Many Theorems and a Few Stories

John Garnett

Seoul 5/12/17

OUTLINE

I. Extension Theorems.
II. $B M O$ and A_{p} Weights.
III. Constructions with H^{∞} Interpolation, $\bar{\partial}$, and $B M O$.
IV. Corona Theorems and Problems.
V. Harmonic Measure and Integral Mean Spectra.
VI. Traveling Salesman Theorem.
VII. Work with Bishop: Harmonic Measure and Kleinian Groups.
VIII. Applied Mathematics.
IX. Random Welding.

I. Extension Theorems for $B M O$ and Sobolev Spaces.

$\Omega \subset \mathbb{R}^{d}$ connected and open, $\varphi: \Omega \rightarrow \mathbb{R}$,

$$
\|\varphi\|_{B M O(\Omega)}=\sup _{Q \subset \Omega} \frac{1}{|Q|} \int_{Q}\left|\varphi-\varphi_{Q}\right| d x
$$

where Q is a $|Q|=$ its measure, $\varphi_{Q}=\frac{1}{|Q|} \int_{Q} \varphi d x$.
Theorem 1: Every $\varphi \in B M O(\Omega)$ has extension in $B M O\left(\mathbb{R}^{d}\right)$ if and only if for all $x, y \in \Omega$

$$
\inf _{\Omega \supset \gamma \text { joins } x, y} \int_{\gamma} \frac{d s(z)}{\delta(z)} \leq C\left|\log \frac{\delta(x)}{\delta(y)}\right|+C \log \left(2+\frac{|x-y|}{\delta(x)+\delta(y)}\right),
$$

where $\delta(x)=\operatorname{dist}(x, \partial \Omega)$.

Corollary: $\Omega \subset \mathbb{R}^{2}$ and $\partial \Omega=\Gamma$ a Jordan curve.
Every $\varphi \in B M O(\Omega)$ has extension in $B M O\left(\mathbb{R}^{2}\right)$

$$
\begin{gathered}
\Uparrow \\
\left|w_{1}-w_{3}\right| \leq C\left|w_{1}-w_{2}\right|
\end{gathered}
$$

for $w_{1}, w_{2} \in \Gamma$ and w_{3} on the smaller arc $\left(w_{1}, w_{2}\right)$,
i.e. if and only if Γ is a quasicircle.

$$
L_{k}^{p}(\Omega)=\left\{f \in L^{p}(\Omega):|\alpha| \leq k=>D^{\alpha} f \in L^{p}(\Omega)\right\}
$$

for $1 \leq p \leq \infty, k \in \mathbb{N}$.

Theorem 2: (Acta 1981) For any k, and p there exists a bounded linear extension operator

$$
\Lambda_{k}: L_{k}^{p}(\Omega) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right)
$$

if and only if $\exists \varepsilon>0,0<\delta \leq \infty$ so that Ω is an (ε, δ) domain:

$$
x, y \in \Omega,|x-y|<\delta
$$

$$
\Downarrow
$$

$\exists \operatorname{arc} \gamma \subset \Omega$ joining x, y with length $(\gamma) \leq \frac{\varepsilon}{|x-y|}$
and

$$
\operatorname{dist}(z, \partial \Omega) \geq \varepsilon \frac{|x-z||y-z|}{|x-y|}, \quad \forall z \in \gamma .
$$

II. $B M O$ and A_{p} Weights.

John-Nirenberg Theorem: $\varphi \in B M O\left(\mathbb{R}^{d}\right) \Leftrightarrow \exists c$:

$$
\begin{equation*}
\sup _{Q} \frac{1}{|Q|} \int_{Q} e^{c\left|\varphi(x)-\varphi_{Q}\right|} d x<\infty . \tag{JN}
\end{equation*}
$$

Theorem 3: (Annals 1978) If $\varphi \in B M O\left(\mathbb{R}^{d}\right)$, then

$$
\inf _{g \in L^{\infty}}\|\varphi-g\|_{B M O} \sim \sup \{c: \text { JN holds }\}
$$

A weight $w \geq 0$ on \mathbb{R}^{n} is an A_{p}-weight $1 \leq p<\infty$ if

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} d x\right)<\infty
$$

(holds if and only if singular integrals or H-L maximal operator is bounded on $L^{p}(w)$.)

