A limit theorem for random games

María José González

joint work with: F. Durango, J.L. Fernández, P. Fernández

KIAS, Seoul 2017

Game

- Game with 2 players: α and β.
- Each of them alternately move R (right) or L (left) to form a string
- The game ends when each player placed N moves, for some predetermined $N \geq 1$.
- The collection of strings of length $2 N$ is partitioned into two subsets A and B, known before the game starts.
- Winning rule: Player α wins if the final string ends in A and player β wins if the final string ends in B.

Zermelo's algorithm

Zermelo's Theorem dictates that either player α has a winning strategy or player β has a winning strategy.

Zermelo's algoritm

- Label the string that ends in A with 1 , and the ones that end in B with 0 .
- Proceed backwards filling all the nodes with 1's or 0's.
- If the value at the root of the game V_{N} is 1 , then α has a winning strategy. If $V_{N}=0, \beta$ has a winning strategy.

María José González joint work with: F. Durango, J.L. Fernández, P. A limit theorem for random games

Randomizing the game

- Fix a probability $p \in(0,1)$, and consider a coin:

$$
\begin{aligned}
& X=0 \text { with prob } \mathbf{p} \\
& X=1 \text { with prob } 1-p .
\end{aligned}
$$

- For each of the strings, toss the coin to decide if the string ends in A or in B.

> The value at the root of the tree V_{N} becomes a Bernoulli variable with

$$
\mathbf{P}\left(V_{N}=0\right)=h^{(N)}(p)
$$

where
$h(p)=P\left(\operatorname{Max}\left(\min \left(x_{1}, x_{2}\right), \min \left(x_{3}, x_{4}\right)\right)=0\right)=\left(1-(1-p)^{2}\right)^{2}$.

Randomizing the game

- Fix a probability $p \in(0,1)$, and consider a coin:
$X=0$ with prob \mathbf{p}
$X=1$ with prob $1-p$.
- For each of the strings, toss the coin to decide if the string ends in A or in B.

The value at the root of the tree V_{N} becomes a Bernoulli variable with

$$
\mathbf{P}\left(V_{N}=0\right)=h^{(N)}(p)
$$

where

$$
h(p)=\mathbf{P}\left(\operatorname{Max}\left(\min \left(x_{1}, x_{2}\right), \min \left(x_{3}, x_{4}\right)\right)=0\right)=\left(1-(1-p)^{2}\right)^{2} .
$$

María José González joint work with: F. Durango, J.L. Fernández, P. A limit theorem for random games

$$
\begin{aligned}
& h(p)=\mathbf{P}\left(\operatorname{Max}\left(\min \left(x_{1}, x_{2}\right), \min \left(x_{3}, x_{4}\right)\right)=0\right)=\left(1-(1-p)^{2}\right)^{2} \\
& h(p) \nearrow \operatorname{in}(0,1) \\
& h(0)=0, h(1)=1 \\
& h^{\prime}(0)=h^{\prime}(1)=0
\end{aligned}
$$

$$
h(p)=p \Leftrightarrow p=p^{*}=\frac{3-\sqrt{5}}{2} \approx 0,382
$$

María José González joint work with: F. Durango, J.L. Fernández, P. A limit theorem for random games

$$
\mathbf{P}\left(V_{N}=0\right)=h^{(N)}(p)
$$

Therefore, as $N \rightarrow \infty$:

- If $p<p^{*}$, then $\mathbf{P}\left(V_{N}=0\right)=h^{(N)}(p) \rightarrow 0$, and α is almost certain to win. $V_{N} \rightarrow 1$
- If $p=p^{*}$, then $\mathbf{P}\left(V_{N}=0\right)=h^{(N)}(p)=p^{*}$. $V_{N} \rightarrow X$, where X is a Bernoulli variable with prob. of success $\left(1-p^{*}\right)$.
- If $p>p^{*}$, then $\mathbf{P}\left(V_{N}=0\right)=h^{(N)}(p) \rightarrow 1$, and β is almost certain to win. $V_{N} \rightarrow 0$

