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Weighted Inequalities

Weighted inequalities

Question (Two-weights Lp-inequalities for operator T )

Is there a constant Cp(u, v) > 0 such that

‖Tf‖Lp(v) ≤ CT,p(u, v) ‖f‖Lp(u) for all f ∈ Lp(u)?

The weights u, v are a.e. positive locally integrable functions on Rd.
f ∈ Lp(u) iff ‖f‖Lp(u) := (

´
|f(x)|pu(x) dx)1/p <∞.

Linear or sublinear operator T : Lp(u)→ Lp(v).

Goals
1 Given operator T , identify and classify weights u, v for which the

operator T is bounded from Lp(u) to Lp(v).
2 Understand nature of constant CT,p(u, v).
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Weighted Inequalities

We concentrate on one-weight Lp inequalities: u = v = w, for
Calderón-Zygmund singular integral operators.

Question (One-weight Lp inequality for operator T )

Is there a constant CT,p(w) > 0 such that

‖Tf‖Lp(w) ≤ CT,p(w) ‖f‖Lp(w), for all f ∈ Lp(w)?

We study one-weight inequalities in Lp(w) for Calderón-Zygmund
operators, and their commutators [T, b] := Tb− bT with functions
b ∈ BMO. More specifically, for simpler dyadic operators such as

the martingale transform Tσ,
Petermichl’s Haar shift operator X (“Sha”),
the dyadic paraproduct πb.

CZ operators are bounded in Lp(w), when the weight w is in the
Muckenhoupt Ap-class (Coifman-Fefferman ’74), same holds for
commutators (Alvarez-Bagby-Kurtz-Pérez ’96).
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Weighted Inequalities

Ap weights

Definition
A weight w is in the Muckenhoupt Ap class if its Ap characteristic,
[w]Ap is finite, where,

[w]Ap := sup
Q

(
1

|Q|

ˆ
Q
w dx

)(
1

|Q|

ˆ
Q
w−1/(p−1)dx

)p−1

, 1 < p <∞ ,

the supremum is over all cubes in Rd with sides parallel to the axes.

Note that a weight w ∈ A2 if and only if

[w]A2 := sup
Q

(
1

|Q|

ˆ
Q
w dx

)(
1

|Q|

ˆ
Q
w−1 dx

)
<∞.

Example
In R, w(x) := |x|α, w ∈ Ap ⇔ −1 < α < p− 1.
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Weighted Inequalities

An application to quasi-conformal mappings

Astala, Iwaniek, Saksman ’01 showed that for 1 < K <∞
Every weakly K-quasi-regular mapping, contained in a Sobolev
space W 1,q

loc (Ω) with 2K/(K + 1) < q ≤ 2, is quasi-regular on Ω.
For each q < 2K/(K + 1) there are weakly K-quasi-regular
mappings f ∈W 1,q

loc (C) which are not quasi-regular.
They conjectured that all weakly K-quasi-regular mappings
f ∈W 1,q

loc with q = 2K/(K + 1) are in fact quasi-regular.
[AIS, Proposition 22] They reduced the conjecture to showing that
the Beurling transform T satisfies linear bounds in Lp(w) for p > 1

‖Tφ‖Lp(w) ≤ C(p)[w]Ap‖φ‖Lp(w), ∀w ∈ Ap.

As it turns out 1 < q < 2 and p = q′ > 2 are the values of interest.
Linear bounds for the Beurling transform and p ≥ 2 were proved by
Petermichl-Volberg ’02. As a consequence the regularity at the
borderline case q = 2K/(K + 1) was stablished.
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Weighted Inequalities

Commutators [T, b] = Tb− bT

Theorem (Chung, P., Pérez ‘12)
Given linear operator T , if for all w ∈ A2 there exists a CT,d > 0 such
that for all f ∈ L2(w),

‖Tf‖L2(w) ≤ CT,d[w]αA2
‖f‖L2(w).

then its commutator with b ∈ BMO will satisfy,

‖[T, b]f‖L2(w) ≤ C∗T,d[w]α+1
A2
‖b‖BMO‖f‖L2(w).