Theorem 4: (Annals 1980)

$$
w \in A_{p} \Leftrightarrow w=w_{1} w_{2}^{1-p}, w_{1}, w_{2} \in A_{1} .
$$

Theorem $4 \Longrightarrow$ Theorem 3 .

See also J. L. Rubio de Francia, Annals of Math 1982, for an elegant non-constructive proof of Theorem 4.
$Q \subset \mathbb{R}^{d}$ is a dyadic cube if $\exists n, k_{j} \in \mathbb{Z}$ so that

$$
Q=\bigcap_{j=1}^{d}\left\{k_{j} 2^{-n} \leq x_{j} \leq\left(k_{j}+1\right) 2^{-n}\right\} .
$$

$\varphi \in L_{\mathrm{loc}}^{1}$ is $B M O_{\mathrm{d}}$ if

$$
\|\varphi\|_{B M O_{\mathrm{d}}}=\sup _{Q \text { dyadic }} \frac{1}{|Q|} \int_{Q}\left|\varphi-\varphi_{Q}\right| d x<\infty .
$$

$B M O \subset B M O_{\mathrm{d}}, B M O \neq B M O_{\mathrm{d}}$, but $B M O_{\mathrm{d}}$ was a simpler space.

Theorem 5: (Pacific J. 1982). Assume

$$
\mathbb{R}^{d} \ni \alpha \rightarrow \varphi^{(\alpha)} \in B M O_{\mathrm{d}}
$$

is measurable, $\left\|\varphi^{(\alpha)}\right\|_{B M O_{d}} \leq 1, \varphi_{Q_{o}}^{(\alpha)}=0$ for a fixed Q_{o} and all α. Then

$$
\varphi(x)=\lim _{N \rightarrow \infty} \frac{1}{(2 N)^{d}} \int_{\left|\alpha_{j}\right| \leq N} \varphi^{(\alpha)}(x+\alpha) d \alpha
$$

is $B M O$ and $\|\varphi\|_{B M O} \leq C_{d}$.

Theorem 5 yields $B M O$ theorems like Theorem 3 from their simpler dyadic counterparts. For related H^{1} result, see B. Davis, TAMS 1980.

Let $w \in L^{1}(\mathbb{R}), w \geq 0$. Then

$$
\begin{equation*}
\sup _{I}\left(\frac{1}{|I|} \int_{I} w d x\right)\left(\frac{1}{|I|} \int_{I} \frac{1}{w} d x\right)<\infty \tag{2}
\end{equation*}
$$

holds if and only if w satisfies the Helson-Szegö condition:

$$
\begin{equation*}
w=e^{u+\tilde{v}}, \quad u \in L^{\infty},\|v\|_{\infty}<\frac{\pi}{2} \tag{HS}
\end{equation*}
$$

because both hold \Leftrightarrow Hibert transform is $L^{2}(w)$ bounded.

In dimension 1, A_{2} and HS imply Theorem 3.

Problem: Prove $A_{2} \Longrightarrow$ HS directly, without using the $L^{2}(w)$ boundedness of H or M.

III. Constructions with H^{∞} Interpolation, $\bar{\partial}$, and $B M O$.

Let $\left\{z_{j}\right\}$ be a sequence in the upper half plane $\mathbb{H}=\{x+i y: y>0\}$ and

$$
H^{\infty}=\{f: \mathbb{H} \rightarrow \mathbb{C}: f \text { is bounded and analytic }\}
$$

Theorem (Carleson 1958) Every interpolation problem

$$
\begin{equation*}
f\left(z_{j}\right)=a_{j}, j=1,2, \ldots,\left(a_{j}\right) \in \ell^{\infty} \tag{INT}
\end{equation*}
$$

has solution $f \in H^{\infty}$ if and only if
(i) $\inf _{k \neq j} \frac{\left|z_{j}-z_{k}\right|}{y_{j}} \geq c>0$ (hyperbolic separation)
and
(ii) for all intervals $I \subset \mathbb{R}$,

$$
\sum_{x_{j} \in I, y_{j}<|I|} y_{j} \leq C|I|,
$$

(Carleson measure condition).

