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I. Extension Theorems for BMO and Sobolev Spaces.

Ω ⊂ Rd connected and open, ϕ : Ω → R,

||ϕ||BMO(Ω) = sup
Q⊂Ω

1

|Q|

∫
Q

|ϕ− ϕQ|dx

where Q is a |Q| = its measure, ϕQ = 1
|Q|
∫

Q ϕdx.

Theorem 1: Every ϕ ∈ BMO(Ω) has extension in BMO(Rd) if and
only if for all x, y ∈ Ω

inf
Ω⊃γ joins x,y

∫
γ

ds(z)

δ(z)
≤ C

∣∣∣log
δ(x)

δ(y)

∣∣∣+ C log
(
2 +

|x− y|
δ(x) + δ(y)

)
,

where δ(x) = dist(x, ∂Ω).
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Corollary: Ω ⊂ R2 and ∂Ω = Γ a Jordan curve.

Every ϕ ∈ BMO(Ω) has extension in BMO(R2)

m

|w1 − w3| ≤ C|w1 − w2|

for w1, w2 ∈ Γ and w3 on the smaller arc (w1, w2),

i.e. if and only if Γ is a quasicircle.
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Lp
k(Ω) = {f ∈ Lp(Ω) : |α| ≤ k => Dαf ∈ Lp(Ω)},

for 1 ≤ p ≤ ∞, k ∈ N.

Theorem 2: (Acta 1981) For any k, and p there exists a bounded
linear extension operator

Λk : Lp
k(Ω) → Lp

k(R
n)

if and only if ∃ε > 0, 0 < δ ≤ ∞ so that Ω is an (ε, δ) domain:

x, y ∈ Ω, |x− y| < δ

⇓

∃ arc γ ⊂ Ω joining x, y with length(γ) ≤ ε

|x− y|
and

dist(z, ∂Ω) ≥ ε
|x− z||y − z|
|x− y|

, ∀z ∈ γ.
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II. BMO and Ap Weights.

John-Nirenberg Theorem: ϕ ∈ BMO(Rd) ⇔ ∃ c :

sup
Q

1

|Q|

∫
Q

ec|ϕ(x)−ϕQ|dx < ∞. (JN)

Theorem 3: (Annals 1978) If ϕ ∈ BMO(Rd), then

inf
g∈L∞

||ϕ− g||BMO ∼ sup{c : JN holds}.
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A weight w ≥ 0 on Rn is an Ap-weight 1 ≤ p < ∞ if

sup
Q

( 1

|Q|

∫
Q

wdx
)( 1

|Q|

∫
Q

w
−1
p−1dx

)
< ∞.

(holds if and only if singular integrals or H-L maximal operator is
bounded on Lp(w).)

Theorem 4: (Annals 1980)

w ∈ Ap ⇔ w = w1w
1−p
2 , w1, w2 ∈ A1.

Theorem 4 =⇒ Theorem 3.

See also J. L. Rubio de Francia, Annals of Math 1982, for an elegant
non-constructive proof of Theorem 4.
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Q ⊂ Rd is a dyadic cube if ∃ n, kj ∈ Z so that

Q =
d⋂

j=1

{kj2
−n ≤ xj ≤ (kj + 1)2−n}.

ϕ ∈ L1
loc is BMOd if

||ϕ||BMOd
= sup

Q dyadic

1

|Q|

∫
Q

|ϕ− ϕQ|dx < ∞.

BMO ⊂ BMOd, BMO 6= BMOd, but BMOd was a simpler space.

Theorem 5: (Pacific J. 1982). Assume

Rd 3 α → ϕ(α) ∈ BMOd

is measurable, ||ϕ(α)||BMOd
≤ 1, ϕ

(α)
Qo

= 0 for a fixed Qo and all α. Then

ϕ(x) = lim
N→∞

1

(2N)d

∫
|αj |≤N

ϕ(α)(x + α)dα

is BMO and ||ϕ||BMO ≤ Cd.

Theorem 5 yields BMO theorems like Theorem 3 from their simpler
dyadic counterparts. For related H1 result, see B. Davis, TAMS 1980.
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Let w ∈ L1(R), w ≥ 0. Then

sup
I

( 1

|I|

∫
I

wdx
)( 1

|I|

∫
I

1

w
dx
)

< ∞ (A2)

holds if and only if w satisfies the Helson-Szegö condition:

w = eu+ṽ, u ∈ L∞, ||v||∞ <
π

2
, (HS)

because both hold ⇔ Hibert transform is L2(w) bounded.