Proof uses classical Coifman-Rochberg-Weiss ‘76 argument based
on (i) Cauchy integral formula; (ii) quantitative Coifman-Fefferman
result: w ∈ A2 implies w ∈ RHq with q = 1 + 1/25+d[w]A2 and
[w]RHq ≤ 2; (iii) quantitative version: b ∈ BMO implies eαb ∈ A2

for α small enough with control on [eαb]A2 .
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Weighted Inequalities

Some generalizations

Higher order commutators T kb := [b, T k−1
b ] (powers α+ k, k).

Sharp for all k ≥ 1 and all dimensions, as examples involving the
Riesz transforms show, with α = 1. Extrapolated bounds are sharp
for all 1 < p <∞, Chung, P. Pérez ‘12.

Extensions to commutators with fractional integral operators,
two-weight problem Cruz-Uribe, Moen ‘12

On Lr(w) with initial [w]αAr
, and final [w]

α+max{1, 1
r−1
}

Ar
, P. ‘13.

Mixed A2 −A∞, Hytönen, Pérez ’13 showed for T CZ

‖[T, b]‖L2(w) ≤ Cn‖b‖BMO[w]
1
2
A2

(
[w]A∞ + [w−1]A∞

) 3
2

See also Ortiz-Caraballo, Pérez, Rela ‘13.
Matrix valued operators Isralowitch, Kwon, Pott ‘15
Two weight setting Holmes, Lacey, Wick ‘16, also for biparameter
Journé operators Holmes, Petermichl, Wick ‘17
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Higher order commutators T kb := [b, T k−1
b ] (powers α+ k, k).

Sharp for all k ≥ 1 and all dimensions, as examples involving the
Riesz transforms show, with α = 1. Extrapolated bounds are sharp
for all 1 < p <∞, Chung, P. Pérez ‘12.
Extensions to commutators with fractional integral operators,
two-weight problem Cruz-Uribe, Moen ‘12
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r−1
}

Ar
, P. ‘13.
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Weighted Inequalities

A2 Conjecture (Now Theorem)

Transference theorem for commutators are useless unless there are
operators known to obey an initial Lr(w) bound.

Do they exist? Yes,
they do, not only Beurling transform.

Theorem (Hytönen ‘12)
Let T be a Calderón-Zygmund operator, w ∈ A2. Then there is a
constant CT,d > 0 such that for all f ∈ L2(w),

‖Tf‖L2(w) ≤ CT,d[w]A2 ‖f‖L2(w).

As a corollary we conclude that for all Calderón-Zygmund operators T ,

‖[T, b]f‖L2(w) ≤ CT,d‖b‖BMO[w]2A2
‖f‖L2(w).

‖[T kb f‖L2(w) ≤ CT,d‖b‖kBMO[w]1+k
A2
‖f‖L2(w).
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Weighted Inequalities

Chronology of first Linear Estimates on L2(w)

Maximal function (Buckley ‘93)
Martingale transform (Wittwer ‘00)
Dyadic and continuous square function (Hukovic,Treil,Volberg ‘00;
Wittwer ‘02)
Beurling transform (Petermichl, Volberg ‘02)
Hilbert transform (Petermichl (’03) ‘07)
Riesz transforms (Petermichl ‘08)
Dyadic paraproduct in R (Beznosova ‘08), Rd (Chung ‘11).

Estimates based on Bellman functions and (bilinear) Carleson estimates
(except for maximal function). The Bellman function method was
introduced to harmonic analysis by Nazarov, Treil, Volberg (NTV).
How about Lp(w) estimates?
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Weighted Inequalities

Sharp extrapolation d’après Rubio de Francia ‘82

Theorem (Dragic̆ević, Grafakos, P. , Petermichl ‘05)
If for all w ∈ Ar there is α > 0, and C > 0 such that

‖[Tf‖Lr(w) ≤ CT,r,d[w]αAr
‖f‖Lr(w) for all f ∈ Lr(w).

then for each 1 < p <∞ and for all w ∈ Ap, there is Cp,r > 0

‖[Tf‖Lp(w) ≤ CT,p,r,d[w]
αmax {1, r−1

p−1
}

Ap
‖f‖Lp(w) for all f ∈ Lp(w).