Problems: (already solved) Find constructive solutions to:
(1) INT
(2) $\varphi \in B M O(\mathbb{R}) \Longrightarrow \varphi=u+H v, u, v \in L^{\infty}$
(3) μ Carleson measure on \mathbb{H} :

$$
\begin{gathered}
\mu(I \times(0,|I|]) \leq\|\mu\|_{C}|I| \\
\Downarrow \\
\overline{\partial F}=\mu
\end{gathered}
$$

has solution on \mathbb{H} which is bounded on \mathbb{R}.
Theorem 6: (Annals 1980) Constructive solutions to (2) and (3).
Proof uses:
(i) the J. P. Earl solution to (1),
(ii) Approximation of Carleson measures by measures $\sum_{y_{j}} \delta_{z_{j}}$ from interpolating sequences $\left\{z_{j}\right\}$, and
(iii) a BMO extension theorem of Varopoulos.

For another construction, define for σ a measure on \mathbb{H} :
$K(\sigma, z, \zeta)=\frac{2 i}{\pi} \frac{\operatorname{Im} \zeta}{(z-\zeta)(z-\bar{\zeta})} \exp \left(\int_{\operatorname{Im} w \leq \operatorname{Im} \zeta}\left(\frac{i}{\zeta-\bar{w}}-\frac{i}{z-\bar{w}}\right) d|\sigma|(w)\right)$.
Theorem 7: (Acta Math., 1983) If μ is a Carleson measure on \mathbb{H}, then

$$
S(\mu)(z)=\int_{\mathbb{H}} K\left(\frac{\mu}{\|\mu\|_{C}}, z, \zeta\right) d \mu(\zeta) \in L_{\mathrm{loc}}^{1}
$$

satisfies

$$
\bar{\partial} S(\mu)=\mu \text { on } \mathbb{H},
$$

and

$$
\sup _{\mathbb{R}}|S(\mu)(x)| \leq C_{0}\|\mu\|_{C} .
$$

Theorem 8: Let $\left\{z_{j}\right\} \subset \mathbb{H}$ satisfy
(i) $\inf _{k \neq j} \frac{\left|z_{j}-z_{k}\right|}{y_{j}} \geq c>0$ (hyperbolic separation)
and
(ii) for all intervals $I \subset \mathbb{R}, \sum_{x_{j} \in I, y_{j}<|I|} y_{j} \leq C|I|$.

Define

$$
B_{j}(z)=\prod_{k ; k \neq j} \alpha_{k} \frac{z-z_{k}}{z-\overline{z_{k}}}
$$

where $\left|\alpha_{k}\right|=1$ are convergence factors, and

$$
\delta=\inf _{j}\left|B_{j}\left(z_{j}\right)\right|>0
$$

Then

$$
F_{j}(z)=\gamma_{j} B_{j}(z)\left(\frac{y_{j}}{z-\overline{z_{j}}}\right)^{2} \exp \left(\frac{-i}{\log 2 / \delta} \sum_{y_{k} \leq y_{j}} \frac{y_{k}}{z-\overline{z_{k}}}\right)
$$

in which

$$
\gamma_{j}=\frac{-4}{B_{j}\left(z_{j}\right)} \exp \left(\frac{i}{\log 2 / \delta} \sum_{y_{k} \leq y_{j}} \frac{y_{k}}{z_{j}-\bar{z}_{k}}\right)
$$

satisfies

$$
4 F_{j}\left(z_{k}\right)=\delta_{j, k} \text { and } \sum\left|F_{j}(z)\right| \leq C_{0} \frac{\log 2 / \delta}{\delta}
$$

Paul Koosis called this "the Peter Jones mechanical interpolation formula".

IV. Corona Theorems and Problems.

When $H^{\infty}(\Omega)$ is the algebra of bounded analytic functions on a complex manifold Ω, the corona problem for Ω is: Given $f_{1}, \ldots, f_{n} \in$ $H^{\infty}(\Omega)$ such that for all $z \in \Omega$,

$$
\max _{1 \leq j \leq n}\left|f_{j}(z)\right| \geq \delta>0
$$

are there $g_{1}, \ldots, g_{n} \in H^{\infty}(\Omega)$ such that

$$
f_{1} g_{1}+\ldots f_{n} g_{n}=1 ?
$$

$\Omega=$ unit disc \mathbb{D}, Yes, Carleson (1962).
Ω a finite bordered Riemann surface, Yes, E. L. Stout (1964), many later proofs.
Ω a Riemann surface, No, Brian Cole (ca 1970).

Problem: Ω an infinitely connected plane domain.

