Bilinear operators and curvature

Alex losevich- University of Rochester

Conference in honor of Peter Jones
May 9, 2017

Bilinear analog of the spherical averaging operator

- This talk is mainly about a bilinear analog of the spherical averaging operator and its variable coefficient generalizations. Define

$$
B_{\theta}(f, g)(x)=\int_{S^{d-1}} f(x-y) g(x-\theta y) d \sigma(y)
$$

where $\theta \in O_{d}(\mathbb{R})$ and σ is the surface measure on S^{d-1}.

Bilinear analog of the spherical averaging operator

- This talk is mainly about a bilinear analog of the spherical averaging operator and its variable coefficient generalizations. Define

$$
B_{\theta}(f, g)(x)=\int_{S^{d-1}} f(x-y) g(x-\theta y) d \sigma(y)
$$

where $\theta \in O_{d}(\mathbb{R})$ and σ is the surface measure on S^{d-1}.

- We shall see that in a variety of ways it is a natural bilinear analog of the spherical averaging operator

$$
A_{t} f(x)=\int_{S^{d-1}} f(x-t y) d \sigma(y)
$$

Structure of the talk

- We are going to recall the basic mapping properties of the linear spherical averaging operator.

Structure of the talk

- We are going to recall the basic mapping properties of the linear spherical averaging operator.
- We shall motivate the definition of the bilinear spherical operator using the discrete distance graph paradigm.

Structure of the talk

- We are going to recall the basic mapping properties of the linear spherical averaging operator.
- We shall motivate the definition of the bilinear spherical operator using the discrete distance graph paradigm.
- We shall describe some of the instances when the bilinear spherical averaging operator arises in geometric measure theory.

Structure of the talk

- We are going to recall the basic mapping properties of the linear spherical averaging operator.
- We shall motivate the definition of the bilinear spherical operator using the discrete distance graph paradigm.
- We shall describe some of the instances when the bilinear spherical averaging operator arises in geometric measure theory.
- We shall state and prove sharp $L^{p}\left(\mathbb{R}^{2}\right) \times L^{q}\left(\mathbb{R}^{2}\right) \rightarrow L^{r}\left(\mathbb{R}^{2}\right)$ for the spherical averaging operator in dimension two and describe the state of affairs in higher dimensions.

Structure of the talk

- We are going to recall the basic mapping properties of the linear spherical averaging operator.
- We shall motivate the definition of the bilinear spherical operator using the discrete distance graph paradigm.
- We shall describe some of the instances when the bilinear spherical averaging operator arises in geometric measure theory.
- We shall state and prove sharp $L^{p}\left(\mathbb{R}^{2}\right) \times L^{q}\left(\mathbb{R}^{2}\right) \rightarrow L^{r}\left(\mathbb{R}^{2}\right)$ for the spherical averaging operator in dimension two and describe the state of affairs in higher dimensions.
- We shall state and prove the corresponding sharp bounds for the variable coefficient analog of the spherical averaging operator in dimension two.

Spherical averaging operator

- The classical spherical averaging operator is given by

$$
A_{t} f(x)=\int_{S^{d-1}} f(x-t y) d \sigma(y)
$$

Spherical averaging operator

- The classical spherical averaging operator is given by

$$
A_{t} f(x)=\int_{S^{d-1}} f(x-t y) d \sigma(y)
$$

- where σ is the surface measure on S^{d-1} and $t>0$.

Spherical averaging operator

- The classical spherical averaging operator is given by

$$
A_{t} f(x)=\int_{S^{d-1}} f(x-t y) d \sigma(y)
$$

- where σ is the surface measure on S^{d-1} and $t>0$.
- This operator is ubiquitous in a variety of areas of mathematics and physics. For example, the initial value problem

Spherical averaging operator

- The classical spherical averaging operator is given by

$$
A_{t} f(x)=\int_{S^{d-1}} f(x-t y) d \sigma(y)
$$

- where σ is the surface measure on S^{d-1} and $t>0$.
- This operator is ubiquitous in a variety of areas of mathematics and physics. For example, the initial value problem

$$
\Delta u=u_{t t} ; u(x, 0)=0 ; u_{t}(x, 0)=f(x) ; d=3
$$

Spherical averaging operator

- The classical spherical averaging operator is given by

$$
A_{t} f(x)=\int_{S^{d-1}} f(x-t y) d \sigma(y)
$$

- where σ is the surface measure on S^{d-1} and $t>0$.
- This operator is ubiquitous in a variety of areas of mathematics and physics. For example, the initial value problem

$$
\Delta u=u_{t t} ; u(x, 0)=0 ; u_{t}(x, 0)=f(x) ; d=3
$$

- is solved by

$$
u(x, t)=c t A_{t} f(x)
$$

A discrete analog of $A_{t} f(x)$

- Let P be a finite point set in $\mathbb{R}^{d}, d \geq 2$. Define a graph, called the distance graph, by taking points of P as vertices and connect two vertices x and y by an edge if $|x-y|=t$.

A discrete analog of $A_{t} f(x)$

- Let P be a finite point set in $\mathbb{R}^{d}, d \geq 2$. Define a graph, called the distance graph, by taking points of P as vertices and connect two vertices x and y by an edge if $|x-y|=t$.
- The edge operator on this graph is given by

$$
E f(x)=\sum_{|x-y|=t} f(y)
$$

A discrete analog of $A_{t} f(x)$

- Let P be a finite point set in $\mathbb{R}^{d}, d \geq 2$. Define a graph, called the distance graph, by taking points of P as vertices and connect two vertices x and y by an edge if $|x-y|=t$.
- The edge operator on this graph is given by

$$
E f(x)=\sum_{|x-y|=t} f(y)
$$

- Hence it is reasonable to think of the spherical averaging operator $A_{t} f(x)$ as the edge operator for the continuous version of the distance graph.

