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What is a Kakeya set?

For our purposes a Kakeya sets is a compact set in R3 which
contains a unit line segment in every direction.

Conjecture: A Kakeya set has Hausdorff dimension 3.

Wolff (1995): Kakeya sets have Hausdorff dimension at least 5
2

K.-Laba-Tao (2000) Kakeya sets have upper Minkowski dimension
at least 5

2 + ε.

K.-Zahl (2017) Kakeya sets have Hausdorff dimension at least
5
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Wolff Kakeya

Our goal is to show there is a universal ε > 0 so that any Kakeya
set in R3 has Hausdorff dimension at least 5

2 + ε.

We think of our Kakeya set as approximated by δ−2 many δ tubes
with δ separated directions. Our goal is to show their union has

measure at least δ
1
2
−ε. (In fact, we should be talking about subsets

of δ tubes with large density, but will ignore this.

Wolff showed that the Hausdorff dimension is at least 5
2 . His key

tool is the hairbrush of a tube. If T is a tube, let H(T ) be the set
of tubes which intersect T at angle approximately 1. Wolff showed
that tubes of H(T ) are approximately disjoint.

Our takeaway from Wolff’s argument is that for essentially each T
in a near 5

2 dimensional Kakeya set, we have H(T ) consisting of

about δ−
3
2 tubes whose union essentially covers the Kakeya set.
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K-Laba-Tao argument I: structure

With Laba and Tao, we showed that the upper Minkowski
dimension (box counting) of Kakeya sets in R3 is at least
5
2 + 10−10.

Our main idea was that Kakeya sets near dimension 5
2 have strong

structural properties with funny names.

Stickiness There are 1
δ Fat tubes ( of dimension δ

1
2 × 1) each

containing 1
δ many δ tubes. (Otherwise could use Wolff X-Ray

result at scale δ
1
2 . But today, we don’t get to change scale like

that.)

Planyness At each δ cube of the Kakeya set, there is a δ
1
2

thickened plane containing all tubes of the set through that cube.

Graininess At each δ-cube of the Kakeya set, there is a

δ
1
2 × δ

1
2 × δ flat containing all nearby points of the Kakeya set.
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K-Laba-Tao argument II: The Heisenberg Group
The main idea of K-Laba-Tao: Even with
stickiness/planyness/graininess, there is still an enemy. It is a 5

2
dimensional Kakeya set which almost exists. “The Heisenberg
group”.

In C3, consider the set Im(z) = Re(uw). This contains a 2
dimensional set of complex lines.

Of course, the real numbers contain no half-dimensional subring.

Moreover, the lines of the Heisenberg group are not all in different
directions.

In KLT, we used that many lines would have to be in the same
direction.

With Bourgain’s discretized sum-product theorem, it became
possible also to use that the reals don’t have (even approximately)
positive dimensional subrings.
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BKT obsolete argument
Our initial idea was to mimic our argument after an old argument
of Bourgain-K-Tao which shows that Kakeya sets in F 3

p have

dimension at least 5
2 + ε.

Ironically, this argument is totally obsolete because Dvir has solved
the Kakeya problem in Fp. Sometimes, however, obsolete
arguments can be more useful than up-to-date arguments because
they are easier to mimic.

BKT idea: Take H(L1, L2) for L1, L2 fixed lines and call its
elements points. Now take H(L3, L4) for L3, L4 lines, and call its

elements lines. A typical element of H(L3, L4) intersects about p
1
2

lines of H(L1, L2). Call such an intersection an incidence. Now we
have an impossible point-line incidence configuration.

Why is it a point-line configuration? OK, it’s points and quadratic
curves. Lines of H(L3, L4, L) lie in one ruling of a doubly-ruled
quadratic surface, the regulus.
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Dvir’s argument

Let K be a subset of F n
p containing a line in every direction. Our

goal is to rule out the possibility that |K | < pn−ε.

Suppose K is that small. We can find a nontrivial polynomial
which vanishes on K of degree at most 1− ε

n . The polynomial
restricted to each line of the Kakeya set q + tv is identically zero.
Thus the highest order part vanishes on the direction v . This is
true for every v so we reach a contradiction.

Conclusion: The Kakeya problem is an algebra problem not an
analysis problem.
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Can we use reguli?
There are serious issues with using reguli in such a way in the real
Kakeya problem. For three tubes to generate the δ neighborhood
of a regulus, they have to be pairwise skew? Can we find pairwise
skew triples of tubes which intersect many tubes in a near Wolff
Kakeya set?

Begin by looking in a particular hairbrush H(T ). If there are no
pairs T1,T2 which are skew, then all tubes of H(T ) are close to
the plane spanned by T and T1 for some µ > 0. The tubes of
H(T ) cover the whole Kakeya set, so this is true of every tube in
the Kakeya set.