Theorem: (Carleson (1983)) If $\mathbb{C} \backslash \Omega=E \subset \mathbb{R}$ and for all $x \in E$

$$
|E \cap[x-r, x+r]| \geq c r,
$$

then the corona theorem holds for Ω.
Forelli Projection: $\Omega=\mathbb{D} / \Gamma$,
(i) $P: H^{\infty}(\mathbb{D}) \rightarrow H^{\infty}(\Omega)=\left\{f \in H^{\infty}(\mathbb{D}): f \circ \gamma=f, \forall \gamma \in \Gamma\right\}$;
(ii) $\|P(f)\|_{\infty} \leq C\|f\|_{\infty}$;
(iii) $P(f g)=f P(g), \quad f \in H^{\infty}(\Omega)$;
(iv) $P(1)=1$.

Forelli Projection \Rightarrow corona theorem for Ω. Carleson built a Forelli Projection.

Theorem 9: (Jones and Marshall) Let $G(z, \zeta)$ be Green's function for Ω, fix z_{0} and let $\left\{\zeta_{k}\right\}$ be the critical points of $G\left(z_{0}, \zeta\right)$. If there is $A>0$ such that all components of

$$
\left\{\zeta \in \Omega: \sum_{k} G\left(\zeta, \zeta_{k}\right)>A\right\}
$$

are simply connected, then Ω has a projection operator and the corona theorem holds for Ω.

For $\mathbb{C} \backslash \Omega \subset \mathbb{R}$, Theorem $9 \Longrightarrow$ Carleson's theorem.

Theorem 10: If $\mathbb{C} \backslash \Omega \subset \mathbb{R}$, the corona theorem holds for Ω.
Note: $|E|=0 \Longleftrightarrow H^{\infty}(\Omega)$ trivial.
Proof of Theorem 10 uses constructions from both Theorem 6 and Theorem 8.

Problem: Corona theorem for $\Omega=\mathbb{C} \backslash E, E \subset \Gamma$, a Lipschitz graph.
Known if Γ is $C^{1+\varepsilon}$, or if $\Lambda_{1}(E \cap B(z, r)) \geq c r \forall z \in E$.
Problem: Corona theorem for $\mathbb{C} \backslash(K \times K), K=\frac{1}{3}$ Cantor set.
Problem: Which $\Omega \subset \mathbb{C}$ have Forelli Projections?
For $\mathbb{C} \backslash \Omega=E \subset \mathbb{R}$, it holds $\Longleftrightarrow|E \cap[x-r, x+r]| \geq c r \quad \forall x \in E$.

V. Harmonic Measure and Integral Mean Spectra.

Theorem: (Makarov, 1985) Let Ω be a simply connected plane domain and ω harmonic measure for $z_{0} \in \Omega$. Then

$$
\begin{gathered}
\alpha<1 \Rightarrow \omega \ll \Lambda_{\alpha} \\
\alpha>1 \Rightarrow \omega \perp \Lambda_{\alpha} .
\end{gathered}
$$

For a bounded univalent function φ define

$$
\beta_{\varphi}(t)=\inf \left\{\beta: \int_{0}^{2 \pi}\left|\varphi^{\prime}\left(r e^{i \theta}\right)\right|^{t}=O\left((1-r)^{-\beta}\right)\right\}
$$

and the integral mean spectrum,

$$
B(t)=\sup _{\varphi}\left\{\beta_{\varphi}(t)\right\} .
$$

Makarov's Theorem is $\Leftrightarrow B(0)=0$.
Brennan's Conjecture is $B(-2)=1$

With $\varphi=\sum_{n=1}^{\infty} a_{n} z^{n}$, write $A_{n}=\sup _{\|\varphi\|_{\infty} \leq 1}\left|a_{n}\right|$.
Theorem 11:(Carleson-Jones, Duke J. 1992) For bounded φ the limit

$$
\gamma=-\lim _{n \rightarrow \infty} \frac{\log A_{n}}{\log n}
$$

exists and there exists bounded φ_{1} such that

$$
\gamma=-\lim _{n \rightarrow \infty} \frac{\log a_{n}}{\log n}
$$

Moreover, $1-\gamma=B(1)$.
Carleson and Jones further conjectured $\gamma=\frac{3}{4}$, i.e. $B(1)=\frac{1}{4}$. Belyaev proved $\gamma<.78$, i.e. $B(1) \geq .23$.