A discrete analog of $A_{t} f(x)$

- Let P be a finite point set in $\mathbb{R}^{d}, d \geq 2$. Define a graph, called the distance graph, by taking points of P as vertices and connect two vertices x and y by an edge if $|x-y|=t$.
- The edge operator on this graph is given by

$$
E f(x)=\sum_{|x-y|=t} f(y)
$$

- Hence it is reasonable to think of the spherical averaging operator $A_{t} f(x)$ as the edge operator for the continuous version of the distance graph.
- This viewpoint has been used by many authors in recent decades to study discrete problems using analytic methods.

Lebesgue space bounds for $A_{t} f(x)$

- A classical result due to Strichartz and Littman (independently) says that

$$
A_{t}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right)
$$

Lebesgue space bounds for $A_{t} f(x)$

- A classical result due to Strichartz and Littman (independently) says that

$$
A_{t}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right)
$$

- for $\left(\frac{1}{p}, \frac{1}{q}\right)$ contained in the triangle with the endpoints

Lebesgue space bounds for $A_{t} f(x)$

- A classical result due to Strichartz and Littman (independently) says that

$$
A_{t}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right)
$$

- for $\left(\frac{1}{p}, \frac{1}{q}\right)$ contained in the triangle with the endpoints

$$
(0,0),(1,1)\left(\frac{d}{d+1}, \frac{1}{d+1}\right)
$$

Lebesgue space bounds for $A_{t} f(x)$

- A classical result due to Strichartz and Littman (independently) says that

$$
A_{t}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right)
$$

- for $\left(\frac{1}{p}, \frac{1}{q}\right)$ contained in the triangle with the endpoints

$$
(0,0),(1,1)\left(\frac{d}{d+1}, \frac{1}{d+1}\right)
$$

- The exponents are best possible as demonstrated by taking $f(x)$ to be the indicator function of a ball of radius δ, δ small.

Outline of the proof of Lebesgue space bounds for $A_{t} f(x)$

- Let

$$
A_{t}^{z} f(x)=\frac{1}{\Gamma(z)}\left(1-|\cdot|^{2}\right)_{+}^{z-1} \psi(\cdot) * f(x)
$$

where ψ is a smooth cut-off function.

Outline of the proof of Lebesgue space bounds for $A_{t} f(x)$

- Let

$$
A_{t}^{z} f(x)=\frac{1}{\Gamma(z)}\left(1-|\cdot|^{2}\right)_{+}^{z-1} \psi(\cdot) * f(x)
$$

where ψ is a smooth cut-off function.

- When $z=0$, we recover the spherical averaging operator $A_{t} f(x)$.

Outline of the proof of Lebesgue space bounds for $A_{t} f(x)$

- Let

$$
A_{t}^{z} f(x)=\frac{1}{\Gamma(z)}\left(1-|\cdot|^{2}\right)_{+}^{z-1} \psi(\cdot) * f(x)
$$

where ψ is a smooth cut-off function.

- When $z=0$, we recover the spherical averaging operator $A_{t} f(x)$.
- When $\operatorname{Re}(z)=1, A_{t}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{d}\right)$.

Outline of the proof of Lebesgue space bounds for $A_{t} f(x)$

- Let

$$
A_{t}^{z} f(x)=\frac{1}{\Gamma(z)}\left(1-|\cdot|^{2}\right)_{+}^{z-1} \psi(\cdot) * f(x)
$$

where ψ is a smooth cut-off function.

- When $z=0$, we recover the spherical averaging operator $A_{t} f(x)$.
- When $\operatorname{Re}(z)=1, A_{t}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{d}\right)$.
- When $\operatorname{Re}(z)=-\frac{d-1}{2}, \widehat{A_{t}^{z} f}(\xi)=m(\xi) \widehat{f}(\xi)$, where m is bounded, which allows us to conclude that

$$
A_{t}^{z}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right) \text { for } \operatorname{Re}(z)=-\frac{d-1}{2}
$$

Outline of the proof of Lebesgue space bounds for $A_{t} f(x)$

- Let

$$
A_{t}^{z} f(x)=\frac{1}{\Gamma(z)}\left(1-|\cdot|^{2}\right)_{+}^{z-1} \psi(\cdot) * f(x),
$$

where ψ is a smooth cut-off function.

- When $z=0$, we recover the spherical averaging operator $A_{t} f(x)$.
- When $\operatorname{Re}(z)=1, A_{t}: L^{1}\left(\mathbb{R}^{d}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{d}\right)$.
- When $\operatorname{Re}(z)=-\frac{d-1}{2}, \widehat{A_{t}^{z} f}(\xi)=m(\xi) \widehat{f}(\xi)$, where m is bounded, which allows us to conclude that

$$
A_{t}^{z}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right) \text { for } \operatorname{Re}(z)=-\frac{d-1}{2} .
$$

- Stein's analytic interpolation theorem yields the claimed result.

Generalized Radon transform

- More generally, consider

$$
\mathcal{R} f(x)=\int_{\phi(x, y)=t} f(y) \psi(y) d \sigma_{x, t}(y)
$$

Generalized Radon transform

- More generally, consider

$$
\mathcal{R} f(x)=\int_{\phi(x, y)=t} f(y) \psi(y) d \sigma_{x, t}(y)
$$

- where ψ is a smooth cut-off, $\sigma_{x, t}$ is the measure on

$$
\{y: \phi(x, y)=t\}
$$

Generalized Radon transform

- More generally, consider

$$
\mathcal{R} f(x)=\int_{\phi(x, y)=t} f(y) \psi(y) d \sigma_{x, t}(y)
$$

- where ψ is a smooth cut-off, $\sigma_{x, t}$ is the measure on

$$
\{y: \phi(x, y)=t\}
$$

- and

$$
\operatorname{det}\left(\begin{array}{cc}
0 & \nabla_{x} \phi \\
-\left(\nabla_{y} \phi\right)^{T} & \frac{\partial^{2} \phi}{d x_{i} d y_{j}}
\end{array}\right) \neq 0
$$

on the set $\{(x, y): \phi(x, y)=t\}$.