Run the same argument again with triples. If there are no
T1,T2,T3 in H(T ) which are pairwise skew then T3 is either near
the plane spanned by T and T1 or near the plane spanned by T
and T2. Conclusion: there are δ−6.5 quadruples (T ,T1,T2,T3)
with (T1,T2,T3) pairwise skew and each of T1,T2,T3 intersecting
T . For each such quadruple T is in the δ neighborhood of
R(T1,T2,T3).
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Can we use reguli? II

That sounds great. We have plenty of reguli each containing δ−
1
2

tubes of the Kakeya set. Can we see a shadow of the half
dimensional ring in this “half” dimensional set of tubes? Maybe
not.

There are certainly δ−8 quintuples (T ,T1,T2,T3,T4) with the
Tj ’s in H(T ) and pairwise skew. But there is no guarantee that T4

intersects R(T1,T2,T3) at large angle. If not, the set of T ’s for a
fixed (T1,T2,T3) may be in a tight range of the ruling so that T4

may intersect many of these T ’s at large angle.

By dyadic pigeonholing, we can restrict attention to one angle of
intersection δα and it turns out 0 ≤ α ≤ 1

2 . As long as α < 1
2 , a

small part of the obsolete argument survives. But α = 1
2 is a

genuinely new case.
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A new enemy

For the remainder of the talk, we restrict our attention to the case
α = 1

2 . We define a regulus strip to be the intersection of the δ

neighborhood of a regulus with a δ
1
2 cylinder. Our Kakeya set

contains a lot of regulus strips.

Each regulus strip is contained in a δ
1
2 fat tube. But at the same

time, each δ
1
2 tube contains just one regulus strip. Our example is

far from sticky. There are δ−
3
2 fat tubes.

Our example is however plany at the scale δ
1
2 . Each regulus strip is

intersected by each tube in its hairbrush at angle δ
1
2 . Thus the

plane map is determined by the tangent plane to the regulus strip.
It has degree 1 when restricted to a fat tube.
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Can the plane maps exist?

The hairbrush of each fat tube T1 covers each other fat tube T2.
But each plane containing T1 intersects T2 in only one place and is
the plane of that place. In that way, the plane map of T1

determines the plane map of T2.

Are there δ−
3
2 fat tubes, each equipped with a linear plane map so

that each fat tube infects each other fat tube with its own plane
map? Can the plane maps be consistent.

Yes. Denote a line in R3 as (a, b, 0) + t(c , d , 1). Now take the fat
tubes of the form

ad − bc = 1 + O(δ
1
2 ).

We call this the SL(2) example.
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Must the enemy be SL(2)?

Amazingly yes. A hint of this comes from the fact that the set of
lines lying in a plane and going through a point are a line in line
space. Our example in line space must be a hypersurface
containing a three dimensional set of lines. Among algebraic
surfaces only quadratics do this.

To make a rigorous argument, cleverly select 14 points in the set of
lines. (I.e cleverly select 14 fat tubes.) Now find a quadratic
vanishing on these. It must vanish on every fat tube in our
example.

Is there really an almost-example corresponding to SL(2)? Sort of,
yes. You can build one working over Z mod p2. Yes I know it isn’t
a field.
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Can SL(2) exist in R?

We can now try to contradict the existence of an example through
incidence theory. Recall any tube that intersects a regulus strip
touches all tubes in a strip. Pick one thin tube in each fat tube.

We find δ−
3
2 many δ tubes which are δ

1
2 separated so that each

one intersects δ−1 of the others.

We might want to pick out δ−1 so that each intersects δ−
1
2 of the

others, so that we have a planar point line incidence problem and
then we win because of the separation.

Obvious idea is to cut down one parameter. Essentially it is what
we did before. Problem: lines in R3 are a four parameter family,
not three.
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But SL(2) is pretty nice.

Key point: all our lines automatically have

ad − bc = 1 + O(δ
1
2 ).

It’s really a 3.5 parameter family.

Moreover, we have a choice of one tube per regulus strip. A
calculation shows that travelling along the strip is transverse to
SL(2). Just pick a line so that

ad − bc = 1 + O(δ).

Now we have a genuine 3-parameter family of lines. Reduce by 1
parameter and we get an easy point-line incidence problem. These
were the main ideas of the argument.
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But is it any good?

No. It’s no good at all!!!

All of this is twentieth century mathematics and was almost done
in the twentieth century. Twenty first century mathematics should
get 3, since this is, after all, an algebra problem. Can algebra
exploit any of our ideas?

It is quite a coincidence that both Heisenberg and SL(2) are
quadratic. Is there a unification of the two theories which is blind
to the underlying field.

Alternatively, Tao has a heuristic argument for sticky Kakeya. Can
that argument be extended to work slightly for anything even
slightly sticky, as here? Then can one find useful algebraic
structure in the plane maps of anything maximally anti-sticky?
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Happy Birthday, Peter!

May the candles on your cake,
Burn like cities in your wake.