Brennan-Carlson-Jones-Kraetzer Conjecture: $B(t)=\frac{t^{2}}{4},|t| \leq 2$.
Theorem 12: (Jones-Makarov, Annals 1995)

$$
B(t)=t-1+O\left((t-2)^{2}\right) \quad(t \rightarrow 2) .
$$

For arbitrary plane domains Jones and Wolff proved:

Theorem 13: (Acta 1988) Let Ω be a plane domain such that $\partial \Omega$ has positive logarithmic capacity. Then there exists $F \subset \partial \Omega$ of Hausdorff dimension ≤ 1 and $\omega(z, F)=1$ for $z \in \Omega$.

Proof uses classical potential theory and the formula

$$
\frac{1}{2 \pi} \int_{\partial \Omega} \frac{\partial G}{\partial n} \log \frac{\partial G}{\partial n} d x=\gamma=\sum_{\nabla G\left(\zeta_{j}\right)=0} G\left(\zeta_{j}\right)
$$

from Ahlfors used earlier by Carleson (to show $\operatorname{dim} \omega$ stricly less than $\operatorname{dim} \partial \Omega$ in certain cases).

VI. Traveling Salesman Theorem.

Geometric Lemma: (SLLM 1384) Let $\Gamma=\{\gamma(x): x \in[0,1]\}$ be a Lipschitz graph in \mathbb{R}^{2}. For a dyadic interval $I \subset \mathbb{R}$ set

$$
\beta_{\Gamma}(I)=\frac{1}{|I|} \inf _{L} \sup _{x \in I} \operatorname{dist}(\gamma(x), L),
$$

Then

$$
\sum_{I \subset J} \beta_{\Gamma}^{2}(I)|I| \leq C \Lambda_{1}(\Gamma) .
$$

For bounded $K \subset \mathbb{R}^{2}$ and Q a dyadic square of side $\ell(Q)$ in \mathbb{R}^{2}, let $w(Q)$ be the width the narrowest strip containing $K \cap 3 Q$ and

$$
\beta_{K}(Q)=\frac{w(Q)}{\ell(Q)}
$$

Theorem 14: There exists a rectifiable curve $\Gamma \supset K$ if and only if

$$
\beta^{2}(K)=\sum_{Q} \beta_{K}^{2}(Q) \ell(Q)<\infty
$$

Moreover,

$$
\Lambda_{1}(\Gamma) \leq C\left(\operatorname{diam} K+\beta^{2}(K)\right)
$$

VII. Work with Bishop: Harmonic Measure and Kleinian Groups.

Let Γ be a rectifable curve in \mathbb{C}, Ω a simply connected domain, and $\varphi: \mathbb{D} \rightarrow \Omega$ a conformal mapping.

Theorem 15: (Annals 1990) On $\Gamma \cap \partial \Omega, \Omega$-harmonic measure is absolutely continuous to linear measure:

$$
E \subset \Gamma \cap \partial \Omega, \text { and } \omega(z, E, \Omega)>0 \Rightarrow \Lambda_{1}(E)>0 .
$$

Proof uses Theorem 14 and a related estimate on the Schwarzian derivative.
Γ is Ahlfors regular if $\Lambda_{1}(\Gamma \cap B(z, r)) \leq M r$ for all $z \in \Gamma$.

Theorem 16: Γ is Ahlfors regular if and only if there is C_{Γ} such that for all Ω and $\varphi: \mathbb{D} \rightarrow \Omega$,

$$
\Lambda_{1}\left(\varphi^{-1}(\Gamma \cap \Omega)\right) \leq C_{\Gamma}
$$

A Kleinian group is a discrete group G of Möbius transformations acting on S^{2} (and the hyperbolic 3-ball) B such that the limit set $\Lambda(G)$ (accumulation points of the orbit $\{\gamma(0): \gamma \in G\}) \neq S^{2}$.

The Poincaré exponent

$$
\delta(G)=\inf \left\{s: \sum_{G} e^{-\rho_{B}(0, \gamma(0))}<\infty\right\}
$$

measures the speed at which $\gamma(0)$ tends to $S^{2}=\partial B$.
The conical limit set of G is $\Lambda_{c}(G) \subset \Lambda(G)$ consists of the nontangential accumulation points of the orbit.

Theorem 17:(Acta 1997) If $\Lambda(G)$ is infinite, then

$$
\operatorname{dim}_{\text {Hausd }}\left(\Lambda_{0}(G)\right)=\delta(G)
$$

G is geometrically finite if some finite-sided hyperbolic polygon in B is a fundamental domain.
G is analytically finite if $\Omega(G) / G$ is a finite union of compact surfaces minus finitely many points.