Generalized Radon transform (continued)

- A result due to Phong and Stein says that under the assumptions above,

$$
\mathcal{R}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{\frac{d-1}{2}}^{2}\left(\mathbb{R}^{d}\right)
$$

Generalized Radon transform (continued)

- A result due to Phong and Stein says that under the assumptions above,

$$
\mathcal{R}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{\frac{d-1}{2}}^{2}\left(\mathbb{R}^{d}\right)
$$

- It is not difficult to use this result and then imitate Strichartz' argument above to see that

$$
\mathcal{R}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right)
$$

Generalized Radon transform (continued)

- A result due to Phong and Stein says that under the assumptions above,

$$
\mathcal{R}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{\frac{d-1}{2}}^{2}\left(\mathbb{R}^{d}\right)
$$

- It is not difficult to use this result and then imitate Strichartz' argument above to see that

$$
\mathcal{R}: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{q}\left(\mathbb{R}^{d}\right)
$$

- for $\left(\frac{1}{p}, \frac{1}{q}\right)$ in the triangle with the endpoints $(0,0),(1,1)$ and $\left(\frac{d}{d+1}, \frac{1}{d+1}\right)$, the same range as the spherical averaging operator.

L^{p}-improving measures

- In general, it is interesting to ask whether a given compactly supported Borel measure μ on \mathbb{R}^{d} is L^{p}-improving in the sense that

$$
\|f * \mu\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \text { for some } q>p
$$

L^{p}-improving measures

- In general, it is interesting to ask whether a given compactly supported Borel measure μ on \mathbb{R}^{d} is $L^{p^{-} \text {-improving }}$ in the sense that

$$
\|f * \mu\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \text { for some } q>p
$$

- Numerous authors examined this problem from a variety of points of view over the years. The point particularly relevant to our discussion is that

$$
|\widehat{\mu}(\xi)| \rightarrow 0 \text { as }|\xi| \rightarrow \infty \text { is not a necessary condition. }
$$

L^{p}-improving measures

- In general, it is interesting to ask whether a given compactly supported Borel measure μ on \mathbb{R}^{d} is $L^{p_{\text {-improving }} \text { in the sense that }}$

$$
\|f * \mu\|_{L^{q}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \text { for some } q>p
$$

- Numerous authors examined this problem from a variety of points of view over the years. The point particularly relevant to our discussion is that

$$
|\widehat{\mu}(\xi)| \rightarrow 0 \text { as }|\xi| \rightarrow \infty \text { is not a necessary condition. }
$$

- For example, the Cantor-Lebesgue measure associated with the Cantor set of constant disection is L^{p}-improving (Christ; Oberlin).

What is the "right" bilinear analog of the spherical averaging operator?

- Let us go back to the discrete settings. Let P be a finite point set in \mathbb{R}^{2} of size n.

What is the "right" bilinear analog of the spherical averaging operator?

- Let us go back to the discrete settings. Let P be a finite point set in \mathbb{R}^{2} of size n.
- Connect a triple of points x, y, z by a hyper-edge if $\triangle x y z$ is an equilateral triangle with the side-length t.

What is the "right" bilinear analog of the spherical averaging operator?

- Let us go back to the discrete settings. Let P be a finite point set in \mathbb{R}^{2} of size n.
- Connect a triple of points x, y, z by a hyper-edge if $\triangle x y z$ is an equilateral triangle with the side-length t.
- The hyper-edge operator is given by

$$
H(f, g)(x)=\sum_{|x-y|=|x-z|=|y-z|=t} f(y) g(z)
$$

What is the "right" bilinear analog of the spherical averaging operator?

- Let us go back to the discrete settings. Let P be a finite point set in \mathbb{R}^{2} of size n.
- Connect a triple of points x, y, z by a hyper-edge if $\triangle x y z$ is an equilateral triangle with the side-length t.
- The hyper-edge operator is given by

$$
\begin{gathered}
H(f, g)(x)=\sum_{|x-y|=|x-z|=|y-z|=t} f(y) g(z) \\
\quad=\sum_{y, z} K(y, z) f(x-y) g(x-z)
\end{gathered}
$$

What is the "right" bilinear analog of the spherical averaging operator? (continued)

- where K is the indicator function of the set

$$
\left\{(u, v) \in t S^{1} \times t S^{1}: u-v=t S^{1}\right\}
$$

What is the "right" bilinear analog of the spherical averaging operator? (continued)

- where K is the indicator function of the set

$$
\left\{(u, v) \in t S^{1} \times t S^{1}: u-v=t S^{1}\right\}
$$

$$
=\left\{(u, \theta u): u \in t S^{1}\right\} \cup\left\{\left(u, \theta^{-1} u\right): u \in t S^{1}\right\}
$$

What is the "right" bilinear analog of the spherical averaging operator? (continued)

- where K is the indicator function of the set

$$
\begin{gathered}
\left\{(u, v) \in t S^{1} \times t S^{1}: u-v=t S^{1}\right\} \\
=\left\{(u, \theta u): u \in t S^{1}\right\} \cup\left\{\left(u, \theta^{-1} u\right): u \in t S^{1}\right\},
\end{gathered}
$$

- where θ is the rotation by $\frac{\pi}{3}$.

What is the "right" bilinear analog of the spherical averaging operator? (continued)

- where K is the indicator function of the set

$$
\left\{(u, v) \in t S^{1} \times t S^{1}: u-v=t S^{1}\right\}
$$

$$
=\left\{(u, \theta u): u \in t S^{1}\right\} \cup\left\{\left(u, \theta^{-1} u\right): u \in t S^{1}\right\}
$$

- where θ is the rotation by $\frac{\pi}{3}$.
- This puts the discrete operator in the form

$$
H(f, g)(x)=\sum_{|u|=t} f(x-u) g\left(x-\theta^{ \pm} u\right)
$$

The model bilinear generalized Radon transform

- This suggests that a reasonable model for the bilinear generalized Radon transform in \mathbb{R}^{2} is

$$
B_{\theta}(f, g)(x)=\int_{S^{1}} f(x-y) g(x-\theta y) d \sigma(y)
$$

The model bilinear generalized Radon transform

- This suggests that a reasonable model for the bilinear generalized Radon transform in \mathbb{R}^{2} is

$$
B_{\theta}(f, g)(x)=\int_{S^{1}} f(x-y) g(x-\theta y) d \sigma(y)
$$

- where θ is a rotation counter-clockwise by the angle θ and σ is the arc-length measure on S^{1}.

