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Bilinear analog of the spherical averaging operator

This talk is mainly about a bilinear analog of the spherical averaging
operator and its variable coefficient generalizations. Define

Bθ(f , g)(x) =

∫
Sd−1

f (x − y)g(x − θy)dσ(y),

where θ ∈ Od(R) and σ is the surface measure on Sd−1.

We shall see that in a variety of ways it is a natural bilinear analog of
the spherical averaging operator

At f (x) =

∫
Sd−1

f (x − ty)dσ(y).
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Structure of the talk

We are going to recall the basic mapping properties of the linear
spherical averaging operator.

We shall motivate the definition of the bilinear spherical operator
using the discrete distance graph paradigm.

We shall describe some of the instances when the bilinear spherical
averaging operator arises in geometric measure theory.

We shall state and prove sharp Lp(R2)× Lq(R2)→ Lr (R2) for the
spherical averaging operator in dimension two and describe the state
of affairs in higher dimensions.

We shall state and prove the corresponding sharp bounds for the
variable coefficient analog of the spherical averaging operator in
dimension two.
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Spherical averaging operator

The classical spherical averaging operator is given by

At f (x) =

∫
Sd−1

f (x − ty)dσ(y),

where σ is the surface measure on Sd−1 and t > 0.

This operator is ubiquitous in a variety of areas of mathematics and
physics. For example, the initial value problem

4u = utt ; u(x , 0) = 0; ut(x , 0) = f (x); d = 3

is solved by
u(x , t) = ctAt f (x).
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A discrete analog of Atf (x)

Let P be a finite point set in Rd , d ≥ 2. Define a graph, called the
distance graph, by taking points of P as vertices and connect two
vertices x and y by an edge if |x − y | = t.

The edge operator on this graph is given by

Ef (x) =
∑
|x−y |=t

f (y).

Hence it is reasonable to think of the spherical averaging operator
At f (x) as the edge operator for the continuous version of the
distance graph.

This viewpoint has been used by many authors in recent decades to
study discrete problems using analytic methods.
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Lebesgue space bounds for Atf (x)

A classical result due to Strichartz and Littman (independently) says
that

At : Lp(Rd)→ Lq(Rd)

for
(
1
p ,

1
q

)
contained in the triangle with the endpoints

(0, 0), (1, 1)

(
d

d + 1
,

1

d + 1

)
.

The exponents are best possible as demonstrated by taking f (x) to be
the indicator function of a ball of radius δ, δ small.
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Outline of the proof of Lebesgue space bounds for Atf (x)

Let

Az
t f (x) =

1

Γ(z)
(1− | · |2)

z−1
+ ψ(·) ∗ f (x),

where ψ is a smooth cut-off function.

When z = 0, we recover the spherical averaging operator At f (x).

When Re(z) = 1, At : L1(Rd)→ L∞(Rd).

When Re(z) = −d−1
2 , Âz

t f (ξ) = m(ξ)f̂ (ξ), where m is bounded,
which allows us to conclude that

Az
t : L2(Rd)→ L2(Rd) for Re(z) = −d − 1

2
.

Stein’s analytic interpolation theorem yields the claimed result.
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Generalized Radon transform

More generally, consider

Rf (x) =

∫
φ(x ,y)=t

f (y)ψ(y)dσx ,t(y),

where ψ is a smooth cut-off, σx ,t is the measure on

{y : φ(x , y) = t}

and

det

(
0 ∇xφ

−(∇yφ)T ∂2φ
dxidyj

)
6= 0

on the set {(x , y) : φ(x , y) = t}.
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Generalized Radon transform (continued)

A result due to Phong and Stein says that under the assumptions
above,

R : L2(Rd)→ L2d−1
2

(Rd).

It is not difficult to use this result and then imitate Strichartz’
argument above to see that

R : Lp(Rd)→ Lq(Rd)

for
(
1
p ,

1
q

)
in the triangle with the endpoints (0, 0), (1, 1) and(

d
d+1 ,

1
d+1

)
, the same range as the spherical averaging operator.
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Lp-improving measures

In general, it is interesting to ask whether a given compactly
supported Borel measure µ on Rd is Lp-improving in the sense that

||f ∗ µ||Lq(Rd ) ≤ C ||f ||Lp(Rd ) for some q > p.

Numerous authors examined this problem from a variety of points of
view over the years. The point particularly relevant to our discussion
is that

|µ̂(ξ)| → 0 as |ξ| → ∞ is not a necessary condition.

For example, the Cantor-Lebesgue measure associated with the
Cantor set of constant disection is Lp-improving (Christ; Oberlin).
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What is the ”right” bilinear analog of the spherical
averaging operator?

Let us go back to the discrete settings. Let P be a finite point set in
R2 of size n.

Connect a triple of points x , y , z by a hyper-edge if 4xyz is an
equilateral triangle with the side-length t.

