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Overview and Summary
Lecture describes advances on asymptotic behavior of solutions to
nonlinear evolution equations.

For linear equations with time-independent coefficients
description based on spectral resolution, functional calculus.
Classical asymptotic completeness, Agmon-Kato-Kuroda
(60’s, 70’s) for potentials, ongoing studies on variable metrics
(trapping, nontrapping, hyperbolic trapped trajectories).
Two types of nonlinear Hamiltonian equations: those that
admit “solitons” (focusing), and those that do not
(defocusing). For the latter much better understanding,
ultimately want to show that all excess energy radiates off to
spatial infinity (scattering). Focusing equations typically
exhibit finite-time blowup for large data (small data expect
global existence and scattering).
Concentration compactness: Analogue of elliptic technique
(Lions, Struwe, Lieb 80s), developed by Bahouri-Gérard
(1998), Kenig-Merle (2006 etc.)
Invariant manifolds in infinite dimensions (center-stable mfld).
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Linear asymptotic completeness

Linear Schrödinger equation in Rn with suitable decaying potential

i∂tψ −∆ψ + Vψ = 0, ψ(0) ∈ L2(Rd)

exhibits long-term dynamics

ψ(t) =
∑
j

e itEjψj + e−it∆φ0 + oL2(1), t →∞

where (−∆ + V )ψj = Ejψj , Ej ≤ 0 are bound states, φ0 ∈ L2.

Asymptotic completeness of the wave operators

Analogue for nonlinear equation? Soliton resolution problem.
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Linear Klein-Gordon equation

Solve Cauchy problem

�u + u = F in R1+d
t,x , u(0) = f , ut(0) = g

by explicit Duhamel formula (〈a〉 = (1 + |a|2)
1
2 )

u(t) = cos(t〈∇〉)f +
sin(t〈∇〉)
〈∇〉

g +

∫ t

0

sin((t − s)〈∇〉)
〈∇〉

F (s) ds

Energy estimate for ~u := (u, ut), H = H1 × L2(Rd)

‖~u(t)‖H . ‖(f , g)‖H +

∫ t

0
‖F (s)‖2 ds

No time decay. Long-term analysis of nonlinear equations requires
decay properties.
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Klein-Gordon, dispersive and Strichartz estimates

Stationary phase gives that

e±it〈∇〉f (x) =

∫
Rd

e±it〈ξ〉e ix ·ξ f̂ (ξ) dξ

=

∫
R2d

e±it〈ξ〉e i(x−y)·ξ dξ f (y) dy formal

decays like t−
d
2 . Critical points: ±tξ〈ξ〉−1 + x = 0, Hessian

nondegenerate, but as ξ →∞ one principal curvature vanishes.
Stein-Tomas theorem for extension of Fourier transform:(

e±it〈∇〉f
)
(x) =

∫
Rd+1

e i(x ·ξ+tτ)δ(τ ∓ 〈ξ〉)f̂ (ξ) dξ dτ = (G σ)∨

with σ the lift of dξ to hyperboloid, satisfies (with |ξ| ' λ) the
bound ‖u‖Lpt Lqx . 〈λ〉

β‖f ‖2, where 2 < p ≤ ∞, 2 ≤ q ≤ ∞,
1
p + d

2q = d
4 , β = 1

2 (d/2 + 1)(1/q′ − 1/q)
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Cubic nonlinear Klein-Gordon
Energy subcritical model equation:

�u + u = u3 in R1+3
t,x

∀ ~u(0) ∈ H := H1 × L2, there ∃! strong solution (Duhamel sense)

u ∈ C 0([0,T );H1), u̇ ∈ C 0([0,T ); L2)

for some T ≥ T0(‖~u[0]‖H) > 0.

Properties: continuous dependence on data; persistence of
regularity; energy conservation:

E (u, u̇) =

∫
R3

(1

2
|u̇|2 +

1

2
|∇u|2 +

1

2
|u|2 − 1

4
|u|4
)
dx

If ‖~u(0)‖H � 1, then global existence; let T ∗ > 0 be maximal
forward time of existence:

T ∗ <∞ =⇒ ‖u‖L3([0,T∗),L6(R3)) =∞
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Basic well-posedness, focusing cubic NLKG in R3

If T ∗ =∞ and ‖u‖L3([0,T∗),L6(R3)) <∞, then u scatters:
∃ (ũ0, ũ1) ∈ H s.t. for v(t) = S0(t)(ũ0, ũ1) one has

(u(t), u̇(t)) = (v(t), v̇(t)) + oH(1) t →∞

where S0(t) is the free KG evolution. If u scatters, then
‖u‖L3([0,∞),L6(R3)) <∞.