The model bilinear generalized Radon transform

- This suggests that a reasonable model for the bilinear generalized Radon transform in \mathbb{R}^{2} is

$$
B_{\theta}(f, g)(x)=\int_{S^{1}} f(x-y) g(x-\theta y) d \sigma(y)
$$

- where θ is a rotation counter-clockwise by the angle θ and σ is the arc-length measure on S^{1}.
- We will also discuss a natural variable coefficient analog of this operator in the style of the generalized Radon transforms studied by Phong, Stein and others in the 80s and and 90s.

Geometric configurations

- This operator has arisen before, in a more or less disguised form, in the work of Bourgain, Greenleaf, A.I., Furstenberg, Katznelson, Weiss, Ziegler and others in problems involving showing that a suitably "large" subset of Euclidean space contains vertices of an equilateral triangle.

Geometric configurations

- This operator has arisen before, in a more or less disguised form, in the work of Bourgain, Greenleaf, A.I., Furstenberg, Katznelson, Weiss, Ziegler and others in problems involving showing that a suitably "large" subset of Euclidean space contains vertices of an equilateral triangle.
- The most general result in the context of sets of positive upper density is due to Tamar Ziegler:

Geometric configurations

- This operator has arisen before, in a more or less disguised form, in the work of Bourgain, Greenleaf, A.I., Furstenberg, Katznelson, Weiss, Ziegler and others in problems involving showing that a suitably "large" subset of Euclidean space contains vertices of an equilateral triangle.
- The most general result in the context of sets of positive upper density is due to Tamar Ziegler:

Theorem

Let $E \subset \mathbb{R}^{d}$, of positive upper Lebesgue density. Let E_{δ} denote the δ-neighborhood of E. Let $V=\left\{\mathbf{0}, v^{1}, v^{2}, \ldots, v^{k-1}\right\} \subset \mathbb{R}^{d}$, where $k \geq 2$ is a positive integer. Then there exists $I_{0}>0$ such that for any $I>I_{0}$ and any $\delta>0$ there exists $\left\{x^{1}, \ldots, x^{k}\right\} \subset E_{\delta}$ congruent to $I V=\left\{\mathbf{0}, I v^{1}, \ldots, I v^{k-1}\right\}$.

Geometric configurations

- In the context of compact sets of a given Hausdorff dimension, there is the following result due to A.I. and Bochen Liu:

Geometric configurations

- In the context of compact sets of a given Hausdorff dimension, there is the following result due to A.I. and Bochen Liu:

Theorem

(A.I. and B. Liu, 2016) There exists $\epsilon_{d}>0$ such that if the Hausdorff dimension of a compact set $E \subset \mathbb{R}^{d}, d \geq 3$, is greater than $d-\epsilon_{d}$, then E contains vertices of an equilateral triangle.

Geometric configurations

- In the context of compact sets of a given Hausdorff dimension, there is the following result due to A.I. and Bochen Liu:

Theorem

(A.I. and B. Liu, 2016) There exists $\epsilon_{d}>0$ such that if the Hausdorff dimension of a compact set $E \subset \mathbb{R}^{d}, d \geq 3$, is greater than $d-\epsilon_{d}$, then E contains vertices of an equilateral triangle.

- In \mathbb{R}^{2} this result is, in general, false (Falconer). Chan, Laba and Pramanik proved that a positive result is possible if one assumes that $E \subset \mathbb{R}^{2}$ carries a measure with a decaying Fourier transform.

Bounds for the model operator

Theorem

(Greenleaf, losevich, Krause and Liu, 2016) With the notation above, $\theta \neq \pi$,

$$
B_{\theta}: L^{p}\left(\mathbb{R}^{2}\right) \times L^{q}\left(\mathbb{R}^{2}\right) \rightarrow L^{r}\left(\mathbb{R}^{2}\right)
$$

if $\left(\frac{1}{p}, \frac{1}{q}, \frac{1}{r}\right)$ is in the polyhedron with the vertices $(0,0,0),\left(\frac{2}{3}, \frac{2}{3}, 1\right)$, $\left(0, \frac{2}{3}, \frac{1}{3}\right),\left(\frac{2}{3}, 0, \frac{1}{3}\right),(1,0,1),(0,1,1)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

If $\theta=\pi$, the vertices of the polyhedron are $(0,0,0),\left(0, \frac{2}{3}, \frac{1}{3}\right) \cdot\left(\frac{2}{3}, 0, \frac{1}{3}\right)$, $(1,0,1),(0,1,1)$ and $\left(\frac{2}{3}, \frac{2}{3}, 1\right)$.

Bounds for the model operator

Theorem

(Greenleaf, losevich, Krause and Liu, 2016) With the notation above, $\theta \neq \pi$,

$$
B_{\theta}: L^{p}\left(\mathbb{R}^{2}\right) \times L^{q}\left(\mathbb{R}^{2}\right) \rightarrow L^{r}\left(\mathbb{R}^{2}\right)
$$

if $\left(\frac{1}{p}, \frac{1}{q}, \frac{1}{r}\right)$ is in the polyhedron with the vertices $(0,0,0),\left(\frac{2}{3}, \frac{2}{3}, 1\right)$, $\left(0, \frac{2}{3}, \frac{1}{3}\right),\left(\frac{2}{3}, 0, \frac{1}{3}\right),(1,0,1),(0,1,1)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

If $\theta=\pi$, the vertices of the polyhedron are $(0,0,0),\left(0, \frac{2}{3}, \frac{1}{3}\right) .\left(\frac{2}{3}, 0, \frac{1}{3}\right)$, $(1,0,1),(0,1,1)$ and $\left(\frac{2}{3}, \frac{2}{3}, 1\right)$.

