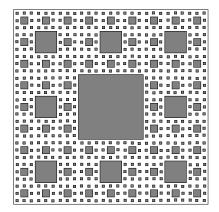
Quasisymmetric rigidity for Sierpiński carpets

Mario Bonk

University of California, Los Angeles

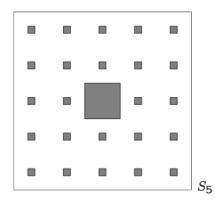
Geometry, Analysis, Probability Birthday Conference for Peter Jones Seoul, May 2017

The standard Sierpiński carpet S_3

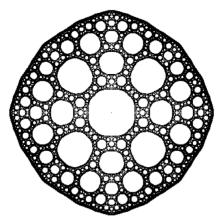


Carpet: Metric space homeomorphic to the standard Sierpiński carpet.

The standard square Sierpiński carpet S_p , p odd, is defined as follows: Subdivide the unit square into $p \times p$ squares of equal size, remove the middle, repeat on the remaining squares, etc.

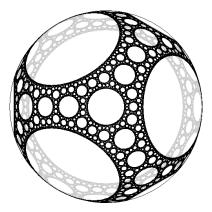


Sierpiński carpets can be Julia sets



The Julia set of the function $f(z) = z^2 - \frac{1}{16z^2}$.

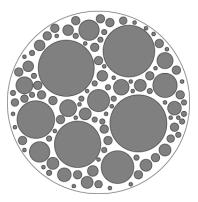
Sierpiński carpet as a limit set of a Kleinian group



Limit set of a (convex cocompact) Kleinian group acting on \mathbb{H}^3

Round carpets

A round carpet is a carpet embedded in the Riemann sphere $\widehat{\mathbb{C}}$ whose peripheral circles are geometric circles.



Möbius transformations preserve the class of round carpets.

イロト イポト イヨト イヨト

Whyburn (1958):

- A metric space S is a carpet if and only if it is a planar continuum of topological dimension one, is locally connected, and has no local cut points.
- If $S = \widehat{\mathbb{C}} \setminus \bigcup D_i$, where D_i are pairwise disjoint open Jordan regions for $i \in \mathbb{N}$, then S is a carpet if and only if
 - S has empty interior,
 - $\partial D_i \cap \partial D_j = \emptyset$ for $i \neq j$,
 - diam $(D_i) \rightarrow 0$.

Version I

Suppose *G* is a Gromov hyperbolic group s.t. $\partial_{\infty}G$ is a carpet. Then *G* admits a discrete, cocompact, and isometric action on a convex subset of \mathbb{H}^3 with non-empty totally geodesic boundary.

Version I

Suppose G is a Gromov hyperbolic group s.t. $\partial_{\infty}G$ is a carpet. Then G admits a discrete, cocompact, and isometric action on a convex subset of \mathbb{H}^3 with non-empty totally geodesic boundary.

This is equivalent to:

Version II

Suppose G is a Gromov hyperbolic group s.t. $\partial_{\infty}G$ is a carpet. Then there exists a quasisymmetric homeomomorphism of $\partial_{\infty}G$ onto a round carpet in $\widehat{\mathbb{C}}$.

Inradius and outradius of images of balls

Let (X, d_X) and (Y, d_Y) be metric spaces, and $f: X \to Y$ be a homeomorphism.

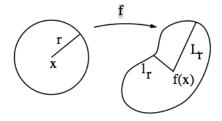
Define

$$L_r(x) := \sup\{d_Y(f(z), f(x)) : z \in B(x, r)\},$$

and

$$I_r(x) := \inf\{d_Y(f(z), f(x)) : z \in X \setminus B(x, r)\}.$$

 $I_r(x)$ is the "inradius" and $L_r(x)$ the "outradius" of the image f(B(x, r)) of the ball B(x, r).



The homeomorphism $f: X \to Y$ is called:

• conformal if
$$\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} = 1$$
 for all $x \in X$,

• quasiconformal (=qc) if there exists a constant $H \ge 1$ such that $\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$,

 quasisymmetric (=qs) if there exists a constant H ≥ 1 such that ^L_r(x) ≤ H for all x ∈ X, r > 0.

- conformal if $\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} = 1$ for all $x \in X$,
- quasiconformal (=qc) if there exists a constant $H \ge 1$ such that $\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$,
- quasisymmetric (=qs) if there exists a constant $H \ge 1$ such that $\frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$, r > 0.

The homeomorphism $f: X \to Y$ is called:

• conformal if
$$\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} = 1$$
 for all $x \in X$,

• quasiconformal (=qc) if there exists a constant $H \ge 1$ such that $\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$,

 quasisymmetric (=qs) if there exists a constant H ≥ 1 such that ^L_r(x) ≤ H for all x ∈ X, r > 0.

