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Mathematics for physics on non-smooth spaces?

The world is often non-Euclidean, but it is still structured.
Address many problems with statistical physics. Structure
is conformal invariance. Tools include SLE, CLE, LQV,
GFF.
It is possible to do DE and PDE on spaces with quite
limited structure.

Analysis on metric measure spaces, first order calculus
structure
Analysis on fractals, self-similar, self-affine, random
self-similar or self-affine structures.
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Diffusion on fractals

One of the simplest PDE: the heat equation

∂tu = ∆u

Solution may be realized using Brownian motion.
Physicists: random walks on simple fractals like Sierpinski
Gasket via renormalization group methods
Result has “anomolous diffusion”; heat spreads more
slowly than in Rn because must get around “holes”.
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Diffusion on fractals via probability

(Goldstein ’87, Kusuoka ’87, Barlow-Perkins ’88) Sierpinski
Gasket is “nearly disconnected”.

If there is a random walk and one stops it at scale n
disconnection points result is a random walk on graph Gn.
Renormalized copies of these random walks converge
(weakly) to a random walk on SG.
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Diffusion on fractals via probability

Fractals that are more connected are more difficult. For
example, the “pieces” of the Sierpinski carpet connect at
edges rather than points.
Barlow-Bass ’89 constructed a Brownian motion on the SC
Kusuoka-Zhou ’92 showed there was a self-similar
Brownian motion on SC
Barlow-Bass-Kumagai-Teplyaev ’09 showed uniqueness
In general it is quite a lot of work to prove existence and
uniqueness of Brownian motions on fractals. Most
techniques require a lot of symmetry or the solution of a
difficult non-linear fixed point problem. (Hambly, Kumagai,
Lindstrom, Metz, Sabot, Teplyaev.)
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More PDE

Classical functional analysis connects Brownian motion to
Dirichlet forms (think of

∫
|∇f |2)

Self-adjoint Markovian operators (eg ∆)
Semigroups like et∆

Can construct a self-similar Dirichlet form and Laplacian
directly on certain self-similar fractals (Kigami).
Each approach has its strengths: probabilistic
constructions often come with (very useful) heat kernel
estimates, Dirichlet form construction gives more
information about functions.
Having any of these gives access to a basic differential
operator of physics, a type of Laplacian, so we get other
natural DE and PDE.
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A setting for PDE in “rough spaces”

Metric measure space (X ,d , µ).
No assumption of Euclidean structure
Instead assume there is a Dirichlet form E, meaning:

non-negative definite symmetric quadratic form
dense domain dom(E) ⊂ L2(µ).
Markov property: if u ∈ dom(E) then so is
ũ = min{1,max{0,u}}, and E(ũ) ≤ E(u).

Associated “Laplacian” L, with E(u, v) =
∫

(−∆u)v dµ.
non-positive definite, self adjoint
dense domain dom(L) ⊂ L2(µ)
Markovian

Associated Markovian semigroup etL and Brownian
motion, perhaps with heat kernel estimates.
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Associated “Laplacian” L, with E(u, v) =
∫

(−∆u)v dµ.
non-positive definite, self adjoint
dense domain dom(L) ⊂ L2(µ)
Markovian

Associated Markovian semigroup etL and Brownian
motion, perhaps with heat kernel estimates.

8 / 15



Sobolev Algebra problem

A natural domain for PDE based on L is a Sobolev space
defined using a Riesz potential

W α,p
L

=
{
f ∈ Lp : (−L)α/2f ∈ Lp

}
with ‖f ‖α,p = ‖f ‖p+‖(−L)α/2f ‖p

If we want to consider non-linear PDE then it is important
to know (at least) whether products and powers of
functions in W α,p are again in W α,p.
Sobolev Algebra Problem: given L, find conditions on α
and p that imply W α,p is an algebra (or W α,p ∩ L∞ or
Ẇ α,p ∩ L∞ is an algebra).

9 / 15



Sobolev Algebra problem

A natural domain for PDE based on L is a Sobolev space
defined using a Riesz potential

W α,p
L

=
{
f ∈ Lp : (−L)α/2f ∈ Lp

}
with ‖f ‖α,p = ‖f ‖p+‖(−L)α/2f ‖p

If we want to consider non-linear PDE then it is important
to know (at least) whether products and powers of
functions in W α,p are again in W α,p.
Sobolev Algebra Problem: given L, find conditions on α
and p that imply W α,p is an algebra (or W α,p ∩ L∞ or
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History

In the Euclidean setting, so for now X = Rd , L = ∆.

Strichartz, ’67: W α,p is an algebra if 1 < p < ∞ and αp > d .
The proof uses a characterization

‖f ‖α,p ≡ ‖f ‖p + ‖Sαf ‖p when α ∈ (0,1)

Sα(f )2 =

∫ ∞

0

(?
B(x ,r)

∣∣∣f (y) − f (x)
∣∣∣dy

)2 dr
r1+2α

as well as a Leibniz calculation for Sαf and Sobolev
embedding.
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History

In the Euclidean setting, so for now X = Rd , L = ∆.