- These exponents are best possible, at least on the scale of normed spaces, $p, q, r \geq 1$.

Typical difficulties with bilinear operators

- Let $T_{K} f(x)=\int f(x-y) K(y) d y$. Then Plancherel tells us that

$$
T_{K}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right) \text { if and only if } \widehat{K} \in L^{\infty}\left(\mathbb{R}^{d}\right)
$$

Typical difficulties with bilinear operators

- Let $T_{K} f(x)=\int f(x-y) K(y) d y$. Then Plancherel tells us that

$$
T_{K}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right) \text { if and only if } \widehat{K} \in L^{\infty}\left(\mathbb{R}^{d}\right)
$$

- Let $B_{K}(f, g)(x)=\iint f(x-u) g(x-v) K(u, v) d u d v$. The corresponding natural estimate in this setting is

$$
B_{K}: L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{1}\left(\mathbb{R}^{d}\right)
$$

Typical difficulties with bilinear operators

- Let $T_{K} f(x)=\int f(x-y) K(y) d y$. Then Plancherel tells us that

$$
T_{K}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right) \text { if and only if } \widehat{K} \in L^{\infty}\left(\mathbb{R}^{d}\right)
$$

- Let $B_{K}(f, g)(x)=\iint f(x-u) g(x-v) K(u, v) d u d v$. The corresponding natural estimate in this setting is

$$
B_{K}: L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{1}\left(\mathbb{R}^{d}\right)
$$

- It is known that $\widehat{K} \in L^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ does not, in general, guarantee that this estimate holds. Just take $T_{K}(f, g)(x)=H(f g)(x)$, where H is the Hilbert transform.

The bilinear multiplier of the model operator

- Since $B_{\theta}(f, g)(x)=\int_{S^{1}} f(x-y) g(x-\theta y) d \sigma(y)$, the bilinear multiplier is equal to

The bilinear multiplier of the model operator

- Since $B_{\theta}(f, g)(x)=\int_{S^{1}} f(x-y) g(x-\theta y) d \sigma(y)$, the bilinear multiplier is equal to

$$
m(\xi, \eta)=\widehat{\sigma}\left(\xi+\theta^{T} \eta\right)=J_{0}\left(2 \pi\left|\xi+\theta^{T} \eta\right|\right)
$$

The bilinear multiplier of the model operator

- Since $B_{\theta}(f, g)(x)=\int_{S^{1}} f(x-y) g(x-\theta y) d \sigma(y)$, the bilinear multiplier is equal to

$$
m(\xi, \eta)=\widehat{\sigma}\left(\xi+\theta^{T} \eta\right)=J_{0}\left(2 \pi\left|\xi+\theta^{T} \eta\right|\right)
$$

- This multiplier does not decay at all along the 2-plane

$$
\xi+\theta^{T} \eta=0
$$

- We may take $f, g \geq 0$ and obtain

The $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound

- We may take $f, g \geq 0$ and obtain

$$
\|B(f, g)\|_{L^{1}\left(\mathbb{R}^{2}\right)}=\iint f(x-y) g(x-\theta y) d \sigma(y) d x
$$

The $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound

- We may take $f, g \geq 0$ and obtain

$$
\begin{aligned}
& \|B(f, g)\|_{L^{1}\left(\mathbb{R}^{2}\right)}=\iint f(x-y) g(x-\theta y) d \sigma(y) d x \\
& \quad=\int f(x)\left\{\int g(x+y-\theta y) d \sigma(y)\right\} d x
\end{aligned}
$$

The $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound

- We may take $f, g \geq 0$ and obtain

$$
\begin{aligned}
&\|B(f, g)\|_{L^{1}\left(\mathbb{R}^{2}\right)}=\iint f(x-y) g(x-\theta y) d \sigma(y) d x \\
&=\int f(x)\left\{\int g(x+y-\theta y) d \sigma(y)\right\} d x \\
&=: \int f(x) \cdot\left(T_{\theta} g\right)(x) d x
\end{aligned}
$$

The $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound (continued)

$$
\leq\|f\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)} \cdot\left\|T_{\theta} g(x)\right\|_{L^{3}\left(\mathbb{R}^{2}\right)}
$$

The $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound (continued)

$$
\begin{aligned}
& \leq\|f\|_{L^{\frac{3}{2}\left(\mathbb{R}^{2}\right)}} \cdot\left\|T_{\theta g} g(x)\right\|_{L^{3}\left(\mathbb{R}^{2}\right)} \\
& \leq C\|f\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)}\|g\|_{L^{\frac{1}{2}\left(\mathbb{R}^{2}\right)}} .
\end{aligned}
$$

The $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound (continued)

$$
\begin{aligned}
& \leq\|f\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)} \cdot\left\|T_{\theta} g(x)\right\|_{L^{3}\left(\mathbb{R}^{2}\right)} \\
& \leq C\|f\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)}\|g\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)} .
\end{aligned}
$$

- This establishes the $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound.

The $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound (continued)

$$
\begin{aligned}
\leq & \|f\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)} \cdot\left\|T_{\theta} g(x)\right\|_{L^{3}\left(\mathbb{R}^{2}\right)} \\
& \leq C\|f\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)}\|g\|_{L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right)} .
\end{aligned}
$$

- This establishes the $L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \times L^{\frac{3}{2}}\left(\mathbb{R}^{2}\right) \rightarrow L^{1}\left(\mathbb{R}^{2}\right)$ bound.
- The same argument yields the $L^{\frac{d+1}{d}}\left(\mathbb{R}^{d}\right) \times L^{\frac{d+1}{d}}\left(\mathbb{R}^{d}\right) \rightarrow L^{d+1}\left(\mathbb{R}^{d}\right)$ bound for $d \geq 2$.