In terms of quantiles: $V_{N} \rightarrow Q_{X}\left(p^{*}\right)$

Generalization

Consider a monotone Boolean function $H:\{0,1\}^{n} \rightarrow\{0,1\}$. (Voting rule)

Ex: $n=3$
$H(1,1,1)=1 \quad H(0,1,1)=1 \quad H(1,0,1)=1 \quad H(0,0,1)=1$
$\mathbf{H}(1,1,0)=1 \quad H(0,1,0)=0 \quad H(1,0,0)=0 \quad H(0,0,0)=0$

- Identify the subsets of $\{1,2,3\}$ with elemets of $\{0,1\}^{3}$.
- Look for the minimal subsets A under the action of H, i.e. $H(A)=1$, and for any B with $B \subset A, H(B)=0$.

Note that the minimal subsets are $\{1,2\},\{3\}$ and $H=\max \left(\min \left(x_{1}, x_{2}\right), x_{3}\right)$

Sperner family

We can associate to each monotone Boolean function H a family of subsets $S=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ of $\{1,2, \ldots, n\}$, such that no A_{i} is contained in any other A_{j}. We will call it a Sperner family.

In fact H can be represented as the Sperner statistic associated to S :

$$
H=\max \left(\min _{A_{1}}, \min _{A_{2}}, \ldots, \min _{A_{k}}\right)
$$

where

$$
\min _{A}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\min \left(x_{i} ; x_{i} \in A\right)
$$

Examples

- Projection (or dictatorship): $H\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$
- Majority rule: $H\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\mathcal{X}_{\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}>1 / 2\right)}$
- Order statistics: $H_{(n ; r)}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i_{r}}$ where $x_{i_{1}} \leq x_{i_{2}} \leq \ldots x_{i_{r}} \leq \ldots x_{i_{n}}$. The Sperner family are all the subsets of size $n-r+1$.
- Zermelo statistics: The Sperner family associated is such that all the subsets A_{i} are pairwise disjoint. The one associated to the game is a Zermelo statistic.

Problem

Consider Bernoulli variables X that take values 0 and 1 with probabilities p and $1-p$ respectively.

Define the operator $\mathbf{H}(\mathbf{X})$ acting on Bernoulli variables X by $\mathbf{H}(\mathbf{X})=\mathbf{H}\left(X_{1}, \ldots, X_{n}\right)$ where X_{i} are independent copies of X.

Problem: Understand the convergence (in distribution) of the iterates $\mathbf{H}^{(N)}$.

NOTE: $\mathbf{H}^{(N)}$ is a Bernoulli variable that take values 0 and 1

$$
\left\{\mathbf{H}\left(X_{1}, \ldots, X_{n}\right)=0\right\}=\bigcap_{i=1}^{k}\left\{\min _{A_{i}}\left(X_{1}, \ldots, X_{n}=0\right\}\right.
$$

Therefore, $\mathbf{P}(\mathbf{H}(\mathbf{X})=0)$ is the polynomial

$$
h(p)=1-\sum_{i}(1-p)^{\left|A_{i}\right|}+\sum_{i<j}(1-p)^{\left|A_{i} \cup A_{j}\right|}-\ldots
$$

and

$$
\mathbf{P}\left(\mathbf{H}^{(N)}(\mathbf{X})=0\right)=h^{(N)}(p)
$$

Easy cases

h is \nearrow in $[0,1]$ with $h(0)=0, h(1)=1, h^{\prime}(0)=\left|\bigcap_{1}^{k} A_{i}\right|$ and $h^{\prime}(1)=$ number of singletons.