• conformal if
$$\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} = 1$$
 for all $x \in X$,

- quasiconformal (=qc) if there exists a constant $H \ge 1$ such that $\limsup_{r \to 0} \frac{L_r(x)}{I_r(x)} \le H$ for all $x \in X$,
- quasisymmetric (=qs) if there exists a constant $H \ge 1$ such that $\frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$, r > 0.

• conformal if
$$\limsup_{r \to 0} rac{L_r(x)}{l_r(x)} = 1$$
 for all $x \in X$,

- quasiconformal (=qc) if there exists a constant $H \ge 1$ such that $\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$,
- quasisymmetric (=qs) if there exists a constant $H \ge 1$ such that $\frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$, r > 0.

• conformal if
$$\limsup_{r \to 0} rac{L_r(x)}{l_r(x)} = 1$$
 for all $x \in X$,

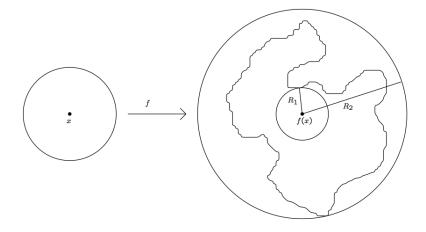
- quasiconformal (=qc) if there exists a constant $H \ge 1$ such that $\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$,
- quasisymmetric (=qs) if there exists a constant H ≥ 1 such that L_r(x) / (x) ≤ H for all x ∈ X, r > 0.

The homeomorphism $f: X \to Y$ is called:

• conformal if
$$\limsup_{r \to 0} rac{L_r(x)}{l_r(x)} = 1$$
 for all $x \in X$,

- quasiconformal (=qc) if there exists a constant $H \ge 1$ such that $\limsup_{r \to 0} \frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$,
- quasisymmetric (=qs) if there exists a constant $H \ge 1$ such that $\frac{L_r(x)}{l_r(x)} \le H$ for all $x \in X$, r > 0.

Geometry of a quasisymmetric map



 $R_2/R_1 \leq \text{Const.}$

- *f* is quasisymmetric if it maps balls to "roundish" sets of uniformly controlled eccentricity.
- Quasisymmetry is on the one hand *weaker* than conformality, because we allow distortion of small balls; on the other hand it is *stronger*, because we control distortion for *all* balls.
- bi-Lipschitz \Rightarrow qs \Rightarrow qc.
- For homeos on \mathbb{R}^n , $n \ge 2$: qs \Leftrightarrow qc.

Definition. Two metric spaces X and Y are *qs-equivalent* if there exists a quasisymmetric homeomorphism $f: X \rightarrow Y$.

- *f* is quasisymmetric if it maps balls to "roundish" sets of uniformly controlled eccentricity.
- Quasisymmetry is on the one hand *weaker* than conformality, because we allow distortion of small balls; on the other hand it is *stronger*, because we control distortion for *all* balls.
- bi-Lipschitz \Rightarrow qs \Rightarrow qc.
- For homeos on \mathbb{R}^n , $n \ge 2$: qs \Leftrightarrow qc.

Definition. Two metric spaces X and Y are *qs-equivalent* if there exists a quasisymmetric homeomorphism $f: X \to Y$.

▲日 ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Theorem (Ahlfors 1963)

A region $\Omega \subseteq \mathbb{C}$ is qs-equivalent to \mathbb{D} if and only if Ω is a Jordan domain bounded by a quasicircle.

Definition. A Jordan curve $J \subseteq \mathbb{C}$ is called a *quasicircle* iff it is qs-equivalent to the unit circle $\partial \mathbb{D}$.

This is true if and only if there exists a constant $K \ge 1$ such that

$$\mathsf{diam}(\gamma) \leq K|x-y|,$$

whenever $x, y \in J$, and γ is the smaller subarc of J with endpoints x and y.

Qs-equivalence of carpets

Basic Problem. When are two carpets X and Y qs-equivalent?

Theorem (B., Kleiner, Merenkov 2005)

Every quasisymmetry between two round carpets of measure 0 *is a Möbius transformation.*

Corollary

Two round carpets of measure 0 are qs-equivalent if and only if they are Möbius equivalent.

Corollary

The set of qs-equivalence classes of round carpets has the cardinality of the continuum.

Basic Problem. When are two carpets X and Y qs-equivalent?

Theorem (B., Kleiner, Merenkov 2005)

Every quasisymmetry between two round carpets of measure 0 *is a Möbius transformation.*

Corollary

Two round carpets of measure 0 are qs-equivalent if and only if they are Möbius equivalent.