Another proof Duoandikoetxea ‘11. Key are Buckley’s ‘93 sharp
bounds for the maximal function

‖Mf‖Lp(w) ≤ Cp[w]
1

p−1

Ap
‖f‖Lp(w).

Beautiful proof by Lerner ‘08, better Ap −A∞ estimates HytPz ‘11,
extensions to spaces of homogeneous type HytKairema ‘10.
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Weighted Inequalities

Sharp extrapolation d’après Rubio de Francia ‘82

Theorem (Dragic̆ević, Grafakos, P. , Petermichl ‘05)
If for all w ∈ Ar there is α > 0, and C > 0 such that

‖[Tf‖Lr(w) ≤ CT,r,d[w]αAr
‖f‖Lr(w) for all f ∈ Lr(w).

then for each 1 < p <∞ and for all w ∈ Ap, there is Cp,r > 0

‖[Tf‖Lp(w) ≤ CT,p,r,d[w]
αmax {1, r−1

p−1
}

Ap
‖f‖Lp(w) for all f ∈ Lp(w).

Another proof Duoandikoetxea ‘11. Key are Buckley’s ‘93 sharp
bounds for the maximal function

‖Mf‖Lp(w) ≤ Cp[w]
1

p−1

Ap
‖f‖Lp(w).

Beautiful proof by Lerner ‘08, better Ap −A∞ estimates HytPz ‘11,
extensions to spaces of homogeneous type HytKairema ‘10.

María Cristina Pereyra (UNM) 11 / 35



Weighted Inequalities

Sharp extrapolation d’après Rubio de Francia ‘82

Theorem (Dragic̆ević, Grafakos, P. , Petermichl ‘05)
If for all w ∈ Ar there is α > 0, and C > 0 such that

‖[Tf‖Lr(w) ≤ CT,r,d[w]αAr
‖f‖Lr(w) for all f ∈ Lr(w).

then for each 1 < p <∞ and for all w ∈ Ap, there is Cp,r > 0

‖[Tf‖Lp(w) ≤ CT,p,r,d[w]
αmax {1, r−1

p−1
}

Ap
‖f‖Lp(w) for all f ∈ Lp(w).

Another proof Duoandikoetxea ‘11. Key are Buckley’s ‘93 sharp
bounds for the maximal function

‖Mf‖Lp(w) ≤ Cp[w]
1

p−1

Ap
‖f‖Lp(w).

Beautiful proof by Lerner ‘08, better Ap −A∞ estimates HytPz ‘11,
extensions to spaces of homogeneous type HytKairema ‘10.
María Cristina Pereyra (UNM) 11 / 35



Weighted Inequalities

Sharp extrapolation is not sharp for each operator

Example
Start with Buckley’s sharp estimate on Lr(w) for the maximal function,
extrapolation will give sharp bounds only for p < r.

Example
Sharp extrapolation from r = 2, α = 1, is sharp for the martingale,
Hilbert, Beurling-Ahlfors and Riesz transforms for all 1 < p <∞ (for
p > 2 Petermichl, Volberg ‘02, ‘07, ‘08; 1 ≤ p < 2 DGPPet).

Example

Extrapolation from linear bound in L2(w) is sharp for the dyadic
square function only when 1 < p ≤ 2 ("sharp" DGPPet, "only" Lerner
‘07). However, extrapolation from square root bound on L3(w) is sharp
(Cruz-Uribe, Martell, Pérez ‘12)
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Weighted Inequalities

Some generalizations

Off-diagonal and partial range extrapolation. Among the
applications, they prove by iteration a multivariable extrapolation
theorem and give a sharp bound for Calderón-Zygmund operators
on Lp(w) for weights in Aq (q < p), Duoandicoetxea ‘11.

