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The standard Sierpiński carpet S3

Carpet: Metric space homeomorphic to the standard Sierpiński
carpet.
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Standard square carpets

The standard square Sierpiński carpet Sp, p odd, is defined as
follows: Subdivide the unit square into p × p squares of equal size,
remove the middle, repeat on the remaining squares, etc.
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Sierpiński carpets can be Julia sets

The Julia set of the function f (z) = z2 − 1

16z2
.
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Sierpiński carpet as a limit set of a Kleinian group

Limit set of a (convex cocompact) Kleinian group acting on H3
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Round carpets

A round carpet is a carpet embedded in the Riemann sphere Ĉ
whose peripheral circles are geometric circles.

Möbius transformations preserve the class of round carpets.

6 / 23



Topological properties of carpets

Whyburn (1958):

A metric space S is a carpet if and only if it is a planar
continuum of topological dimension one, is locally connected,
and has no local cut points.

If S = Ĉ \
⋃

Di , where Di are pairwise disjoint open Jordan
regions for i ∈ N, then S is a carpet if and only if

S has empty interior,

∂Di ∩ ∂Dj = ∅ for i 6= j ,

diam(Di )→ 0.
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The Kapovich-Kleiner conjecture

Version I

Suppose G is a Gromov hyperbolic group s.t. ∂∞G is a carpet.
Then G admits a discrete, cocompact, and isometric action on a
convex subset of H3 with non-empty totally geodesic boundary.

This is equivalent to:

Version II

Suppose G is a Gromov hyperbolic group s.t. ∂∞G is a carpet.
Then there exists a quasisymmetric homeomomorphism of ∂∞G
onto a round carpet in Ĉ.
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Inradius and outradius of images of balls

Let (X , dX ) and (Y , dY ) be metric spaces, and f : X → Y be a
homeomorphism.
Define

Lr (x) := sup{dY (f (z), f (x)) : z ∈ B(x , r)},

and
lr (x) := inf{dY (f (z), f (x)) : z ∈ X \ B(x , r)}.

lr (x) is the “inradius” and Lr (x) the “outradius” of the image
f (B(x , r)) of the ball B(x , r).
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Classes of homeomorphisms

The homeomorphism f : X → Y is called:

conformal if lim sup
r→0

Lr (x)

lr (x)
= 1 for all x ∈ X ,

quasiconformal (=qc) if there exists a constant H ≥ 1 such

that lim sup
r→0

Lr (x)

lr (x)
≤ H for all x ∈ X ,

quasisymmetric (=qs) if there exists a constant H ≥ 1 such

that
Lr (x)

lr (x)
≤ H for all x ∈ X , r > 0.
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Geometry of a quasisymmetric map

R2/R1 ≤ Const.
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Remarks

f is quasisymmetric if it maps balls to “roundish” sets of
uniformly controlled eccentricity.

Quasisymmetry is on the one hand weaker than conformality,
because we allow distortion of small balls; on the other hand
it is stronger, because we control distortion for all balls.

bi-Lipschitz ⇒ qs ⇒ qc.

For homeos on Rn, n ≥ 2: qs ⇔ qc.

Definition. Two metric spaces X and Y are qs-equivalent if there
exists a quasisymmetric homeomorphism f : X → Y .
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The quasisymmetric Riemann mapping theorem

Theorem (Ahlfors 1963)

A region Ω ⊆ C is qs-equivalent to D if and only if Ω is a Jordan
domain bounded by a quasicircle.

Definition. A Jordan curve J ⊆ C is called a quasicircle iff it is
qs-equivalent to the unit circle ∂D.
This is true if and only if there exists a constant K ≥ 1 such that

diam(γ) ≤ K |x − y |,

whenever x , y ∈ J, and γ is the smaller subarc of J with endpoints
x and y .
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Qs-equivalence of carpets

Basic Problem. When are two carpets X and Y qs-equivalent?

Theorem (B., Kleiner, Merenkov 2005)

Every quasisymmetry between two round carpets of measure 0 is a
Möbius transformation.

Corollary

Two round carpets of measure 0 are qs-equivalent if and only if
they are Möbius equivalent.

Corollary

The set of qs-equivalence classes of round carpets has the
cardinality of the continuum.
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Outline for the proof of the theorem

Let S ,S ′ ⊆ Ĉ be round carpets with |S | = 0 and ϕ : S → S ′ be a
quasisymmetry.

1. Extend ϕ to a quasiconformal map ϕ : Ĉ→ Ĉ by successive
reflections.

2. For a.e. z ∈ Ĉ: (i) z does not lie in any of the countably many
copies of S obtained by reflection and (ii) the linear map Dϕ(z) is
non-singular.

3. For such z : there is a sequence of (geometric) disks Di with
diam(Di )→ 0 such that z ∈ Di and ϕ(Di ) is a disk.
Then Dϕ(z) maps some disk to a disk and so Dϕ(z) is conformal.