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound

- Let

$$
S_{\theta}=\left\{\left(y, y^{\prime}\right) \in S^{1} \times S^{1}:\left|\alpha-\alpha^{\prime}\right|<\frac{\theta}{2}\right\}, \text { with } y=e^{i \alpha}, y^{\prime}=e^{i \alpha^{\prime}} .
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound

- Let

$$
S_{\theta}=\left\{\left(y, y^{\prime}\right) \in S^{1} \times S^{1}:\left|\alpha-\alpha^{\prime}\right|<\frac{\theta}{2}\right\}, \text { with } y=e^{i \alpha}, y^{\prime}=e^{i \alpha^{\prime}}
$$

- We have

$$
\left\|B_{\theta}\left(\chi_{E}, \chi_{F}\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound

- Let

$$
S_{\theta}=\left\{\left(y, y^{\prime}\right) \in S^{1} \times S^{1}:\left|\alpha-\alpha^{\prime}\right|<\frac{\theta}{2}\right\}, \text { with } y=e^{i \alpha}, y^{\prime}=e^{i \alpha^{\prime}}
$$

- We have

$$
\left\|B_{\theta}\left(\chi_{E}, \chi_{F}\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}
$$

$$
=\iiint \chi_{E}(x-y) \chi_{F}(x-\Theta y) \chi_{E}\left(x-y^{\prime}\right) \chi_{F}\left(x-\Theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound

- Let

$$
S_{\theta}=\left\{\left(y, y^{\prime}\right) \in S^{1} \times S^{1}:\left|\alpha-\alpha^{\prime}\right|<\frac{\theta}{2}\right\}, \text { with } y=e^{i \alpha}, y^{\prime}=e^{i \alpha^{\prime}}
$$

- We have

$$
\left\|B_{\theta}\left(\chi_{E}, \chi_{F}\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}
$$

$$
=\iiint \chi_{E}(x-y) \chi_{F}(x-\Theta y) \chi_{E}\left(x-y^{\prime}\right) \chi_{F}\left(x-\Theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
$$

$$
=\int_{S_{\theta}} \iint \chi_{E}(x-y) \chi_{F}(x-\theta y) \chi_{E}\left(x-y^{\prime}\right) \chi_{F}\left(x-\theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (continued)

$$
+\int_{S_{\varepsilon}^{s}} \iint \chi_{E}(x-y) \chi_{F}\left(x-\Theta_{y}\right) \chi_{E}\left(x-y^{\prime}\right) \chi_{F}\left(x-\Theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (continued)

$$
+\int_{S_{\theta}^{c}} \iint \chi_{E}(x-y) \chi_{F}(x-\Theta y) \chi_{E}\left(x-y^{\prime}\right) \chi_{F}\left(x-\Theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
$$

$$
\leq \int_{S_{\theta}^{c}} \iint \chi_{E}(x-y) \chi_{F}\left(x-\Theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (continued)

$$
+\int_{S_{\theta}^{c}} \iint \chi_{E}(x-y) \chi_{F}(x-\Theta y) \chi_{E}\left(x-y^{\prime}\right) \chi_{F}\left(x-\Theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
$$

$$
\begin{aligned}
& \leq \int_{S_{\theta}^{c}} \iint \chi_{E}(x-y) \chi_{F}\left(x-\Theta y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x \\
& +\int_{S_{\theta}} \iint \chi_{E}(x-y) \chi_{E}\left(x-y^{\prime}\right) d \sigma(y) d \sigma\left(y^{\prime}\right) d x
\end{aligned}
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (continued)

- Let $y=(\cos (\alpha), \sin (\alpha)), y^{\prime}=\left(\cos \left(\alpha^{\prime}\right), \sin \left(\alpha^{\prime}\right)\right)$. To make a change of variables for the first integral in the last expression, we consider

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (continued)

- Let $y=(\cos (\alpha), \sin (\alpha)), y^{\prime}=\left(\cos \left(\alpha^{\prime}\right), \sin \left(\alpha^{\prime}\right)\right)$. To make a change of variables for the first integral in the last expression, we consider

$$
\begin{gathered}
u_{1}=x_{1}-\cos (\alpha), u_{2}=x_{2}-\sin (\alpha) \\
v_{1}=x_{1}-\cos \left(\alpha^{\prime}+\theta\right), v_{2}=x_{2}-\sin \left(\alpha^{\prime}+\theta\right)
\end{gathered}
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (continued)

- Let $y=(\cos (\alpha), \sin (\alpha)), y^{\prime}=\left(\cos \left(\alpha^{\prime}\right), \sin \left(\alpha^{\prime}\right)\right)$. To make a change of variables for the first integral in the last expression, we consider

$$
\begin{gathered}
u_{1}=x_{1}-\cos (\alpha), u_{2}=x_{2}-\sin (\alpha) \\
v_{1}=x_{1}-\cos \left(\alpha^{\prime}+\theta\right), v_{2}=x_{2}-\sin \left(\alpha^{\prime}+\theta\right)
\end{gathered}
$$

- For the second integral, we make the change of variables

$$
u_{1}=x_{1}-\cos (\alpha), u_{2}=x_{2}-\sin (\alpha), v_{1}=x_{1}-\cos \left(\alpha^{\prime}\right), v_{2}=x_{2}-\sin \left(\alpha^{\prime}\right)
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (continued)

- Let $y=(\cos (\alpha), \sin (\alpha)), y^{\prime}=\left(\cos \left(\alpha^{\prime}\right), \sin \left(\alpha^{\prime}\right)\right)$. To make a change of variables for the first integral in the last expression, we consider

$$
\begin{gathered}
u_{1}=x_{1}-\cos (\alpha), u_{2}=x_{2}-\sin (\alpha) \\
v_{1}=x_{1}-\cos \left(\alpha^{\prime}+\theta\right), v_{2}=x_{2}-\sin \left(\alpha^{\prime}+\theta\right)
\end{gathered}
$$

- For the second integral, we make the change of variables

$$
u_{1}=x_{1}-\cos (\alpha), u_{2}=x_{2}-\sin (\alpha), v_{1}=x_{1}-\cos \left(\alpha^{\prime}\right), v_{2}=x_{2}-\sin \left(\alpha^{\prime}\right) .
$$

- The Jacobian in the first case is

$$
\sin \left(\alpha-\alpha^{\prime}-\theta\right)
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (concluded)

- while the Jacobian in the second case is

$$
\sin \left(\alpha-\alpha^{\prime}\right)
$$

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (concluded)

- while the Jacobian in the second case is

$$
\sin \left(\alpha-\alpha^{\prime}\right)
$$

- Note that both of these quantities are bounded away from 0 because of the constraints on the angle between y and y^{\prime}.