Finite propagation speed: if ~u(0) = 0 on {|x − x0| < R} , then
u(t, x) = 0 on {|x − x0| < R − t, 0 < t < min(T ∗,R)}.

T > 0, exact solution to cubic NLKG

ϕT (t) ∼
√

2(T − t)−1 as t → T+,

Use finite prop-speed to cut off smoothly to neighborhood of cone
|x | < T − t. Gives smooth solution to NLKG, blows up at t = T
or before.
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Payne-Sattinger theorem 1975

Small data: global existence and scattering.
Large data: can have finite time blowup.
Is there a criterion to decide finite time blowup/global existence?
YES if energy is smaller than the energy of the ground state Q
unique positive, radial solution (Coffman) of :

−∆ϕ+ ϕ = ϕ3, ϕ ∈ H1(R3) (1)

Minimization problem

inf
{
‖ϕ‖2

H1 | ϕ ∈ H1, ‖ϕ‖4 = 1
}

has radial solution ϕ∞ > 0, decays exponentially,
Q = λϕ∞, λ > 0. Minimizes the stationary energy (or action)

J(ϕ) :=

∫
R3

(1

2
|∇ϕ|2 +

1

2
ϕ2 − 1

4
|ϕ|4

)
dx

amongst all nonzero solutions of (1). Dilation functional:

K0(ϕ) = 〈J ′(ϕ)|ϕ〉 =

∫
R3

(|∇ϕ|2 + ϕ2 − |ϕ|4)(x) dx
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Payne-Sattinger theorem

Figure: The splitting of J(u) < J(Q) by the sign of K = K0

Theorem (PS 1975)

If E (u0, u1) < E (Q, 0), the dichotomy: K (u0) ≥ 0 global
existence, K (u0) < 0 finite time blowup

Ibrahim-Masmoudi-Nakanishi (2010): Scattering in addition to
global existence. Why wait 35 years? See next slides...
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Concentration Compactness by Bahouri-Gérard

Let {un}∞n=1 free Klein-Gordon solutions in R3 s.t.

sup
n
‖~un‖L∞t H <∞

∃ free solutions v j bounded in H, and (t jn, x
j
n) ∈ R× R3 s.t.

un(t, x) =
∑

1≤j<J

v j(t + t jn, x + x jn) + wJ
n (t, x)

satisfies ∀ j < J, ~wJ
n (−t jn,−x jn) ⇀ 0 in H as n→∞, and

limn→∞(|t jn − tkn |+ |x
j
n − xkn |) =∞∀ j 6= k

dispersive errors wJ
n vanish asymptotically:

lim
J→∞

lim sup
n→∞

‖wJ
n ‖(L∞t Lpx∩L3

tL
6
x )(R×R3) = 0 ∀ 2 < p < 6

orthogonality of the energy:

‖~un‖2
H =

∑
1≤j<J

‖~v j‖2
H + ‖~wJ

n ‖2
H + o(1) n→∞
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Profiles and Strichartz sea

We can extract further profiles from the Strichartz sea if w4
n does

not vanish as n→∞ in a suitable sense. In the radial case this
means limn→∞ ‖w4

n‖L∞t Lpx (R3) > 0.
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Critical wave equation: Kenig-Merle

Payne-Sattinger regime for the energy critical focusing NLW in R3:

utt −∆u − u5 = 0

Stationary solution W (x) = (1 + |x |2/3)−
1
2 , unique radial

solution. Aubin-Talenti solution, extremizer for the critical
embedding Ḣ1(R3) ↪→ L6(R3).

Theorem (KM2007)

Assume (u0, u1) ∈ Ḣ1 × L2, E (u0, u1) < E (W , 0).