- Projection: $h(p)=\mathbf{P}(\mathbf{H}(\mathbf{X})=0)=\mathbf{P}\left(X_{i}=0\right)=p$. Therefore $\mathbf{H}^{(N)}(\mathbf{X})=X$.
- Upper case: The family S contains no singleton and $\bigcap_{1}^{k} A_{i} \neq \emptyset$, then $h(p)>p$. Therefore $h^{(N)}(p) \rightarrow 1$ if $p \neq 0$.

$$
\mathbf{H}^{(N)}(\mathbf{X}) \rightarrow Q_{X}(0)
$$

- Lower case: The family S contains a singleton and $\bigcap_{1}^{k} A_{i}=\emptyset$, then $h(p)<p$.. Therefore $h^{(N)}(p) \rightarrow 0$ if $p \neq 1$.

$$
\mathbf{H}^{(N)}(\mathbf{X}) \rightarrow Q_{X}(1)
$$

Sperner polynomial

To study the remaining case $\left(h^{\prime}(0)=h^{\prime}(1)=0\right)$ we consider the Sperner polynomial

$$
g(p)=1-h(1-p)
$$

Then $g(p)=\mathbf{P}(\mathbf{H}(\mathbf{X})=1)$ where the Bernoulli variable X has probability of success \mathbf{p}.

Note also that

$$
\begin{gathered}
\mathbf{E}_{p}(\mathbf{H})=g(p) \\
\operatorname{Var}_{p}(\mathbf{H})=g(p)(1-g(p))
\end{gathered}
$$

Fourier Analysis: Influences

We define the influence of the variable $i ; 1 \leq i \leq n$ as

$$
\mathbf{l}_{i}(\mathbf{H})=\mathbf{P}_{p}\left(H(X) \neq H\left(X \otimes \boldsymbol{e}_{i}\right)\right)
$$

where $X \otimes e_{i}$ means X with the i-th bit flipped.
The total influence of $H, \mathbf{I}_{p}(H)$, is the sum of all the influences.
Russo's Lemma: $g^{\prime}(p)=I_{p}(H)$
Efron-Stein inequality (Isoperimetric inequality):

$$
\mathbf{I}_{p}(H) \geq \frac{1}{p(1-p)} \operatorname{Var}_{p}(H)
$$

with equality if and only if H is a projection.

Sperner point

As a consequence we obtain

$$
g^{\prime}(p)=\mathbf{I}_{p}(H) \geq \frac{g(p)(1-g(p))}{p(1-p)}
$$

So, if p is a fixed point of the Sperner polynomial $g(p)$, then $g^{\prime}(p) \geq 1$. In fact. $g^{\prime}(p)>1$ unless H is a projection.

Theorem

Let $S=\left\{A_{1}, \ldots, A_{k}\right\}$ be a Sperner family with $k \geq 2$ each $A_{j} \geq 2$ and $\cap A_{j}=\emptyset$, then the polynomial h_{S} has a unique fixed point (Sperner point) $\omega_{H} \in(0,1)$ that happens to be repellent.

Continuous selectors

A continuous selector H is a continuous function defined in \mathbf{R}^{n} such that

$$
H\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

Theorem: Any continuous selector is a Sperner statistic, and conversely.

Key point: Continuous selectors are monotone and they are determined by their restriction to the Boolean cube.

Note: If H is a continuous selector, then for all t,

$$
\mathbf{1}_{\left\{H\left(x_{1}, \ldots, x_{n}\right)>t\right\}}=H\left(\mathbf{1}_{\left\{x_{1}>t\right\}}, \ldots, \mathbf{1}_{\left\{x_{n}>t\right\}}\right)
$$

Consequently:
Let X be a random variable with distribution function F_{X}, and X_{1}, \ldots, X_{n} independent copies of X. Then

$$
\mathbf{P}\left(H\left(X_{1}, \ldots, X_{n}\right) \leq t\right)=h\left(F_{X}(t)\right)
$$

Write $\mathbf{H}(\mathbf{X})=H\left(X_{1}, \ldots, X_{N}\right)$, iterating the expression above, we get

$$
\mathbf{P}\left(\mathbf{H}^{(N)}(\mathbf{X}) \leq t\right)=h^{(N)}\left(F_{X}(t)\right)
$$

Theorem

Let H be a continuous selector. Then, except for projections, there is a unique point $\omega_{H} \in[0,1]$ so that for any random variable X

$$
\mathbf{H}^{(N)}(\mathbf{X}) \rightarrow Q_{X}\left(\omega_{H}\right)
$$