The hyper-edge operator is given by

H(f , g)(x) =
∑

|x−y |=|x−z|=|y−z|=t

f (y)g(z)

=
∑
y ,z

K (y , z)f (x − y)g(x − z),
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What is the ”right” bilinear analog of the spherical
averaging operator? (continued)

where K is the indicator function of the set

{(u, v) ∈ tS1 × tS1 : u − v = tS1}

= {(u, θu) : u ∈ tS1} ∪ {(u, θ−1u) : u ∈ tS1},

where θ is the rotation by π
3 .

This puts the discrete operator in the form

H(f , g)(x) =
∑
|u|=t

f (x − u)g(x − θ±u).
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The model bilinear generalized Radon transform

This suggests that a reasonable model for the bilinear generalized
Radon transform in R2 is

Bθ(f , g)(x) =

∫
S1

f (x − y)g(x − θy)dσ(y),

where θ is a rotation counter-clockwise by the angle θ and σ is the
arc-length measure on S1.

We will also discuss a natural variable coefficient analog of this
operator in the style of the generalized Radon transforms studied by
Phong, Stein and others in the 80s and and 90s.
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Geometric configurations

This operator has arisen before, in a more or less disguised form, in
the work of Bourgain, Greenleaf, A.I., Furstenberg, Katznelson,
Weiss, Ziegler and others in problems involving showing that a
suitably ”large” subset of Euclidean space contains vertices of an
equilateral triangle.

The most general result in the context of sets of positive upper
density is due to Tamar Ziegler:

Theorem

Let E ⊂ Rd , of positive upper Lebesgue density. Let Eδ denote the
δ-neighborhood of E . Let V = {0, v1, v2, . . . , vk−1} ⊂ Rd , where k ≥ 2 is
a positive integer. Then there exists l0 > 0 such that for any l > l0 and
any δ > 0 there exists {x1, . . . , xk} ⊂ Eδ congruent to
lV = {0, lv1, . . . , lvk−1}.
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Geometric configurations

In the context of compact sets of a given Hausdorff dimension, there
is the following result due to A.I. and Bochen Liu:

Theorem

(A.I. and B. Liu, 2016) There exists εd > 0 such that if the Hausdorff
dimension of a compact set E ⊂ Rd , d ≥ 3, is greater than d − εd , then E
contains vertices of an equilateral triangle.

In R2 this result is, in general, false (Falconer). Chan, Laba and
Pramanik proved that a positive result is possible if one assumes that
E ⊂ R2 carries a measure with a decaying Fourier transform.
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Bounds for the model operator

Theorem

(Greenleaf, Iosevich, Krause and Liu, 2016) With the notation above,
θ 6= π,

Bθ : Lp(R2)× Lq(R2)→ Lr (R2)

if
(
1
p ,

1
q ,

1
r

)
is in the polyhedron with the vertices (0, 0, 0), (23 ,

2
3 , 1),

(0, 23 ,
1
3), (23 , 0,

1
3), (1, 0, 1), (0, 1, 1) and (12 ,

1
2 ,

1
2).

If θ = π, the vertices of the polyhedron are (0, 0, 0), (0, 23 ,
1
3). (23 , 0,

1
3),

(1, 0, 1), (0, 1, 1) and (23 ,
2
3 , 1).

These exponents are best possible, at least on the scale of normed
spaces, p, q, r ≥ 1.
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Typical difficulties with bilinear operators

Let TK f (x) =
∫
f (x − y)K (y)dy . Then Plancherel tells us that

TK : L2(Rd)→ L2(Rd) if and only if K̂ ∈ L∞(Rd).

Let BK (f , g)(x) =
∫ ∫

f (x − u)g(x − v)K (u, v)dudv . The
corresponding natural estimate in this setting is

BK : L2(Rd)× L2(Rd)→ L1(Rd).

It is known that K̂ ∈ L∞(Rd × Rd) does not, in general, guarantee
that this estimate holds. Just take TK (f , g)(x) = H(fg)(x), where H
is the Hilbert transform.
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The bilinear multiplier of the model operator

Since Bθ(f , g)(x) =
∫
S1 f (x − y)g(x − θy)dσ(y), the bilinear

multiplier is equal to

m(ξ, η) = σ̂(ξ + θTη) = J0
(

2π|ξ + θTη|
)
.

This multiplier does not decay at all along the 2-plane

ξ + θTη = 0.
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The L
3
2 (R2)× L

3
2 (R2)→ L1(R2) bound

We may take f , g ≥ 0 and obtain

||B(f , g)||L1(R2) =

∫ ∫
f (x − y)g(x − θy)dσ(y)dx

=

∫
f (x)

{∫
g(x + y − θy)dσ(y)

}
dx

=:

∫
f (x) · (Tθg)(x)dx
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The L
3
2 (R2)× L

3
2 (R2)→ L1(R2) bound (continued)

≤ ||f ||
L
3
2 (R2)

· ||Tθg(x)||L3(R2)

≤ C ||f ||
L
3
2 (R2)
||g ||

L
3
2 (R2)

.