If ‖∇u0‖2 < ‖∇W ‖2 then global existence and scattering
(both time directions)

If ‖∇u0‖2 > ‖∇W ‖2 then finite time blowup (both time
directions). type I blowup, based on later work
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Kenig-Merle blueprint for scattering
Small data scattering. Perturbative, based on Strichartz
estimates.

Induction on energy (Bourgain). Suppose result fails at some
energy 0 < E∗ < E (W , 0). Use Bahouri-Gérard decomposition
to find special solution u∗ of energy E∗, with infinite scattering
norm ‖u∗‖L8

0<t<T∗,x
=∞. It follows that trajectory (up to time

of existence T ∗) is precompact, modulo scaling symmetry.
Main point in concentration-compactness: there can be only
one profile, and dispersive error vanishes in energy norm.

Rigidity step: Show there can be no precompact solution of
energy below ground state energy other than zero. Key role
played by monotone quantities such as virial or Morawetz
which express asymptotic outgoing property of waves.
〈ut , x · ∇u〉. Spatial cutoffs needed.
Alternative tool: Exterior energy estimates.

Acta 2008 Kenig-Merle paper more complicated, exclusion of
self-similar blowup, self-similar coordinates.
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Beyond Payne Sattinger in unstable case (subcritical)

Theorem (Nakanishi-S. 2010)

Let E (u0, u1) < E (Q, 0) + ε2, (u0, u1) ∈ Hrad. In t ≥ 0 for NLKG:

1 finite time blowup

2 global existence and scattering to 0

3 global existence and scattering to Q:
u(t) = Q + v(t) + oH1(1) as t →∞, and
u̇(t) = v̇(t) + oL2(1) as t →∞, �v + v = 0, (v , v̇) ∈ H.

All 9 combinations of this trichotomy allowed as t → ±∞.

Applies to all dimensions, subcritical equations for which small
data scattering is known.

Linearized operator L+ = −∆ + 1− 3Q2 has unique negative
eigenvalue.

third alternative is center-stable manifold of codimension 1.
Uniqueness of center-stable manifold.

W. Schlag (University of Chicago) Long term dynamics for nonlinear dispersive equations



The invariant manifolds

Figure: Stable, unstable, center-stable manifolds
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Variational structure above E (Q, 0)

Solution can pass through the balls. Energy is no obstruction
anymore as in the Payne-Sattinger case.
Key to description of the dynamics: One-pass (no return)
theorem. The trajectory can make only one pass through the
balls.
Point: Stabilization of the sign of
K (u(t)) =

∫
|∇u|2 + u2 − u4 dx .

W. Schlag (University of Chicago) Long term dynamics for nonlinear dispersive equations



Numerical 2-dim section through ∂S+ (with R. Donninger)

Figure: (Q + Ae−r2

,Be−r2

)

soliton at (A,B) = (0, 0), (A,B) vary in [−9, 2]× [−9, 9]

RED: global existence, WHITE: finite time blowup, GREEN:
PS+, BLUE: PS−
Our results apply to a neighborhood of (Q, 0), boundary of
the red region looks smooth (caution!)
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Duyckaerts-Kenig-Merle, Exterior Energy Estimates

R3 radial data, free wave �u = 0. Then (R = 0 case!) for one
sign ±

lim
t→±∞

∫
|x |≥|t|

(|∇u|2 + u2
t )(t, x) dx ≥ c

∫
R3

(|∇u|2 + u2
t )(0, x) dx
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Exterior Energy Estimates

Extends to all odd dimensions, nonradial data. Fails in even
dimensions, but holds for data (u0, 0), d = 4, 8, . . ., or (0, u1),
d = 6, 10, . . . (Côte, Kenig. S.)

Obstruction for the case R > 0: Newton potential u(x) = |x |−1

solves �u = 0 in |x | > |t|, has finite energy on |x | ≥ R > 0 but
infinite energy on R3.

If u0 ⊥ |x |−1 in Ḣ1(|x | ≥ R) radial, then

lim
t→±∞

∫
|x |≥|t|+R

(|∇u|2 + u2
t )(t, x) dx ≥ c

∫
|x |≥R

(|∇u|2 + u2
t )(0, x) dx

= c

∫ ∞
R

((ru)2
r + (ru)2

t )(0, r) dr

Analogue in higher odd dimensions but with more obstructions
(Lawrie, Liu, Kenig, S.).
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Exterior Energy Estimates, nonlinear context

Critical equation, Wλ(x) =
√
λW (λx).