In dimension 1, A2 and HS imply Theorem 3.

Problem: Prove A2 =⇒ HS directly, without using the L2(w) bound-
edness of H or M .
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III. Constructions with H∞ Interpolation, ∂, and BMO.

Let {zj} be a sequence in the upper half plane H = {x + iy : y > 0}
and

H∞ = {f : H → C : f is bounded and analytic}.

Theorem (Carleson 1958) Every interpolation problem

f(zj) = aj, j = 1, 2, . . . , (aj) ∈ `∞ (INT)

has solution f ∈ H∞ if and only if

(i) infk 6=j
|zj−zk|

yj
≥ c > 0 (hyperbolic separation)

and

(ii) for all intervals I ⊂ R,∑
xj∈I,yj<|I|

yj ≤ C|I|,

(Carleson measure condition).
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Problems: (already solved) Find constructive solutions to:

(1) INT

(2) ϕ ∈ BMO(R) =⇒ ϕ = u + Hv, u, v ∈ L∞

(3) µ Carleson measure on H :

µ(I × (0, |I|]) ≤ ||µ||C |I|

⇓

∂F = µ

has solution on H which is bounded on R.

Theorem 6: (Annals 1980) Constructive solutions to (2) and (3).

Proof uses:

(i) the J. P. Earl solution to (1),

(ii) Approximation of Carleson measures by measures
∑

yj
δzj

from
interpolating sequences {zj}, and

(iii) a BMO extension theorem of Varopoulos.
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For another construction, define for σ a measure on H:

K(σ, z, ζ) =
2i

π

Imζ

(z − ζ)(z − ζ)
exp

(∫
Imw≤Imζ

( i

ζ − w
− i

z − w

)
d|σ|(w)

)
.

Theorem 7: (Acta Math., 1983) If µ is a Carleson measure on H,
then

S(µ)(z) =

∫
H

K
( µ

||µ||C
, z, ζ

)
dµ(ζ) ∈ L1

loc

satisfies

∂S(µ) = µ on H,

and

sup
R
|S(µ)(x)| ≤ C0||µ||C .
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Theorem 8: Let {zj} ⊂ H satisfy

(i) infk 6=j
|zj−zk|

yj
≥ c > 0 (hyperbolic separation)

and
(ii) for all intervals I ⊂ R,

∑
xj∈I,yj<|I| yj ≤ C|I|.

Define

Bj(z) =
∏

k;k 6=j
αk

z − zk

z − zk
,

where |αk| = 1 are convergence factors, and

δ = inf
j
|Bj(zj)| > 0.

Then

Fj(z) = γjBj(z)
( yj

z − zj

)2
exp

(
−i

log 2/δ

∑
yk≤yj

yk

z − zk

)
,

in which

γj =
−4

Bj(zj)
exp

(
i

log 2/δ

∑
yk≤yj

yk

zj − zk

)
,

satisfies

4Fj(zk) = δj,k and
∑

|Fj(z)| ≤ C0
log 2/δ

δ
.

Paul Koosis called this “the Peter Jones mechanical interpolation for-
mula”.
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IV. Corona Theorems and Problems.

When H∞(Ω) is the algebra of bounded analytic functions on a com-
plex manifold Ω, the corona problem for Ω is: Given f1, . . . , fn ∈
H∞(Ω) such that for all z ∈ Ω,

max
1≤j≤n

|fj(z)| ≥ δ > 0

are there g1, . . . , gn ∈ H∞(Ω) such that

f1g1 + . . . fngn = 1?

Ω = unit disc D, Yes, Carleson (1962).

Ω a finite bordered Riemann surface, Yes, E. L. Stout (1964), many
later proofs.

Ω a Riemann surface, No, Brian Cole (ca 1970).

Problem: Ω an infinitely connected plane domain.
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Theorem: (Carleson (1983)) If C \ Ω = E ⊂ R and for all x ∈ E

|E ∩ [x− r, x + r]| ≥ cr,

then the corona theorem holds for Ω.

Forelli Projection: Ω = D/Γ,

(i) P : H∞(D) → H∞(Ω) = {f ∈ H∞(D) : f ◦ γ = f,∀γ ∈ Γ};

(ii) ||P (f)||∞ ≤ C||f ||∞;

(iii) P (fg) = fP (g), f ∈ H∞(Ω);

(iv) P (1) = 1.

Forelli Projection ⇒ corona theorem for Ω. Carleson built a Forelli
Projection.