Sharp estimates for the Bergman projection in weighted Bergman
spaces in terms of the Békollé constant, using a sparse dyadic
operator and an adaptation of a method of Cruz-Uribe, Martell
and Pérez, Reguera, Pott ‘13.
Extrapolation theorem towards R-boundedness on weighted
Lebesgue spaces over locally compact abelian groups. This result
can be applied to show maximal Lp regularity for differential
operators that correspond to parabolic evolution equations subject
to more general spatial geometries, Jonas Sauer ‘15.
García-Cuerva, Rubio de Francia ‘85, and Cruz-Uribe, Martell,
Pérez ‘11.
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Dyadic harmonic analysis on R

Dyadic vs Continuous Harmonic Analysis

Martingale transform a dyadic toy model for CZ operators.

Hilbert transform H, prototypical CZ operator, commutes with
translations, dilations and anti-commutes with reflections. A linear
and bounded operator T on L2(R) with those properties must be a
constant multiple of the Hilbert transform: T = cH.
Using this principle, (Stefanie Petermichl ‘00) showed that one can
write H as a suitable “average of dyadic shift operators”.
Similarly for Beurling and Riesz transforms, and all CZ operators.
Current Fashion: dominate (pointwise or else) all sorts of operators
by sparse positive dyadic operators. Identifying the sparse
collection involves using stopping-time techniques a favorite in the
Garnett-Jones family!
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Dyadic harmonic analysis on R

Dyadic intervals

Definition
The standard dyadic intervals D is the collection of intervals of the form
[k2−j , (k + 1)2−j), for all integers k, j ∈ Z.

They are organized by generations: D = ∪j∈ZDj , where I ∈ Dj iff
|I| = 2−j . Each generation is a partition of R. They satisfy

Properties
Nested: I, J ∈ D then I ∩ J = ∅, I ⊆ J , or J ⊂ I.
One parent. if I ∈ Dj then there is a unique interval Ĩ ∈ Dj−1 (the
parent) such that I ⊂ Ĩ, and |Ĩ| = 2|I|.
Two children: There are exactly two disjoint intervals Ir, Il ∈ Dj+1

(the right and left children), with I = Ir ∪ Il, |I| = 2|Ir| = 2|Il|.

Note: 0 separates positive and negative dyadic interval, 2 quadrants.
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Dyadic harmonic analysis on R

Random dyadic grids on R

Definition
A dyadic grid in R is a collection of intervals, organized in generations,
each of them being a partition of R, that have the nested, one parent,
and two children per interval properties.

For example, the shifted and rescaled regular dyadic grid will be a
dyadic grid. However these are not all possible dyadic grids.
The following parametrization will capture all dyadic grids on R.

Lemma
For each scaling or dilation parameter r with 1 ≤ r < 2, and the
random parameter β with β = {βi}i∈Z, βi = 0, 1, let xj =

∑
i<−j βi2

i,
the collection of intervals Dr,β = ∪j∈ZDr,βj is a dyadic grid. Where

Dr,βj := rDβj , and Dβj := xj +Dj .
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Dyadic harmonic analysis on R

The advantage of this parametrization is that there is a very natural
probability space, say (Ω,P) associated to the parameters,
Ω = [1, 2)× {0, 1}Z. Averaging here means calculating the expectation
in this probability space, that is EΩf =

´
Ω f(ω) dP(ω).

Random dyadic grids have been used for example on:
Study of T (b) theorems on metric spaces with non-doubling
measures, NTV ‘97,‘03, also Hyt, Martikainen ‘12.
Hytönen’s representation theorem, Hytönen ‘12.
Generalizations to spaces of homogeneous type (SHT) Hyt,
Kairema ‘10, also Hyt, Tapiola ‘15, following pioneering work
Christ ‘90.
Two-weight problem for Hilbert transform Lacey, Sawyer, Shen,
Uriarte-Tuero ‘14.
BMO from dyadic BMO on the bidisc and product spaces of SHT
Pipher, Ward ‘08, Chen, Li, Ward ‘13, inspired by celebrated
Garnett and Jones ‘82.
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Dyadic harmonic analysis on R

Haar basis

Definition
Given an interval I, its associated Haar function is defined to be

hI(x) := |I|−1/2
(
1Ir(x)− 1Il(x)

)
,

where 1I(x) = 1 if x ∈ I, zero otherwise.

