forward and non-canonical).




Exploration tree

Target independence:
Two branches coincide

until they disconnect the targets,
then they are independent.



Boundary touching loops and exploration tree in FK Ising
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Boundary touching loops and exploration tree in FK Ising




Boundary touching loops and exploration tree in FK Ising
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The loop soup is canonically converted into a tree.
There is also an inverse map from the tree to the loops.



Theorem (Antti Kemppainen — Stanislav Smirnov)

Suppose a sequence of discrete domains (zp €) €5, converges to £ in
Carathéodory metric. Then

@ Branches of discrete exploration trees converge to

SLE(16/3,16/3 — 6).

o Exploration tree converges to a tree of canonically coupled SLEs.

o Soup of loops converges to CLE(16/3) — a soup of SLE loops.

@ Chordal case — arXiv:1509.08858
o Radial case — arXiv:1609.08527
o 4-point case — arXiv:1704.02823



SLE generalizations

o

When exploring a branch, besides the tip and the target we have
an additional marked point on the boundary: the rightmost point
in the explored hull (= the other endpoint of the current loop)
(Chordal case) The Loewner map g:(z) .= G.(z) + U; uniformizes
the tip to U, and the new point to V¢, which flows with the
Loewner flow:

A(Ge(z) + Up) = :

dt hence d{V;) = dt.
6 Vo=, —u)

But now the driving force U, is a BM + a drift depending on V,.
A special role is played by SLE(«, p) processes. In this case V; — U,
is a Bessel process of dimension D =14 2(p+ 2)/x times /& :

AV, — Uy) = —/rdB, + x2 -4t

2 V.- U,
Note: dU; = /sdB; + ...
SLE(x, s — ©) enjoys locality property: it does not see where it is
going until it hits it (a theorem by [Lawler, Schramm & Werner].
Eg., SLE(6) = SLE(6,0) is local and so describes percolation.
We see how SLE(&, » — 6) appear naturally as tree branches.




New observables (from adding a long edge)

~y starts at a

~o starts at ¢

« external connection

b— a

The branch ~ follows v until the next loop-to-loop jump where it
starts to follow new ;.

Set
Yo if vo exits through d @

vo Ll LUy if o exits through b @

Observable is defined as before, and is discrete holomorphic for the
same reasons.

-2
|

b

The boundary conditions are similar with jumps at 4 marked points.

The tree observable is obtained by fusing two marked points.



Simple martingales from the observable

@ The tree branch observable can be calculated: e.g., in the upper
half-plane H with a=u,b=vand c =co with u < v, it is

FHLV(7) = \/l—l—:@ (_ziu T zi v)
FEUnVe(5) — @\/1 + B¢ (_gt(z)l— U, + gt(z)l— Vt)

o U; = gr(’?(t)): Vi = manr(Kr) "t = gt(V)”-
@ t+ V, isincreasing and satisfies LE when t satisfies U, # V,.

@ Then

1
5317 — E(Vt — Ur)-

o Take the leading non-trivial coefficient of fH-%¥" in the expansions
as z — oo. [hen

M, = ++/45;

NIT L= 4(}81;(‘/{; — UIT) — 2t) — M;l — 81'

are martingales.
+ Iindependent random sign for each excursion.



Determination of the driving process

o Note that {t : U, =V} ={r : M, =0}.
e What is the law of (M) if we know that

M{; and Nt — M;l — 81'

are martingales?
Cf. Lévy chracterization of BM and Stroock-Varadhan.

@ Then E[f; xm.—ods| = 0 and (M;) defines a standard Brownian
motion (B;) so that M, = My + f; g.dBs.
o N Is martingale only when

oo =)o ]
EREN
o If we define X; = +/3/16(V; — U;) = /3/16 M2, then
~1dt
dX, — dB, + - =
Xt t+4Xr

o Bessel process of dimension D =3/2.
SLE(®,p) with s =16/3 and p=—-2/3. = p=#x—0.



Clusters, loops and trees

e There is a canonical way to explore
FK clusters, leading to a branching tree
e Tree are equivalent to clusters and loops
 Branches are nicely coupled (coincide up to
separation, then independent)
 Branch independence suggests locality, so
expect a continuum tree of branching SLE(k,k-6)
e There are observables related to the tree
e Characterization of a diffusion by two
moments is possible, gives us a Bessel
process, and hence SLE(16/3,-2/3)
e Similar approach to spin Ising?



Happy birthday!
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