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (concluded)

- while the Jacobian in the second case is

$$
\sin \left(\alpha-\alpha^{\prime}\right)
$$

- Note that both of these quantities are bounded away from 0 because of the constraints on the angle between y and y^{\prime}.
- As long as $0<\theta<\pi$, though, we have that the Jacobian in both cases is bounded from below by $\frac{1}{2} \sin \left(\frac{\theta}{2}\right)$.

The $L^{2}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ bound (concluded)

- while the Jacobian in the second case is

$$
\sin \left(\alpha-\alpha^{\prime}\right)
$$

- Note that both of these quantities are bounded away from 0 because of the constraints on the angle between y and y^{\prime}.
- As long as $0<\theta<\pi$, though, we have that the Jacobian in both cases is bounded from below by $\frac{1}{2} \sin \left(\frac{\theta}{2}\right)$.
- It follows that

$$
\left\|B_{\theta}\left(\chi_{E}, \chi_{F}\right)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C\left(|E|^{2}+|E \| F|\right)^{\frac{1}{2}} \leq 2 C|E|^{\frac{1}{2}}|F|^{\frac{1}{2}}
$$

for some constant C depending only on θ.

Sharpness examples

- $0 \leq \frac{1}{p}, \frac{1}{q}, \frac{1}{r} \leq 1$, (Banach cube).

Sharpness examples

- $0 \leq \frac{1}{p}, \frac{1}{q}, \frac{1}{r} \leq 1$, (Banach cube).
- $\frac{2}{p}+\frac{1}{q} \leq 1+\frac{1}{r}, \frac{1}{p}+\frac{2}{q} \leq 1+\frac{1}{r}$, (Small ball and annulus).

Sharpness examples

- $0 \leq \frac{1}{p}, \frac{1}{q}, \frac{1}{r} \leq 1$, (Banach cube).
- $\frac{2}{p}+\frac{1}{q} \leq 1+\frac{1}{r}, \frac{1}{p}+\frac{2}{q} \leq 1+\frac{1}{r}$, (Small ball and annulus).
- $\frac{1}{p}+\frac{1}{q} \leq \frac{2}{r}$, (Dual of small ball and annulus).

Sharpness examples

- $0 \leq \frac{1}{p}, \frac{1}{q}, \frac{1}{r} \leq 1$, (Banach cube).
- $\frac{2}{p}+\frac{1}{q} \leq 1+\frac{1}{r}, \frac{1}{p}+\frac{2}{q} \leq 1+\frac{1}{r}$, (Small ball and annulus).
- $\frac{1}{p}+\frac{1}{q} \leq \frac{2}{r}$, (Dual of small ball and annulus).
- $\frac{3}{p}+\frac{3}{q} \leq 1+\frac{4}{r},($ Tangent rectangles $\theta \neq \pi)$.

Sharpness examples

- $0 \leq \frac{1}{p}, \frac{1}{q}, \frac{1}{r} \leq 1$, (Banach cube).
- $\frac{2}{p}+\frac{1}{q} \leq 1+\frac{1}{r}, \frac{1}{p}+\frac{2}{q} \leq 1+\frac{1}{r}$, (Small ball and annulus).
- $\frac{1}{p}+\frac{1}{q} \leq \frac{2}{r}$, (Dual of small ball and annulus).
- $\frac{3}{p}+\frac{3}{q} \leq 1+\frac{4}{r},($ Tangent rectangles $\theta \neq \pi)$.
- $\frac{4}{p}+\frac{3}{q} \leq 2+\frac{3}{r}, \frac{3}{p}+\frac{4}{q} \leq 2+\frac{3}{r}$, (Dual of tangent rectangles $\left.\theta \neq 0, \pi\right)$.

Sharpness examples

- $0 \leq \frac{1}{p}, \frac{1}{q}, \frac{1}{r} \leq 1$, (Banach cube).
- $\frac{2}{p}+\frac{1}{q} \leq 1+\frac{1}{r}, \frac{1}{p}+\frac{2}{q} \leq 1+\frac{1}{r}$, (Small ball and annulus).
- $\frac{1}{p}+\frac{1}{q} \leq \frac{2}{r}$, (Dual of small ball and annulus).
- $\frac{3}{p}+\frac{3}{q} \leq 1+\frac{4}{r},($ Tangent rectangles $\theta \neq \pi)$.
- $\frac{4}{p}+\frac{3}{q} \leq 2+\frac{3}{r}, \frac{3}{p}+\frac{4}{q} \leq 2+\frac{3}{r}$, (Dual of tangent rectangles $\theta \neq 0, \pi$).
- $\frac{1}{r} \leq \frac{1}{p}+\frac{1}{q}$, (Large ball).

The general case

- Let

$$
B(f, g)(x)=\iint \delta\left(\phi_{1}(x, y)-t_{1}\right) \cdot \delta\left(\phi_{2}(x, z)-t_{2}\right) \cdot \delta\left(\phi_{3}(y, z)-t_{3}\right) d y d z
$$

The general case

- Let

$$
B(f, g)(x)=\iint \delta\left(\phi_{1}(x, y)-t_{1}\right) \cdot \delta\left(\phi_{2}(x, z)-t_{2}\right) \cdot \delta\left(\phi_{3}(y, z)-t_{3}\right) d y d z
$$

- If $\phi_{1}=\phi_{2}=\phi_{3}=\phi$ with $\phi(x, y)=|x-y|$, we recover the operator $B_{\frac{\pi}{3}}(f, g)$ above.