Theorem 9: (Jones and Marshall) Let G(z, ζ) be Green’s function
for Ω, fix z0 and let {ζk} be the critical points of G(z0, ζ). If there is
A > 0 such that all components of

{ζ ∈ Ω :
∑

k

G(ζ, ζk) > A}

are simply connected, then Ω has a projection operator and the corona
theorem holds for Ω.

For C \ Ω ⊂ R, Theorem 9 =⇒ Carleson’s theorem.
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Theorem 10: If C \ Ω ⊂ R, the corona theorem holds for Ω.

Note: |E| = 0 ⇐⇒ H∞(Ω) trivial.

Proof of Theorem 10 uses constructions from both Theorem 6 and
Theorem 8.

Problem: Corona theorem for Ω = C \ E, E ⊂ Γ, a Lipschitz graph.

Known if Γ is C1+ε, or if Λ1(E ∩B(z, r)) ≥ cr ∀z ∈ E.

Problem: Corona theorem for C \ (K ×K), K = 1
3 Cantor set.

Problem: Which Ω ⊂ C have Forelli Projections?

For C \ Ω = E ⊂ R, it holds ⇐⇒ |E ∩ [x− r, x + r]| ≥ cr ∀x ∈ E.
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V. Harmonic Measure and Integral Mean Spectra.

Theorem: (Makarov, 1985) Let Ω be a simply connected plane do-
main and ω harmonic measure for z0 ∈ Ω. Then

α < 1 ⇒ ω << Λα

α > 1 ⇒ ω ⊥ Λα.

For a bounded univalent function ϕ define

βϕ(t) = inf
{
β :

∫ 2π

0
|ϕ′(reiθ)|t = O((1− r)−β)

}
and the integral mean spectrum,

B(t) = sup
ϕ

{
βϕ(t)

}
.

Makarov’s Theorem is ⇔ B(0) = 0.

Brennan’s Conjecture is B(−2) = 1
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With ϕ =
∑∞

n=1 anz
n, write An = sup||ϕ||∞≤1 |an|.

Theorem 11:(Carleson-Jones, Duke J. 1992) For bounded ϕ the limit

γ = − lim
n→∞

log An

log n

exists and there exists bounded ϕ1 such that

γ = − lim
n→∞

log an

log n
.

Moreover, 1− γ = B(1).

Carleson and Jones further conjectured γ = 3
4 , i.e. B(1) = 1

4 . Belyaev
proved γ < .78, i.e. B(1) ≥ .23.

Brennan-Carlson-Jones-Kraetzer Conjecture: B(t) = t2

4 , |t| ≤ 2.

Theorem 12: (Jones-Makarov, Annals 1995)

B(t) = t− 1 + O((t− 2)2) (t → 2).
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For arbitrary plane domains Jones and Wolff proved:

Theorem 13: (Acta 1988) Let Ω be a plane domain such that ∂Ω has
positive logarithmic capacity. Then there exists F ⊂ ∂Ω of Hausdorff
dimension ≤ 1 and ω(z, F ) = 1 for z ∈ Ω.

Proof uses classical potential theory and the formula

1

2π

∫
∂Ω

∂G

∂n
log

∂G

∂n
dx = γ =

∑
∇G(ζj)=0

G(ζj)

from Ahlfors used earlier by Carleson (to show dim ω stricly less than
dim ∂Ω in certain cases).
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VI. Traveling Salesman Theorem.

Geometric Lemma: (SLLM 1384) Let Γ = {γ(x) : x ∈ [0, 1]} be a
Lipschitz graph in R2. For a dyadic interval I ⊂ R set

βΓ(I) =
1

|I|
inf
L

sup
x∈I

dist(γ(x), L),

Then ∑
I⊂J

β2
Γ(I)|I| ≤ CΛ1(Γ).
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For bounded K ⊂ R2 and Q a dyadic square of side `(Q) in R2, let
w(Q) be the width the narrowest strip containing K ∩ 3Q and

βK(Q) =
w(Q)

`(Q)
.

Theorem 14: There exists a rectifiable curve Γ ⊃ K if and only if

β2(K) =
∑
Q

β2
K(Q)`(Q) < ∞.

Moreover,
Λ1(Γ) ≤ C

(
diamK + β2(K)

)
.
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VII. Work with Bishop: Harmonic Measure and Kleinian Groups.

Let Γ be a rectifable curve in C, Ω a simply connected domain, and
ϕ : D → Ω a conformal mapping.

Theorem 15: (Annals 1990) On Γ ∩ ∂Ω, Ω-harmonic measure is ab-
solutely continuous to linear measure:

E ⊂ Γ ∩ ∂Ω, and ω(z, E, Ω) > 0 ⇒ Λ1(E) > 0.