Theorem (DKM2012)

Let (u, ut), radial finite energy solution of �u − u5 = 0,
0 ≤ t < T ∗. If u 6∈ {0,±Wλ |∀λ > 0}, then ∃ R > 0, η > 0∫

|x |≥|t|+R
(|∇u|2 + u2

t )(t, x) dx ≥ η, 0 ≤ ±t < T ∗

In particular, nonstationary global solutions radiate off a
positive amount of energy.

Find sequence tn →∞ so that ~u(tn) bounded in Ḣ1 × L2.
Apply concentration compactness to ~u(tn)− ~uL(tn) where uL
is a free wave which carries all energy of ~u in |x | ≥ t − A.

Use theorem to identify all nonzero profiles as Wλ, and
radiative error vanishes.
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DKM soliton resolution

Theorem (DKM2012)

Let (u, ut), radial finite energy solution of �u − u5 = 0,
0 ≤ t < T ∗.

Type I finite time blowup (Ḣ1 × L2 norm becomes infinite).

Type II finite time blowup, multi-bubble representation via Wλ

plus a function constant in time.

Global bounded solutions, multi-bubble representation via Wλ

plus free radiation.

Multi-bubble in infinite time: exists free wave ~v s.t.

~u(t) =
J∑

j=1

(±Wλj (t)(t), 0) + (v(t), vt(t)) + o(1)

λ1(t)� λ2(t)� · · · � λJ(t)� t, t →∞

In finite time, replace ~v by a constant. Absence of self-similar
solutions.
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DKM soliton resolution in other contexts

Existence of such solutions known for one bubble:
Krieger-S-Tataru for finite time, Donninger-Krieger in infinite
time. One expects multi-bubble solutions to be unstable.
DKM method applied to other scenarios:

Exterior equivariant wave maps u : R3 \ B(0, 1)→ S3 with
Dirichlet condition on ∂B and arbitrary data of finite energy.
Scatter to the unique harmonic map in the same equivariance
and degree class as the data. Lawrie-S 11 for zero degree
and 1-equivariance, Kenig-Lawrie-S 13 for nonzero degree,
Kenig-Lawrie-Liu-S 14 for all equivariance classes, degrees.
Observed numerically by Bizon-Chmaj-Maliborski.

Defocusing (and thus stable) radial u5 NLW in R3 with a
potential well. Combines exterior energy estimates with
center-stable manifolds, one-pass theorem (Jia, Liu, S, Xu).

Method appears not to apply in the subcritical case
(propagation speed of Klein-Gordon).
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Defocusing u5 NLW with potential
Consider

�u + Vu + u5 = 0

radial, decaying V , deep enough to trap bound states
−∆ϕ+ Vϕ+ ϕ5 = 0. For generic V finitely many bound states,
and linearized operator Hϕ := −∆ + V + 5ϕ4 has no anomalies
(zero energy resonance or eigenvalues). Ḣ1 × L2(R3) data lead to
global solutions (standard). Long term dynamics?

Theorem (Jia, Liu, S, Xu ’14, ’15)

All radial finite energy solutions scatter (asymptotically free) to
one of the stationary solutions ϕ. Data scattering to ϕ are (i) open
if Hϕ has no negative eigenvalues (ii) form a C 1 path-connected
manifold M in Ḣ1 × L2(R3) of co-dimension equal to number of
negative eigenvalues of Hϕ.

The manifold Mϕ is a global, unbounded, center-stable manifold
associated with stationary solution ϕ. Is it closed?
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Defocusing u5 NLW with potential

Scattering result is an adaptation of DKM technique. One
profile in Bahouri-Gérard decomposition sees potential V (no
scaling) the others do not (scaling).

Potential V perturbative error in |x | ≥ t − A, so exterior
energy methods still apply.

Local construction of Mϕ near any solution scattering to ϕ.
Delicate, radial endpoint for Strichartz. Note difference from
standard center-stable manifold constructions: not near
stationary solution but near a given scattering solution.

The local manifold has repulsive property: If solution remains
near it for all times t ≥ 0, then it lies on it. Perturbative.