{hI}I∈D is a complete orthonormal system in L2(R) (Haar 1910).
The Haar basis is an unconditional basis in Lp(R) and in Lp(w) if
w ∈ Ap (Treil-Volberg ’96) for 1 < p <∞. Deduced from
boundedness of the martingale transform

Definition (The Martingale transform)

Tσf(x) :=
∑

I∈D σI〈f, hI〉hI(x), where σI = ±1.
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Dyadic harmonic analysis on R

Petermichl’s dyadic shift operator

Definition
Petermichl’s dyadic shift operator X (pronounced “Sha”) associated to
the standard dyadic grid D is defined for functions f ∈ L2(R) by

Xf(x) :=
∑
I∈D
〈f, hI〉HI(x),

where HI = 2−1/2(hIr − hIl).

X is an isometry on L2(R), i.e. ‖Xf‖2 = ‖f‖2.
Notice that XhJ(x) = HJ(x). The profiles of hJ and HJ can be
viewed as a localized sine and cosine. First indication that the
dyadic shift operator maybe a good dyadic model for the Hilbert
transform.
More evidence comes from the way the family {Xr,β}(r,β)∈Ω

interacts with translations, dilations and reflections.

María Cristina Pereyra (UNM) 19 / 35



Dyadic harmonic analysis on R

Petermichl’s dyadic shift operator

Definition
Petermichl’s dyadic shift operator X (pronounced “Sha”) associated to
the standard dyadic grid D is defined for functions f ∈ L2(R) by

Xf(x) :=
∑
I∈D
〈f, hI〉HI(x),

where HI = 2−1/2(hIr − hIl).

X is an isometry on L2(R), i.e. ‖Xf‖2 = ‖f‖2.

Notice that XhJ(x) = HJ(x). The profiles of hJ and HJ can be
viewed as a localized sine and cosine. First indication that the
dyadic shift operator maybe a good dyadic model for the Hilbert
transform.
More evidence comes from the way the family {Xr,β}(r,β)∈Ω

interacts with translations, dilations and reflections.

María Cristina Pereyra (UNM) 19 / 35



Dyadic harmonic analysis on R

Petermichl’s dyadic shift operator

Definition
Petermichl’s dyadic shift operator X (pronounced “Sha”) associated to
the standard dyadic grid D is defined for functions f ∈ L2(R) by

Xf(x) :=
∑
I∈D
〈f, hI〉HI(x),

where HI = 2−1/2(hIr − hIl).

X is an isometry on L2(R), i.e. ‖Xf‖2 = ‖f‖2.
Notice that XhJ(x) = HJ(x). The profiles of hJ and HJ can be
viewed as a localized sine and cosine. First indication that the
dyadic shift operator maybe a good dyadic model for the Hilbert
transform.

More evidence comes from the way the family {Xr,β}(r,β)∈Ω

interacts with translations, dilations and reflections.

María Cristina Pereyra (UNM) 19 / 35



Dyadic harmonic analysis on R

Petermichl’s dyadic shift operator

Definition
Petermichl’s dyadic shift operator X (pronounced “Sha”) associated to
the standard dyadic grid D is defined for functions f ∈ L2(R) by

Xf(x) :=
∑
I∈D
〈f, hI〉HI(x),

where HI = 2−1/2(hIr − hIl).