The general case

- Let

$$
B(f, g)(x)=\iint \delta\left(\phi_{1}(x, y)-t_{1}\right) \cdot \delta\left(\phi_{2}(x, z)-t_{2}\right) \cdot \delta\left(\phi_{3}(y, z)-t_{3}\right) d y d z
$$

- If $\phi_{1}=\phi_{2}=\phi_{3}=\phi$ with $\phi(x, y)=|x-y|$, we recover the operator $B_{\frac{\pi}{3}}(f, g)$ above.
- We obtain the same bounds for this operator as the ones we got for $B_{\theta}(f, g)$ with $\theta \neq \pi$ provided the following conditions hold.

The general case

- Let

$$
B(f, g)(x)=\iint \delta\left(\phi_{1}(x, y)-t_{1}\right) \cdot \delta\left(\phi_{2}(x, z)-t_{2}\right) \cdot \delta\left(\phi_{3}(y, z)-t_{3}\right) d y d z
$$

- If $\phi_{1}=\phi_{2}=\phi_{3}=\phi$ with $\phi(x, y)=|x-y|$, we recover the operator $B_{\frac{\pi}{3}}(f, g)$ above.
- We obtain the same bounds for this operator as the ones we got for $B_{\theta}(f, g)$ with $\theta \neq \pi$ provided the following conditions hold.
- We need a curvature condition and a transversality condition.

Geometric conditions

- The curvature assumption is just the rotational curvature condition on ϕ_{3}, namely

$$
\operatorname{det}\left(\begin{array}{cc}
0 & \nabla_{x} \phi_{3} \\
-\left(\nabla_{y} \phi_{3}\right)^{T} & \frac{\partial^{2} \phi_{3}}{d x_{i} d y_{j}}
\end{array}\right) \neq 0
$$

on the set $\left\{(x, y): \phi_{3}(x, y)=t\right\}$.

Geometric conditions

- The curvature assumption is just the rotational curvature condition on ϕ_{3}, namely

$$
\operatorname{det}\left(\begin{array}{cc}
0 & \nabla_{x} \phi_{3} \\
-\left(\nabla_{y} \phi_{3}\right)^{T} & \frac{\partial^{2} \phi_{3}}{d x_{i} d y_{j}}
\end{array}\right) \neq 0
$$

on the set $\left\{(x, y): \phi_{3}(x, y)=t\right\}$.

- The transversality assumption is that the determinant of the following matrices is non-zero.

Geometric conditions

- The curvature assumption is just the rotational curvature condition on ϕ_{3}, namely

$$
\operatorname{det}\left(\begin{array}{cc}
0 & \nabla_{x} \phi_{3} \\
-\left(\nabla_{y} \phi_{3}\right)^{T} & \frac{\partial^{2} \phi_{3}}{d x_{i} d y_{j}}
\end{array}\right) \neq 0
$$

on the set $\left\{(x, y): \phi_{3}(x, y)=t\right\}$.

- The transversality assumption is that the determinant of the following matrices is non-zero.

$$
\operatorname{det}\left[\begin{array}{cc}
d_{y} \phi_{1}(x, y) & 0 \\
d_{y} \phi_{3}(y, z) & 0 \\
0 & d_{z^{\prime}} \phi_{3}\left(x, z^{\prime}\right) \\
0 & d_{z^{\prime}} \phi_{3}\left(y, z^{\prime}\right)
\end{array}\right] \neq 0
$$

Geometric conditions (continued)

$$
\operatorname{det}\left[\begin{array}{cc}
d_{z} \phi_{2}(x, z) & 0 \\
d_{z} \phi_{3}(y, z) & 0 \\
0 & d_{y^{\prime}} \phi_{1}\left(x, y^{\prime}\right) \\
0 & d_{y^{\prime}} \phi_{3}\left(y^{\prime}, z^{\prime}\right)
\end{array}\right] \neq 0
$$

Geometric conditions (continued)

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cc}
d_{z} \phi_{2}(x, z) & 0 \\
d_{z} \phi_{3}(y, z) & 0 \\
0 & d_{y^{\prime}} \phi_{1}\left(x, y^{\prime}\right) \\
0 & d_{y^{\prime}} \phi_{3}\left(y^{\prime}, z^{\prime}\right)
\end{array}\right] \neq 0, \\
& \operatorname{det}\left[\begin{array}{cc}
d_{z} \phi_{2}(x, z) & 0 \\
d_{z} \phi_{3}(y, z) & 0 \\
0 & d_{z^{\prime}} \phi_{2}\left(x, y^{\prime}\right) \\
0 & d_{z^{\prime}} \phi_{3}\left(y^{\prime}, z^{\prime}\right)
\end{array}\right] \neq 0,
\end{aligned}
$$

Geometric conditions (continued)

$$
\operatorname{det}\left[\begin{array}{cc}
d_{z} \phi_{2}(x, z) & 0 \\
d_{z} \phi_{3}(y, z) & 0 \\
0 & d_{y^{\prime}} \phi_{1}\left(x, y^{\prime}\right) \\
0 & d_{y^{\prime}} \phi_{3}\left(y^{\prime}, z^{\prime}\right)
\end{array}\right] \neq 0
$$

$$
\operatorname{det}\left[\begin{array}{cc}
d_{z} \phi_{2}(x, z) & 0 \\
d_{z} \phi_{3}(y, z) & 0 \\
0 & d_{z^{\prime}} \phi_{2}\left(x, y^{\prime}\right) \\
0 & d_{z^{\prime}} \phi_{3}\left(y^{\prime}, z^{\prime}\right)
\end{array}\right] \neq 0
$$

$$
\operatorname{det}\left[\begin{array}{cc}
d_{y} \phi_{1}(x, y) & 0 \\
d_{y} \phi_{3}(y, z) & 0 \\
0 & d_{y^{\prime}} \phi_{1}\left(x, y^{\prime}\right) \\
0 & d_{y^{\prime}} \phi_{3}\left(y^{\prime}, z^{\prime}\right)
\end{array}\right] \neq 0
$$