Solution leaves, comes back eventually? Nonperturbative.

No-return or one-pass theorem: if the solution exits small
neighborhood of Mϕ then it must emit a fixed quantum of
energy which pushes it away from Mϕ, precluding a near
return. So near but off of Mϕ solution cannot scatter to ϕ.
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Dispersive equations with dissipation

Consider in Rd , d ≤ 6

∂ttu −∆u + 2α∂tu + u − f (u) = 0

data (u(0), ∂tu(0)) ∈ H1 × L2(Rd), α > 0, f ∈ C 1,β(R), odd,
f ′(0) = 0, subcritical. Ambrosetti-Rabinowitz condition: there
exists γ > 0 so that∫

Rd

2(1 + γ)F (ϕ)− ϕf (ϕ) ≤ 0 ∀ϕ ∈ H1(Rd), F ′ = f (?)

For example

f (u) =

m1∑
i=1

ai |u|pi−1u −
m2∑
j=1

bj |u|qj−1u , 1 < qj < pi ≤
d + 2

d − 2
, ∀i , j

ai , bj ≥ 0, am1 > 0 .

(†)

For this class existence, uniqueness of ground state known,
hyperbolicity of linearized operator. We only assume (?) not (†).
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Convergence to equilibria or blowup

Theorem (Burq-Raugel-S ’15)

Let α > 0. Assume that 1 ≤ d ≤ 6 and that nonlinearity satisfies
above conditions. Then any solution with radial H1 × L2 data

1 either blows up in finite time,

2 or exists globally and converges to an equilibrium point
(stationary solution) as t → +∞.

Does not use concentration-compactness, but relies heavily of
results from dynamical systems in infinite dimensions (invariant
manifold theory, Chen-Hale-Tan, Brunovsky-Polacik 90s).

Energy is monotone decreasing:

E (~u(T ))− E (~u(0)) = −2α

∫ T

0
‖ut(t)‖2

2 dt

Implies: ω-limit set of any global solution consists of equilibria
(stationary solutions), or empty.
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Convergence to equilibria or blowup: scheme of proof

Not clear a priori if global solution is bounded in H1 × L2.

Let K0(ϕ) =
∫
Rd |∇ϕ|2 + ϕ2 − ϕf (ϕ) dx . Show ∃ tn →∞ s.t.

K0(tn)→ 0.

Then show that ~u(tn)→ (Q, 0), a stationary solution.

Linearize about (Q, 0). We may or may not have hyperbolicity
of the linearized equation, depends on whether
LQ := −∆ + 1− f ′(Q) has trivial kernel or not; in latter case
kernel is 1-dimensional (due to radial assumption).

Construct stable, unstable, center(un)stable manifolds near
(Q, 0) (Chen-Hale-Tan 1997). Latter only present if LQ has
nontrivial kernel. If present, center manifold is a curve.

Now apply Brunovsky-Polacik (97): if center dynamics is
stable, ~u(t) 6→ (Q, 0) as t →∞ implies
~u(t̃n)→ (Q̃, 0) 6= (Q, 0) which belongs to unstable manifold.
But such an equilibrium cannot lie on unstable manifold, so
done. Stability of center manifold: it is a curve, and infinitely
many equilibria on it. So evolution is trapped between them.
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The spectrum of the linearized flow with dissipation

Figure: The spectrum of the damped equation, 0 < α < 1.
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Some details of proof

One has

γ(‖φ‖2
H1 + ‖ψ‖2

2) ≤ 2(1 + γ)E (φ, ψ)− K0(φ)

So K0(u(t)) ≥ −M implies solution global. Define

y(t) =
1

2
‖u(t)‖2

2 + α

∫ t

0
‖u(s)‖2

2 ds

Then
ÿ(t) = ‖u̇(t)‖2

2 − K0(u(t)) (?)

