KdV: integrability and Deift's conjecture.			
00	000	000000	000000

Uniqueness and almost periodicity in time of solutions of the KdV equation with certain almost periodic initial conditions.

Ilia Binder University of Toronto

joint work with D. Damanik (Rice), M. Goldstein (Toronto) and M. Lukic (Rice).

Geometry, Analysis and Probability Conference in honor of Peter Jones May 11, 2017

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity

1 KdV: integrability and Deift's conjecture.

Our results: the statements.

3 Reflectionless operators and uniqueness

KdV: integrability and Deift's conjecture. •O Our results: the statements.

Reflectionless operators and uniqueness 000000 Existence and almost periodicity 000000

The KdV equation and the Lax pair formalism.

My main hero today: the Korteweg-de Vries (KdV) equation,

 $\partial_t u - 6u\partial_x u + \partial_x^3 u = 0,$

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
•0		

My main hero today: the Korteweg-de Vries (KdV) equation,

$$\partial_t u - 6u\partial_x u + \partial_x^3 u = 0,$$

• Introduced in the 19th century as a model for the propagation of shallow water waves in one dimension.

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
••		

My main hero today: the Korteweg-de Vries (KdV) equation,

$$\partial_t u - 6u\partial_x u + \partial_x^3 u = 0,$$

- Introduced in the 19th century as a model for the propagation of shallow water waves in one dimension.
- In the 1960s, Gardner, Greene, Kruskal and Miura discovered that the KdV equation has infinitely many conserved quantities.

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
0		

My main hero today: the Korteweg-de Vries (KdV) equation,

$$\partial_t u - 6u \partial_x u + \partial_x^3 u = 0,$$

- Introduced in the 19th century as a model for the propagation of shallow water waves in one dimension.
- In the 1960s, Gardner, Greene, Kruskal and Miura discovered that the KdV equation has infinitely many conserved quantities.
- Explained by Peter Lax in 1968 through the existence of a "Lax pair" representation: using the family of Schrödinger operators $H(t) := -\partial_x^2 + u(t)$ and the family of antisymmetric operators $P(t) := 4\partial_x^3 + 3(\partial_x u(t) + u(t)\partial_x)$ on $L^2(\mathbb{R}, dx)$, the KdV equation can be written in the form

$$\partial_t H(t) = P(t)H(t) - H(t)P(t).$$

This means that the family of unitary operators U(t) which solves $\frac{d}{dt}U = PU$, U(0) = I obeys $U(t)^*H(t)U(t) = H(0)$, so the operators H(t)are mutually unitarily equivalent for all values of t.

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
0		

My main hero today: the Korteweg-de Vries (KdV) equation,

$$\partial_t u - 6u \partial_x u + \partial_x^3 u = 0,$$

- Introduced in the 19th century as a model for the propagation of shallow water waves in one dimension.
- In the 1960s, Gardner, Greene, Kruskal and Miura discovered that the KdV equation has infinitely many conserved quantities.
- Explained by Peter Lax in 1968 through the existence of a "Lax pair" representation: using the family of Schrödinger operators $H(t) := -\partial_x^2 + u(t)$ and the family of antisymmetric operators $P(t) := 4\partial_x^3 + 3(\partial_x u(t) + u(t)\partial_x)$ on $L^2(\mathbb{R}, dx)$, the KdV equation can be written in the form

$$\partial_t H(t) = P(t)H(t) - H(t)P(t).$$

This means that the family of unitary operators U(t) which solves $\frac{d}{dt}U = PU$, U(0) = I obeys $U(t)^*H(t)U(t) = H(0)$, so the operators H(t)are mutually unitarily equivalent for all values of t.

• Just having a Lax pair is not enough to deduce stronger statements of integrability, such as almost periodicity in *t*!

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
00		

Integrability of the KdV equation was first established by Gardner, Greene, Kruskal and Miura in the setting of rapidly decaying initial data u(x,0) = V(x) using the inverse scattering transform linearization of the KdV evolution.

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
00		

Integrability of the KdV equation was first established by Gardner, Greene, Kruskal and Miura in the setting of rapidly decaying initial data u(x,0) = V(x)using the inverse scattering transform linearization of the KdV evolution.

In the 1970s, it was proved that for periodic initial data, the KdV equation is a completely integrable Hamiltonian system, with action-angle variables:

Theorem (McKean-Trubowitz, 1976).