Corollary

The set of qs-equivalence classes of round carpets has the cardinality of the continuum.

イロト 不得 とくほ とくほう

Basic Problem. When are two carpets X and Y qs-equivalent?

Theorem (B., Kleiner, Merenkov 2005)

Every quasisymmetry between two round carpets of measure 0 *is a Möbius transformation.*

Corollary

Two round carpets of measure 0 are qs-equivalent if and only if they are Möbius equivalent.

Corollary

The set of qs-equivalence classes of round carpets has the cardinality of the continuum.

Basic Problem. When are two carpets X and Y qs-equivalent?

Theorem (B., Kleiner, Merenkov 2005)

Every quasisymmetry between two round carpets of measure 0 *is a Möbius transformation.*

Corollary

Two round carpets of measure 0 are qs-equivalent if and only if they are Möbius equivalent.

Corollary

The set of qs-equivalence classes of round carpets has the cardinality of the continuum.

イロト イポト イヨト イヨト

Let $S, S' \subseteq \widehat{\mathbb{C}}$ be round carpets with |S| = 0 and $\varphi \colon S \to S'$ be a quasisymmetry.

1. Extend φ to a quasiconformal map $\varphi\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ by successive reflections.

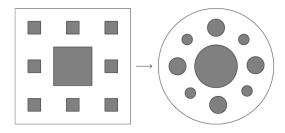
2. For a.e. $z \in \widehat{\mathbb{C}}$: (i) z does not lie in any of the countably many copies of S obtained by reflection and (ii) the linear map $D\varphi(z)$ is non-singular.

3. For such z: there is a sequence of (geometric) disks D_i with diam $(D_i) \rightarrow 0$ such that $z \in D_i$ and $\varphi(D_i)$ is a disk. Then $D\varphi(z)$ maps some disk to a disk and so $D\varphi(z)$ is conformal.

4. φ is 1-quasiconformal and hence a Möbius transformation.

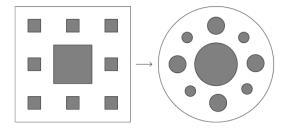
Theorem (B. 2004)

Let $S \subseteq \widehat{\mathbb{C}}$ be a carpet whose peripheral circles are uniform quasicircles with uniform relative separation. Then S is *qs-equivalent to a round carpet.*



Theorem (B. 2004)

Let $S \subseteq \widehat{\mathbb{C}}$ be a carpet whose peripheral circles are uniform quasicircles with uniform relative separation. Then S is *qs-equivalent to a round carpet*.



Geometric properties of peripheral circles

- They are *uniform quasicircles* if they satisfy the quasicircle condition with the same parameter *K*.
- They have uniform relative separation if there exists a constant $\delta > 0$ such that

$$\frac{\operatorname{dist}(\mathcal{C},\mathcal{C}')}{\min\{\operatorname{diam}(\mathcal{C}),\operatorname{diam}(\mathcal{C}')\}} \geq \delta > 0,$$

whenever C and C' are two distinct peripheral circles.

Geometric properties of peripheral circles

- They are *uniform quasicircles* if they satisfy the quasicircle condition with the same parameter *K*.
- They have uniform relative separation if there exists a constant $\delta > 0$ such that

$$\frac{\operatorname{dist}(\mathcal{C}, \mathcal{C}')}{\min\{\operatorname{diam}(\mathcal{C}), \operatorname{diam}(\mathcal{C}')\}} \geq \delta > 0,$$

whenever C and C' are two distinct peripheral circles.

True for: standard carpets S_3, S_5, \ldots , carpets that arise as Julia sets of subhyperbolic rational maps, round group carpets arising as limit sets of Kleinian groups, carpets that are boundaries of Gromov hyperbolic groups.

Geometric properties of peripheral circles

- They are *uniform quasicircles* if they satisfy the quasicircle condition with the same parameter *K*.
- They have uniform relative separation if there exists a constant $\delta > 0$ such that

$$\frac{\operatorname{dist}(\mathcal{C}, \mathcal{C}')}{\min\{\operatorname{diam}(\mathcal{C}), \operatorname{diam}(\mathcal{C}')\}} \geq \delta > 0,$$

whenever C and C' are two distinct peripheral circles.

True for: standard carpets S_3, S_5, \ldots , carpets that arise as Julia sets of subhyperbolic rational maps, round group carpets arising as limit sets of Kleinian groups, carpets that are boundaries of Gromov hyperbolic groups.

Definition. A carpet is called *geometric* if it has peripheral circles that are uniform quasicircles and have uniform relative separation.