If K0(u(t)) ≤ −δ, then by strict convexity y(t)→∞ (assume
global solution). If α = 0 then deduce via energy that

ÿ(t) ≥ 2 + γ

γ

ẏ(t)2

y(t)
or

d2

dt2

(
y−η(t)

)
< 0  

So finite time blowup.
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Some more details of proof

Suppose u(t) global solution (and so energy remains positive).
Cannot have K0(u(t)) ≤ −κ < 0 for large times. Also cannot have
K0(u(t)) ≥ κ > 0 for large times: (i) solution is bounded (ii) (?)
implies that

ẏ(t2)− ẏ(t1) ≤
∫ t2

t1

‖u̇(t)‖2
2 dt − (t2 − t1)κ  

Thus, K0(u(tn))→ 0 for some sequence tn →∞. Thus, ‖~u(tn)‖H
uniformly bounded,

∫ tn+1
tn−1 ‖∂tu(t)‖2

2 dt → 0 and
~un(s) := ~u(tn + s), −1 ≤ s ≤ 1 converges to ~u∗ = (Q, 0)
(equilibrium). How to obtain strong convergence in H1: (i)
un(0) ⇀ u∗ in H1 (ii) K0(u∗) = 0 by equilibrium (iii)
K0(un(0))→ 0 (iv) Thus ‖un(0)‖H1 → ‖u∗‖H1 (use compact radial
Rellich embedding on nonlinear term) (v) strong convergence.
More work needed to prove that ‖∂tun(0)‖2 → 0.
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Time dependent asymptotically vanishing damping

Consider in Rd , d ≤ 6

∂ttu −∆u + 2α(t)∂tu + u − f (u) = 0

We assume α(t) > 0,
∫∞

0 α(t) dt =∞. In fact,
α(t) = (1 + t)−a, 0 < a < 1

3 . Let f (u) be as above.

Theorem (Burq-Raugel-S., 17): Any solution with radial
H1 × L2 data

1 either blows up in finite time,

2 or exists globally and converges to an equilibrium point
(stationary solution) as t → +∞.

Not a dynamical proof, does not use invariant manifold. Rather
rely on functional approach,  Lojasiewicz-Simon inequality.
Nonlinearity f (u) = |u|p−1u, case d = 3 and 4 < p < 5 more
delicate, requires more PDE techniques.
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Functional, Lojasiewicz-Simon inequality
Let ~u(t) be a global trajectory. Then energy remains positive, so∫ ∞

0
α(t)‖ut(t)‖2

2 dt <∞

Conclude along some subsequence of integers∫ (n+1)γ

nγ
sa‖ut(s)‖2

2 ds → 0, (n + 1)γ − nγ ≥ naγ , γ = (1− a)−1

In analogy with constant damping conclude

max
In
‖~u(s)− (Q, 0)‖H → 0, In = [nγ , (n + 1)γ ]

Delicate analysis of functional with ν = 1+

Hν(t) = E (~u(t))− E (Q, 0) +
ε0

(1 + t)aν
〈−∆u + u − f (u), ut〉H−1
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Functional,  Lojasiewicz-Simon inequality

Main point is to show that Hν is non-negative, decreasing (for
dim = 3, and 4 < p < 5 more complicated). Interplay between
Hν , Ḣν , and the stationary energy J. Analysis hinges on
 Lojasiewicz-Simon inequality in the radial setting

|J(u)− J(Q)| ≤ C‖ −∆u + u − f (u)‖2
H−1 , ‖u − Q‖H1 � 1

Note that J ′(u) appears on the right-hand side. Easy if
linearization −∆ + 1− f ′(Q) has trivial kernel. In the radial
setting we know that kernel is at most one-dimensional.

W. Schlag (University of Chicago) Long term dynamics for nonlinear dispersive equations



ODE Gradient flow via  Lojasiewicz in Rn

F : Ω→ R real-analytic on some domain Ω ⊂ Rn, ∇F (a) = 0.
There exists 1 < θ ≤ 2 so that

|F (x)− F (a)| ≤ C |∇F (x)|θ, ∀ |x − a| < ε (?)

Consider ODE

u̇(t) +∇F (u(t)) = 0, u(0) = u0 ∈ Rn

If trajectory global and bounded, then ω limit set is exactly one
point. Idea: u(tn)→ p along some sequence going to ∞. Consider
Lyapunov functional with θ = 2, a = p in (?)

G (u) := F (u)− F (p)

Then d
dtG (u(t)) = −|∇F (u(t))|2 = −|u̇(t)|2 ≤ −cG (u(t)).

Exponential decrease and convergence.
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