Proof uses Theorem 14 and a related estimate on the Schwarzian
derivative.

Γ is Ahlfors regular if Λ1(Γ ∩B(z, r)) ≤ Mr for all z ∈ Γ.

Theorem 16: Γ is Ahlfors regular if and only if there is CΓ such that
for all Ω and ϕ : D → Ω,

Λ1(ϕ
−1(Γ ∩ Ω)) ≤ CΓ.
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A Kleinian group is a discrete group G of Möbius transformations
acting on S2 (and the hyperbolic 3-ball) B such that the limit set Λ(G)
(accumulation points of the orbit {γ(0) : γ ∈ G}) 6= S2.

The Poincaré exponent

δ(G) = inf
{

s :
∑
G

e−ρB(0,γ(0)) < ∞
}

measures the speed at which γ(0) tends to S2 = ∂B.

The conical limit set of G is Λc(G) ⊂ Λ(G) consists of the nontan-
gential accumulation points of the orbit.
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Theorem 17:(Acta 1997) If Λ(G) is infinite, then

dimHausd
(
Λ0(G)

)
= δ(G).

G is geometrically finite if some finite-sided hyperbolic polygon in
B is a fundamental domain.

G is analytically finite if Ω(G)/G is a finite union of compact sur-
faces minus finitely many points.

Theorem 18: If G is analytically finite but not geometrically finite,
then

dimHausd
(
Λ(G)

)
= 2.
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VIII. Applied Mathematics.

Jones, Maggioni and Schul construct local coordinates on a domain
in Rd (or on a Cα manifold) using Laplace eigenfunctions:

Dirichlet or Neumann eigenfunctions {ϕj} for ∆ on Ω with |Ω| < ∞,

0 ≤ λ0 ≤ · · · ≤ λj ≤ . . .

#{j : λj ≤ T} ≤ CWT d/2|Ω|.

Theorem 19: (PNAS 2008) Assume |Ω| = 1. There are constants
c1, . . . , c6 (depending on d and CW ) so that for z ∈ Ω and R =
Rz = dist(z, ∂Ω), there exist indices j1, . . . , jd and constants c6R ≤
γ1 . . . γd ≤ 1 so that

BR(z) 3 x → Φ(x) =
(
γ1ϕj1(x), . . . γdϕjd

(x)
)

satisfies

c1

R
||x1 − x2|| ≤ ||Φ(x1)− Φ(x2)|| ≤

c2

R
||x1 − x2||

for x1, x2 ∈ Bc1R(z), and the corresponding eigenvalues satisfy

c4

R2 ≤ λjk
≤ c5

R2 .
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IX. Random Welding.

Let Γ ⊂ C be a Jordan curve bounding domains Ω± and let f± : D± →
Ω± be conformal. Then ϕ = f−1

+ ◦ f− : T → T is the welding map.

Welding Problem: Characterize welding maps.

Beurling-Ahlfors: (1956) ϕ quasisymmetric ⇒ ∃ welding, but Γ is a
quasicircle.

Theorem 20 (Astala, Jones, Kupiainen, Saksman) Let

ϕ(e2πit) = e2πih(t),

where

h(t) =
τ([0, t))

τ([0, 1)]
,

and τ is the random measure

dτ = eβX(t)dt

with 0 ≤ β <
√

2 and

X(t) =
∞∑

n=1

1√
n

(An cos 2πnt + Bn sin 2πnt)

where An, Bn are i.i.d. N(0, 1) Gaussians. Then almost surely ϕ is a
Hölder continuous circle homeomorphism and ϕ is the welding for a
Jordan curve Γ = ∂f+(D), f+ and Γ are Hölder continuous, and Γ is
unique up to Möbius tranformations.
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Notes: Almost surely, Γ is not a quasicircle.

In proof X is replaced by a white noise approximation Xε.

Uniqueness follows from Hölder continuity and a theorem of Jones and
Smirnov.

Existence uses Lehto’s solution of the Beltrami equation fz = µfz for
degenerate µ and three giant steps:

(1) The (1956) Beurling-Ahlfors extension of ϕ to f : D → D and a
careful analysis of images f(Q), Q ⊂ D a Whitney cube.

(2) Sharp probalistic estimates for τ(J)
τ(J ′) for adjacent dyadic intervals

J, J ′ ⊂ [0, 1).

(3) A representation of Gaussian free field X(t) due to Barcy and
Muzy.

27



Thank you.
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