The group QS(X) of quasisymmetries

Definition. Let X be a metric space. Then we define

 $QS(X) := \{ \varphi \colon X \to X \text{ is a quasisymmetry} \}.$

- QS(X) is a group.
- If X and Y are qs-equivalent, then QS(X) and QS(Y) are isomorphic.
- For carpets ∂_∞G the group QS(∂_∞G) is large: it is countably infinite (its action on ∂_∞G is cocompact on triples).
- There are geometric carpets X for which QS(X) is uncountable (Merenkov's slit carpets).
- If X ⊆ Ĉ is a geometric carpet with |X| = 0, then QS(X) is countable (it is isomorphic to a discrete group of Möbius transformations).

Every quasisymmetry $\varphi \colon S_p \to S_p$, $p \ge 3$ odd, is an isometry, i.e., one of the obvious reflections or rotations that preserve S_p .

Corollary

 $QS(S_p)$ is finite, and so no S_p is qs-equivalent to a group carpet.

Theorem (B., Merenkov 2005)

Every quasisymmetry $\varphi \colon S_p \to S_p$, $p \ge 3$ odd, is an isometry, i.e., one of the obvious reflections or rotations that preserve S_p .

Corollary

 $QS(S_p)$ is finite, and so no S_p is qs-equivalent to a group carpet.

Theorem (B., Merenkov 2005)

Every quasisymmetry $\varphi \colon S_p \to S_p$, $p \ge 3$ odd, is an isometry, i.e., one of the obvious reflections or rotations that preserve S_p .

Corollary

 $QS(S_p)$ is finite, and so no S_p is qs-equivalent to a group carpet.

Theorem (B., Merenkov 2005)

Every quasisymmetry $\varphi \colon S_p \to S_p$, $p \ge 3$ odd, is an isometry, i.e., one of the obvious reflections or rotations that preserve S_p .

Corollary

 $QS(S_p)$ is finite, and so no S_p is qs-equivalent to a group carpet.

Theorem (B., Merenkov 2005)

Let $f, g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be postcritically-finite rational maps whose Julia sets J_f and J_g are carpets. If $\varphi: J_f \to J_g$ is a quasisymmetry, then φ is (the restriction of) a Möbius transformation.

Theorem (B., Lyubich, Merenkov 2016)

Let f be postcritically-finite rational map whose Julia set J_f is a carpet. Then $QS(J_f)$ is a finite group of (restrictions of) Möbius transformations.

Corollary

Let $f, g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be postcritically-finite rational maps whose Julia sets J_f and J_g are carpets. If $\varphi: J_f \to J_g$ is a quasisymmetry, then φ is (the restriction of) a Möbius transformation.

Theorem (B., Lyubich, Merenkov 2016)

Let f be postcritically-finite rational map whose Julia set J_f is a carpet. Then $QS(J_f)$ is a finite group of (restrictions of) Möbius transformations.

Corollary

Let $f, g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be postcritically-finite rational maps whose Julia sets J_f and J_g are carpets. If $\varphi: J_f \to J_g$ is a quasisymmetry, then φ is (the restriction of) a Möbius transformation.

Theorem (B., Lyubich, Merenkov 2016)

Let f be postcritically-finite rational map whose Julia set J_f is a carpet. Then $QS(J_f)$ is a finite group of (restrictions of) Möbius transformations.

Corollary

Let $f, g: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be postcritically-finite rational maps whose Julia sets J_f and J_g are carpets. If $\varphi: J_f \to J_g$ is a quasisymmetry, then φ is (the restriction of) a Möbius transformation.

Theorem (B., Lyubich, Merenkov 2016)

Let f be postcritically-finite rational map whose Julia set J_f is a carpet. Then $QS(J_f)$ is a finite group of (restrictions of) Möbius transformations.

Corollary

1. One would like to relate f, g, and φ . Candidate relation $\varphi \circ f^k = g^n \circ \varphi$ not true in general, but a relation of the form

$$g^m \circ \varphi \circ f^k = g^{m+n} \circ \varphi$$
 on \mathcal{J}_f .

This uses uniformization and recent deep rigidity results by S. Merenkov on "relative Schottky sets".

2. One uses this to extend φ to a quasisymmetry on $\widehat{\mathbb{C}}$ so that φ is conformal on the Fatou components of f.

3. Then φ is 1-quasiconformal on $\widehat{\mathbb{C}}$ and hence a Möbius transformation.

Theorem (B., Merenkov 2014)

No standard square carpet S_p , p odd, is qs-equivalent to a carpet J_f arising as the Julia set of a postcritically-finite rational map f.

Theorem (B., Merenkov 2014)

No standard square carpet S_p , p odd, is qs-equivalent to a carpet J_f arising as the Julia set of a postcritically-finite rational map f.

Open problem

What are the quasisymmetries of the standard Menger sponge?