Kato-Ponce, ’88: W α,p ∩ L∞ is an algebra if 1 < p < ∞ and
α > 0
Proof by paraproducts: some algebra reduces Fourier side
to Coifman-Meyer multiplier. Use David-Journe for Lp

bounds.
Gulisashvili-Kon, ’96 Ẇ α,p ∩ L∞ is an algebra if 1 < p < ∞

and α > 0

10 / 15



History

In the Euclidean setting, so for now X = Rd , L = ∆.

Mazya and Shaposhnikova have an enormous book on this
problem for Sobolev spaces, pairs of Sobolev spaces,
Besov pairs, domains in Rd , etc.
Runst and Sickel also have many results.
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Further Generalizations

Coulhon-Russ-Tardivel, ’00: Lie groups with polynomial
volume growth and Riemannian manifolds under certain
conditions, using estimates like those of Strichartz. Method
requires volume doubling and pointwise Gaussian bounds
for the gradient of the heat kernel.
Badr-Bernicot-Russ ’11: Riemannian manifolds with
Poincare inequality, boundedness of Riesz transforms and
some other conditions weaker than previously known,
using heat operator paraproducts.
Bernicot-Coulhon-Frey ’15: Metric measure spaces with
Dirichlet form, intrinsic metric, Gaussian heat bounds, Lq

bounds for the gradient of the heat kernel, via heat
operator paraproducts.
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Obstructions and counterexamples

Ben-Bassat–Strichartz–Teplyaev ’99. On Sierpinski gasket
with self-similar Laplacian L and self-similar measure µ, if
u is a nonconstant function with Lu continous then L(u2)
is a measure singular to µ.
Coulhon-R. ’16. Given α ∈ (1,2), p ∈ (1,∞] with αp > 2
there is a compact metric space X with Ahlfors regular µ
and densely defined, non-positive definite, self-adjoint,
Markovian, strongly local operator L such that neither
W α,p ∩ L∞ nor Ẇ α,p ∩ L∞ is an algebra.
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Remarks on the proof

Estimates of local behavior of functions in Ẇ α,p near points
of the graph Gm to give a two-term Taylor-type expansion.
Roughly, if F = (−L)−α/2f for f ∈ Lp then at x0 ∈ Gm

F (x) − F (x0) ∼ C1d(x , x0)β1 + C2d(x , x0)β2

(difference quotients are actually estimated in lq of graph).
The values β1, β2 depend on the measure scaling and
Laplacian scaling of the fractal. We arrange that 2β1 < β2.
Then if C1 , 0 one has F 2 < Ẇ α,p because

F 2(x) − F 2(x0) = 2F (x0)
(
F (x) − F (x0)

)
+

(
F (x) − F (x0)

)2

∼ 2C1F (x0)d(x , x0)β1 + C2
1d(x , x0)2β1

But one can prove that a non-constant F ∈ Ẇ α,p has a
non-zero C1 at some x0, so Ẇ α,p is not an algebra.
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of the graph Gm to give a two-term Taylor-type expansion.
Roughly, if F = (−L)−α/2f for f ∈ Lp then at x0 ∈ Gm

F (x) − F (x0) ∼ C1d(x , x0)β1 + C2d(x , x0)β2

(difference quotients are actually estimated in lq of graph).
The values β1, β2 depend on the measure scaling and
Laplacian scaling of the fractal. We arrange that 2β1 < β2.
Then if C1 , 0 one has F 2 < Ẇ α,p because
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of the graph Gm to give a two-term Taylor-type expansion.
Roughly, if F = (−L)−α/2f for f ∈ Lp then at x0 ∈ Gm

F (x) − F (x0) ∼ C1d(x , x0)β1 + C2d(x , x0)β2

(difference quotients are actually estimated in lq of graph).
The values β1, β2 depend on the measure scaling and
Laplacian scaling of the fractal. We arrange that 2β1 < β2.
Then if C1 , 0 one has F 2 < Ẇ α,p because
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The class of fractals

On most known fractals with Laplacian one gets some
restriction (based on specific scaling properties of measure
and Laplacian).
To obtain the maximal range for which our argument
precludes W α,p ∩ L∞ from being an algebra we use
generalized Vicsek sets for which Barlow proved one has
control of the scalings by choosing dimension and number
of cells.
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There is still work to do

Red: Our counterexamples
Green: Positive results under assumption of intrinsic
metric, volume doubling, on-diagonal heat kernel estimates
with

√
t , Lq estimates for the gradient of the heat kernel,

etc. (Bernicot-Coulhon-Frey ’15)

1
α

1 − ν
2

1

2

1
p 1

2

15 / 15