This establishes the L
3
2 (R2)× L

3
2 (R2)→ L1(R2) bound.

The same argument yields the L
d+1
d (Rd)× L

d+1
d (Rd)→ Ld+1(Rd)

bound for d ≥ 2.
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The L2(R2)× L2(R2)→ L2(R2) bound

Let

Sθ =

{
(y , y ′) ∈ S1 × S1 : |α− α′| < θ

2

}
, with y = e iα, y ′ = e iα

′
.

We have
||Bθ(χE , χF )||2L2(R2)

=

∫ ∫ ∫
χE (x−y)χF (x−Θy)χE (x−y ′)χF (x−Θy ′)dσ(y)dσ(y ′)dx

=

∫
Sθ

∫ ∫
χE (x−y)χF (x−θy)χE (x−y ′)χF (x−θy ′)dσ(y)dσ(y ′)dx
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The L2(R2)× L2(R2)→ L2(R2) bound (continued)

+

∫
Sc
θ

∫ ∫
χE (x−y)χF (x−Θy)χE (x−y ′)χF (x−Θy ′) dσ(y)dσ(y ′)dx

≤
∫
Sc
θ

∫ ∫
χE (x − y)χF (x −Θy ′) dσ(y)dσ(y ′)dx

+

∫
Sθ

∫ ∫
χE (x − y)χE (x − y ′) dσ(y)dσ(y ′)dx .
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The L2(R2)× L2(R2)→ L2(R2) bound (continued)

Let y = (cos(α), sin(α)), y ′ = (cos(α′), sin(α′)). To make a change
of variables for the first integral in the last expression, we consider

u1 = x1 − cos(α), u2 = x2 − sin(α),

v1 = x1 − cos(α′ + θ), v2 = x2 − sin(α′ + θ).

For the second integral, we make the change of variables

u1 = x1−cos(α), u2 = x2−sin(α), v1 = x1−cos(α′), v2 = x2−sin(α′).

The Jacobian in the first case is

sin(α− α′ − θ),
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The L2(R2)× L2(R2)→ L2(R2) bound (concluded)

while the Jacobian in the second case is

sin(α− α′).

Note that both of these quantities are bounded away from 0 because
of the constraints on the angle between y and y ′.

As long as 0 < θ < π, though, we have that the Jacobian in both
cases is bounded from below by 1

2sin( θ2).

It follows that

||Bθ(χE , χF )||L2(R2) ≤ C (|E |2 + |E ||F |)
1
2 ≤ 2C |E |

1
2 |F |

1
2 .

for some constant C depending only on θ.
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Sharpness examples

0 ≤ 1
p ,

1
q ,

1
r ≤ 1, (Banach cube).

2
p + 1

q ≤ 1 + 1
r ,

1
p + 2

q ≤ 1 + 1
r , (Small ball and annulus).

1
p + 1

q ≤
2
r , (Dual of small ball and annulus).

3
p + 3

q ≤ 1 + 4
r , (Tangent rectangles θ 6= π).

4
p + 3

q ≤ 2 + 3
r ,

3
p + 4

q ≤ 2 + 3
r , (Dual of tangent rectangles θ 6= 0, π).

1
r ≤

1
p + 1

q , (Large ball).
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The general case

Let

B(f , g)(x) =

∫ ∫
δ(φ1(x , y)−t1)·δ(φ2(x , z)−t2)·δ(φ3(y , z)−t3)dydz .

If φ1 = φ2 = φ3 = φ with φ(x , y) = |x − y |, we recover the operator
Bπ

3
(f , g) above.

We obtain the same bounds for this operator as the ones we got for
Bθ(f , g) with θ 6= π provided the following conditions hold.

We need a curvature condition and a transversality condition.
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Geometric conditions

The curvature assumption is just the rotational curvature condition
on φ3, namely

det

(
0 ∇xφ3

−(∇yφ3)T ∂2φ3
dxidyj

)
6= 0

on the set {(x , y) : φ3(x , y) = t}.

The transversality assumption is that the determinant of the
following matrices is non-zero.

det


dyφ1(x , y) 0
dyφ3(y , z) 0

0 dz ′φ3(x , z ′)
0 dz ′φ3(y ,′ z ′)

 6= 0,
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Geometric conditions (continued)

det


dzφ2(x , z) 0
dzφ3(y , z) 0

0 dy ′φ1(x , y ′)
0 dy ′φ3(y ′, z ′)

 6= 0,

det


dzφ2(x , z) 0
dzφ3(y , z) 0

0 dz ′φ2(x , y ′)
0 dz ′φ3(y ′, z ′)

 6= 0,

det


dyφ1(x , y) 0
dyφ3(y , z) 0

0 dy ′φ1(x , y ′)
0 dy ′φ3(y ′, z ′)

 6= 0.
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Geometric conditions (continued)
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Geometric conditions (continued)
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