X is an isometry on L2(R), i.e. ‖Xf‖2 = ‖f‖2.
Notice that XhJ(x) = HJ(x). The profiles of hJ and HJ can be
viewed as a localized sine and cosine. First indication that the
dyadic shift operator maybe a good dyadic model for the Hilbert
transform.
More evidence comes from the way the family {Xr,β}(r,β)∈Ω

interacts with translations, dilations and reflections.
María Cristina Pereyra (UNM) 19 / 35



Dyadic harmonic analysis on R

Petermichil’s representation theorem for H

Each dyadic shift operator does not have the symmetries that
characterize the Hilbert transform, but an average over all random
dyadic grids does.

Theorem (Petermichl ‘00)

EΩXr,β =

ˆ
Ω
Xr,βdP(r, β) = cH,

Result follows once one verifies that c 6= 0 (which she did!).
Xr,β are uniformly bounded on Lp ⇒ Riesz’s Theorem: H is
bounded on Lp.
Similar representation works for the Beurling-Ahlfors (Petermichl,
Volberg ‘02), Riesz transforms (Petermichl ‘08).
There is a representation valid for all Calderón-Zygmund singular
integral operators (Hytönen ‘12).
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Dyadic harmonic analysis on R

Boundedness of H on weighted Lp

Theorem (Hunt, Muckenhoupt, Wheeden ‘73)

w ∈ Ap ⇔ ‖Hf‖Lp(w) ≤ Cp(w)‖f‖Lp(w).

Dependence of the constant on [w]Ap was found 30 years later.

Theorem (Petermichl ‘07)

‖Hf‖Lp(w) ≤ Cp[w]
max {1, 1

p−1
}

Ap
‖f‖Lp(w).

Sketch of the proof.
For p = 2 suffices to find uniform (on the grids) linear estimates for
Petermichl’s shift operator on L2(w). For p 6= 2 sharp extrapolation
automatically gives the result from the linear estimate on L2(w).
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Dyadic harmonic analysis on R

Two-weight problem for Hilbert transform

Cotlar-Sadosky ‘80s à la Helson-Szegö.
Various sets of sufficient conditions in between à la Muckenhoupt.
Necessary and sufficient conditions Lacey, Sawyer, Shen,
Uriarte-Tuero, and Lacey ‘14 . These are quantitative "Sawyer
type" estimates.
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Dyadic harmonic analysis on R

Haar shift operators of arbitrary complexity

Definition (Lacey, Reguera, Petermichl ‘10)

A Haar shift operator of complexity (m,n) is

Xm,nf(x) :=
∑
L∈D

∑
I∈Dm(L),J∈Dn(L)

cLI,J〈f, hI〉hJ(x),

where the coefficients |cLI,J | ≤
√
|I| |J |
|L| , and Dm(L) denotes the dyadic

subintervals of L with length 2−m|L|.

The cancellation property of the Haar functions and the
normalization of the coefficients ensures that ‖Xm,nf‖2 ≤ ‖f‖2.
Tσ is a Haar shift operator of complexity (0, 0).
X is a Haar shift operator of complexity (0, 1).
The dyadic paraproduct πb is not one of these.
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Dyadic harmonic analysis on R

The dyadic paraproduct

Definition

The dyadic paraproduct associated to b ∈ BMOd is

πbf(x) :=
∑
I∈D

mIf 〈b, hI〉hI(x),

where mIf = 1
|I|
´
I f(x) dx = 〈f,1I/|I|〉.

Paraproduct and adjoint are bounded operators in Lp(R) if and
only if b ∈ BMOd. (A locally integrable function b ∈ BMOd iff for all J ∈ D there is

C > 0 such that
´
J |b(x)−mJb|2dx =

∑
I∈D(J) |〈b, hI〉|2 ≤ C|J|. )

Formally, fb = πbf + π∗bf + πfb.
πb bounded in L2(w) iff w ∈ A2, moreover

‖πbf‖L2(w) ≤ C[w]A2‖f‖L2(w) (Beznosova ’08).
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Dyadic harmonic analysis on R

Estimates for Shift Operators of arbitrary complexity

Lacey, Petermichl, Reguera (‘10) proved the A2 conjecture for the
Haar shift operators of arbitrary complexity (with constant
depending exponentially in the complexity). Don’t use Bellman
functions. Use a corona decomposition and a two-weight theorem
for “well localized operators” of NTV.