4. ϕ is 1-quasiconformal and hence a Möbius transformation.
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Uniformization

Theorem (B. 2004)

Let S ⊆ Ĉ be a carpet whose peripheral circles are uniform
quasicircles with uniform relative separation. Then S is
qs-equivalent to a round carpet.
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Geometric properties of peripheral circles

They are uniform quasicircles if they satisfy the quasicircle
condition with the same parameter K .

They have uniform relative separation if there exists a
constant δ > 0 such that

dist(C ,C ′)

min{diam(C ),diam(C ′)}
≥ δ > 0,

whenever C and C ′ are two distinct peripheral circles.

True for: standard carpets S3,S5, . . . , carpets that arise as Julia
sets of subhyperbolic rational maps, round group carpets arising as
limit sets of Kleinian groups, carpets that are boundaries of
Gromov hyperbolic groups.

Definition. A carpet is called geometric if it has peripheral circles
that are uniform quasicircles and have uniform relative separation.

17 / 23



Geometric properties of peripheral circles

They are uniform quasicircles if they satisfy the quasicircle
condition with the same parameter K .

They have uniform relative separation if there exists a
constant δ > 0 such that

dist(C ,C ′)

min{diam(C ),diam(C ′)}
≥ δ > 0,

whenever C and C ′ are two distinct peripheral circles.

True for: standard carpets S3, S5, . . . , carpets that arise as Julia
sets of subhyperbolic rational maps, round group carpets arising as
limit sets of Kleinian groups, carpets that are boundaries of
Gromov hyperbolic groups.

Definition. A carpet is called geometric if it has peripheral circles
that are uniform quasicircles and have uniform relative separation.

17 / 23



Geometric properties of peripheral circles

They are uniform quasicircles if they satisfy the quasicircle
condition with the same parameter K .

They have uniform relative separation if there exists a
constant δ > 0 such that

dist(C ,C ′)

min{diam(C ),diam(C ′)}
≥ δ > 0,

whenever C and C ′ are two distinct peripheral circles.

True for: standard carpets S3, S5, . . . , carpets that arise as Julia
sets of subhyperbolic rational maps, round group carpets arising as
limit sets of Kleinian groups, carpets that are boundaries of
Gromov hyperbolic groups.

Definition. A carpet is called geometric if it has peripheral circles
that are uniform quasicircles and have uniform relative separation.

17 / 23



The group QS(X ) of quasisymmetries

Definition. Let X be a metric space. Then we define

QS(X ) := {ϕ : X → X is a quasisymmetry}.

QS(X ) is a group.

If X and Y are qs-equivalent, then QS(X ) and QS(Y ) are
isomorphic.

For carpets ∂∞G the group QS(∂∞G ) is large: it is countably
infinite (its action on ∂∞G is cocompact on triples).

There are geometric carpets X for which QS(X ) is
uncountable (Merenkov’s slit carpets).

If X ⊆ Ĉ is a geometric carpet with |X | = 0, then QS(X ) is
countable (it is isomorphic to a discrete group of Möbius
transformations).
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Rigidity for square carpets

Theorem (B., Merenkov 2005, 2013)

Every quasisymmetry ϕ : Sp → Sp, p ≥ 3 odd, is an isometry, i.e.,
one of the obvious reflections or rotations that preserve Sp.

Corollary

QS(Sp) is finite, and so no Sp is qs-equivalent to a group carpet.

Theorem (B., Merenkov 2005)

Let p, q be odd numbers. Then Sp and Sq are qs-equivalent if and
only if p = q.
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Rigidity for Julia set carpets

Theorem (B., Lyubich, Merenkov 2016)

Let f , g : Ĉ→ Ĉ be postcritically-finite rational maps whose Julia
sets Jf and Jg are carpets. If ϕ : Jf → Jg is a quasisymmetry, then
ϕ is (the restriction of) a Möbius transformation.

Theorem (B., Lyubich, Merenkov 2016)

Let f be postcritically-finite rational map whose Julia set Jf is a
carpet. Then QS(Jf ) is a finite group of (restrictions of) Möbius
transformations.

Corollary

No such Jf is a group carpet.
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Ideas for the proof

1. One would like to relate f , g , and ϕ. Candidate relation
ϕ ◦ f k = gn ◦ ϕ not true in general, but a relation of the form

gm ◦ ϕ ◦ f k = gm+n ◦ ϕ on Jf .

This uses uniformization and recent deep rigidity results by
S. Merenkov on “relative Schottky sets”.

2. One uses this to extend ϕ to a quasisymmetry on Ĉ so that ϕ is
conformal on the Fatou components of f .

3. Then ϕ is 1-quasiconformal on Ĉ and hence a Möbius
transformation.
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Square carpets and Julia set carpets

Theorem (B., Merenkov 2014)

No standard square carpet Sp, p odd, is qs-equivalent to a carpet
Jf arising as the Julia set of a postcritically-finite rational map f .
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Open problem

What are the quasisymmetries of the standard Menger sponge?
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