Theorem 18: If G is analytically finite but not geometrically finite, then

$$
\operatorname{dim}_{\text {Hausd }}(\Lambda(G))=2 .
$$

VIII. Applied Mathematics.

Jones, Maggioni and Schul construct local coordinates on a domain in \mathbb{R}^{d} (or on a C^{α} manifold) using Laplace eigenfunctions:

Dirichlet or Neumann eigenfunctions $\left\{\varphi_{j}\right\}$ for Δ on Ω with $|\Omega|<\infty$,

$$
\begin{gathered}
0 \leq \lambda_{0} \leq \cdots \leq \lambda_{j} \leq \cdots \\
\#\left\{j: \lambda_{j} \leq T\right\} \leq C_{W} T^{d / 2}|\Omega|
\end{gathered}
$$

Theorem 19: (PNAS 2008) Assume $|\Omega|=1$. There are constants c_{1}, \ldots, c_{6} (depending on d and C_{W}) so that for $z \in \Omega$ and $R=$ $R_{z}=\operatorname{dist}(z, \partial \Omega)$, there exist indices j_{1}, \ldots, j_{d} and constants $c_{6} R \leq$ $\gamma_{1} \ldots \gamma_{d} \leq 1$ so that

$$
B_{R}(z) \ni x \rightarrow \Phi(x)=\left(\gamma_{1} \varphi_{j_{1}}(x), \ldots \gamma_{d} \varphi_{j_{d}}(x)\right)
$$

satisfies

$$
\frac{c_{1}}{R}\left\|x_{1}-x_{2}\right\| \leq\left\|\Phi\left(x_{1}\right)-\Phi\left(x_{2}\right)\right\| \leq \frac{c_{2}}{R}\left\|x_{1}-x_{2}\right\|
$$

for $x_{1}, x_{2} \in B_{c_{1} R}(z)$, and the corresponding eigenvalues satisfy

$$
\frac{c_{4}}{R^{2}} \leq \lambda_{j_{k}} \leq \frac{c_{5}}{R^{2}}
$$

IX. Random Welding.

Let $\Gamma \subset \mathbb{C}$ be a Jordan curve bounding domains $\Omega_{ \pm}$and let $f_{ \pm}: \mathbb{D}_{ \pm} \rightarrow$ $\Omega_{ \pm}$be conformal. Then $\varphi=f_{+}^{-1} \circ f_{-}: \mathbb{T} \rightarrow \mathbb{T}$ is the welding map.

Welding Problem: Characterize welding maps.
Beurling-Ahlfors: (1956) φ quasisymmetric $\Rightarrow \exists$ welding, but Γ is a quasicircle.

Theorem 20 (Astala, Jones, Kupiainen, Saksman) Let

$$
\varphi\left(e^{2 \pi i t}\right)=e^{2 \pi i h(t)}
$$

where

$$
h(t)=\frac{\tau([0, t))}{\tau([0,1)]},
$$

and τ is the random measure

$$
d \tau=e^{\beta X(t)} d t
$$

with $0 \leq \beta<\sqrt{2}$ and

$$
X(t)=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}\left(A_{n} \cos 2 \pi n t+B_{n} \sin 2 \pi n t\right)
$$

where A_{n}, B_{n} are i.i.d. $N(0,1)$ Gaussians. Then almost surely φ is a Hölder continuous circle homeomorphism and φ is the welding for a Jordan curve $\Gamma=\partial f_{+}(\mathbb{D}), f_{+}$and Γ are Hölder continuous, and Γ is unique up to Möbius tranformations.

Notes: Almost surely, Γ is not a quasicircle.
In proof X is replaced by a white noise approximation X_{ε}.
Uniqueness follows from Hölder continuity and a theorem of Jones and Smirnov.

Existence uses Lehto's solution of the Beltrami equation $f_{\bar{z}}=\mu f_{z}$ for degenerate μ and three giant steps:
(1) The (1956) Beurling-Ahlfors extension of φ to $f: \mathbb{D} \rightarrow \mathbb{D}$ and a careful analysis of images $f(Q), Q \subset \mathbb{D}$ a Whitney cube.
(2) Sharp probalistic estimates for $\frac{\tau(J)}{\tau\left(J^{\prime}\right)}$ for adjacent dyadic intervals $J, J^{\prime} \subset[0,1)$.
(3) A representation of Gaussian free field $X(t)$ due to Barcy and Muzy.

Thank you.