Cruz-Uribe, Martell, Pérez (‘10) use a local median oscillation
introduced by Lerner. The method is very flexible, they get new
results such as the sharp bounds for the square function for p > 2,
for the dyadic paraproduct, also for vector-valued maximal
operators, and two-weight results as well. Dependence on
complexity is exponential.
Hytönen ‘12 proved polynomial dependence.
Paraproducts of arbitrary complexity Moraes, P. ‘13.
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Dyadic harmonic analysis on R

The A2 conjecture (now Theorem)

Theorem (Hytönen 2010)
Let 1 < p <∞ and let T be any Calderón-Zygmund singular integral
operator in Rn, then there is a constant cT,n,p > 0 such that

‖Tf‖Lp(w) ≤ cT,n,p [w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w).

Sketch of the proof.
Enough to show p = 2 thanks to sharp extrapolation.
Prove a representation theorem in terms of Haar shift operators of
arbitrary complexity and paraproducts on random dyadic grids.
Prove linear estimates on L2(w) with respect to the A2

characteristic for Haar shift operators and with polynomial
dependence on the complexity (independent of the dyadic grid).
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Dyadic harmonic analysis on R

Hytönen’s Representation theorem

Theorem (Hytönen’s Representation Theorem 2010)
Let T be a Calderón-Zygmund singular integral operator, then

Tf = EΩ

 ∑
(m,n)∈N2

am,nXr,β
m,nf + πr,βT1 f + (πr,βT ∗1)∗f

 ,

with am,n = e−(m+n)α/2, α is the smoothness parameter of T .

Xr,β
m,n are Haar shift operators of complexity (m,n),

πr,βT1 a dyadic paraproduct (T1 ∈ BMO!),

(πr,βT ∗1)∗ the adjoint of a dyadic paraproduct (T ∗1 ∈ BMO!).

All defined on random dyadic grid Dr,β .
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Let T be a Calderón-Zygmund singular integral operator, then

Tf = EΩ

 ∑
(m,n)∈N2

am,nXr,β
m,nf + πr,βT1 f + (πr,βT ∗1)∗f

 ,

with am,n = e−(m+n)α/2, α is the smoothness parameter of T .
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Case study: Dyadic proof for commutator [H, b]

Case study: Dyadic proof for commutator [H, b]

Theorem (Daewon Chung ‘11)

‖[H, b]f‖L2(w) ≤ C[w]2A2
‖f‖L2(w).

Daewon’s "dyadic" proof is based on:
(1) the decomposition of the product bf

bf = πbf + π∗bf + πfb

the first two terms are bounded in Lp(w) when b ∈ BMO and
w ∈ Ap, the enemy is the third term.

(2) Use Petermichl’s dyadic shift operator X instead of H,

[X, b]f = [X, πb]f + [X, π∗b ]f +
[
X(πfb)− πXf (b)

]
.

(3) Known linear bounds for paraproduct (Beznosova ‘08) and X
(Petermichl ‘07).
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Case study: Dyadic proof for commutator [H, b]

cont. "dyadic proof" commutator

[X, b]f = [X, πb]f +
[
X, π∗b ]f + [X(πfb)− πXf (b)

]
.

First two terms give quadratic bounds from the linear bounds for
X and πb, π∗b .
Boundedness of the commutator in L2(w) will be recovered from
uniform boundedness of the third commutator.
The third term is better, it obeys a linear bound, and so do halves
of the other two commutators (Chung ’09, using Bellman):

‖X(πfb)− πXf (b)‖+ ‖Xπbf‖+ ‖π∗bXf‖ ≤ C‖b‖BMO[w]A2‖f‖

Providing uniform (sharp) quadratic bounds for commutator [X, b]
hence averaging

‖[H, b]‖L2(w) ≤ C‖b‖BMO[w]2A2
‖f‖L2(w).

Known to be sharp, bad guys are the non-local terms πbX, Xπ∗b .
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Case study: Dyadic proof for commutator [H, b]

cont. "dyadic proof" commutator

A posteriori one realizes the pieces that obey linear bounds are
generalized Haar Shift operators and hence their linear bounds can
be deduced from general results for those operators ...
As a byproduct of Chung’s dyadic proof we get that Beznosova’s
extrapolated bounds for the paraproduct are optimal:

‖πbf‖Lp(w) ≤ Cp[w]
max{1, 1

p−1
}

Ap
‖f‖Lp(w)

Proof: by contradiction, if not for some p then [H, b] will have
better bound in Lp(w) than the known optimal bound.
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Case study: Dyadic proof for commutator [H, b]

Recent progress

Active area of research!

There are extensions to metric spaces with geometric doubling
condition and spaces of homogeneous type.

Progress towards solution of Pérez’s two weight bump conjecture .
Also mixed Ap −A∞ estimates.
Different attempts to get rid of one or more components of the
proofs: randomness, Bellman functions, Haar shift operators.
Generalizations to matrix valued operators (A2 conjecture for
matrices stands, world record: 3/2, in NPetTV arXiv ‘17 and
Culiuc, Ou, Di Plinio ‘17. Prior results had extra logarithm term
Isralowicz, Kwon, Pott ’15.
Domination by sparse positive dyadic operators: classical
operators, Carleson operator, bilinear Hilber transform (multilinear
multipliers), Hilbert transform along curves, oscillatory integrals...
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Sparse operators and families of dyadic cubes

Sparse positive dyadic operators

Cruz-Uribe, Martell, Pérez ‘10 showed in a few lines that

ASf(x) =
∑
I∈S

mIf 1I(x)

=
∑
I∈D
|I|1S(I)mIf

1I(x)

|I|

bounded in L2(w) with linear bound when S is a sparse collection
of dyadic intervals.
Example: If b ∈ BMO then π∗bπb is a bounded positive operator.

π∗bπbf(x) =
∑
I∈D

b2I mIf
1I(x)

|I|
,

The sequence {b2I}I∈D is a Carleson sequence∑
I∈D(J)

b2I ≤ C|J |, ∀J ∈ D.
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Sparse operators and families of dyadic cubes

Sparse vs Carleson families of dyadic cubes

Definition

A collection of dyadic cubes S in Rd is η-sparse, 0 < η < 1 if there are
pairwise disjoint measurable sets

EQ ⊂ Q with |EQ| ≥ η|Q| ∀Q ∈ S.

Definition

A family of dyadic cubes S in Rd is called Λ-Carleson, Λ > 1 if∑
P∈S,P⊂Q

|P | ≤ Λ|Q| ∀Q ∈ D.

Lemma (Lerner-Nazarov in Intuitive Dyadic Calculus)

S is Λ-Carleson iff S is 1/Λ-sparse.
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Sparse operators and families of dyadic cubes

Two weight problem for dyadic operators

Necessary and sufficient conditions are known for the dyadic square
function, martingale transform (NTV ‘99), well-localized dyadic
operators (NTV ‘08) in the matrix context (Bickell, Culiuc, Treil,
Wick arXiv ‘16). These are "testing or Sawyer" type conditions.

Quantitative two-weight estimates for dyadic paraproduct and
dyadic square function, Beznosova,Chung, Moraes, P. ’17
Sufficient conditions (entropy bumps) known for sparse operators,
Rahm, Spencer Israel J. Math to appear. Generalizes Treil,
Volberg ‘16 and Lacey, Spencer ‘15. Quantitative estimates.

Workshop on Sparse domination of singular integral operators October 9-13, 2017 at
AIM organized by Amalia Culiuc, Francesco Di Plinio, and Yumeng Ou. Deadline

for registration May 9th, today!
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Sparse operators and families of dyadic cubes

;-)

Happy birthday Peter!!!! Thanks Raanan,
Chris, Ignacio, and specially Nam-Gyu for gathering us all in Seoul!!!
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