If $V \in H^n(\mathbb{T})$, then there is a global solution u(x, t) on $\mathbb{T} \times \mathbb{R}$. This solution is $H^n(\mathbb{T})$ -almost periodic in \mathbb{T} .

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00			
	1. I.		

Integrability of the KdV equation was first established by Gardner, Greene, Kruskal and Miura in the setting of rapidly decaying initial data u(x,0) = V(x)using the inverse scattering transform linearization of the KdV evolution.

In the 1970s, it was proved that for periodic initial data, the KdV equation is a completely integrable Hamiltonian system, with action-angle variables:

Theorem (McKean-Trubowitz, 1976).

If $V \in H^n(\mathbb{T})$, then there is a global solution u(x, t) on $\mathbb{T} \times \mathbb{R}$. This solution is $H^n(\mathbb{T})$ -almost periodic in \mathbb{T} .

This means that $u(\cdot, t) = F(\zeta t)$ for some continuous $F : \mathbb{T}^{\infty} \mapsto H^{n}(\mathbb{T})$ and $\zeta \in \mathbb{R}^{\infty}$.

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00			
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		

Integrability of the KdV equation was first established by Gardner, Greene, Kruskal and Miura in the setting of rapidly decaying initial data u(x,0) = V(x)using the inverse scattering transform linearization of the KdV evolution.

In the 1970s, it was proved that for periodic initial data, the KdV equation is a completely integrable Hamiltonian system, with action-angle variables:

Theorem (McKean-Trubowitz, 1976).

If $V \in H^n(\mathbb{T})$, then there is a global solution u(x, t) on $\mathbb{T} \times \mathbb{R}$. This solution is $H^n(\mathbb{T})$ -almost periodic in \mathbb{T} .

This means that $u(\cdot, t) = F(\zeta t)$ for some continuous $F : \mathbb{T}^{\infty} \mapsto H^{n}(\mathbb{T})$ and $\zeta \in \mathbb{R}^{\infty}$.

Conjecture (Deift, 2008).

If $V : \mathbb{R} \mapsto \mathbb{R}$ is almost periodic, then there is a global solution u(x, t) that is almost periodic in t.

Even short time existence of solutions is not known in this generality.

KdV: integrability and Deift's conjecture.	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity
00	•00	000000	000000

Global existence, uniqueness, and almost periodicity

We say that an almost periodic $V : \mathbb{R} \mapsto \mathbb{R}$ is a *Sodin-Yuditskii* function if the Schrödinger operators $H_V := -\partial_x^2 + V$ has purely absolutely continuous spectrum S which satisfies

 S is a Carleson homogeneous subset of ℝ: ∃ε > 0 : |(x − δ, x + δ) ∩ S| ≥ εδ, x ∈ S.

 ${\color{black} 2} {\color{black} |\mathbb{R}_+ \setminus S| < \infty}$

KdV: integrability and Deift's conjecture.	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	000000	000000

Global existence, uniqueness, and almost periodicity

We say that an almost periodic $V : \mathbb{R} \mapsto \mathbb{R}$ is a *Sodin-Yuditskii* function if the Schrödinger operators $H_V := -\partial_x^2 + V$ has purely absolutely continuous spectrum S which satisfies

 S is a Carleson homogeneous subset of ℝ: ∃ε > 0 : |(x − δ, x + δ) ∩ S| ≥ εδ, x ∈ S.

 ${\color{black} 2} {\color{black} |\mathbb{R}_+ \setminus S| < \infty}$

Theorem (B.-Damanik-Goldstein-Lukic).

If V is a Sodin-Yuditskii function

KdV: integrability and Deift's conjecture.	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	000000	000000

Global existence, uniqueness, and almost periodicity

We say that an almost periodic $V : \mathbb{R} \mapsto \mathbb{R}$ is a *Sodin-Yuditskii* function if the Schrödinger operators $H_V := -\partial_x^2 + V$ has purely absolutely continuous spectrum *S* which satisfies

 S is a Carleson homogeneous subset of ℝ: ∃ε > 0 : |(x − δ, x + δ) ∩ S| ≥ εδ, x ∈ S.

 $2 |\mathbb{R}_+ \setminus S| < \infty$

Theorem (B.-Damanik-Goldstein-Lukic).

If V is a Sodin-Yuditskii function (plus some additional restrictions on the thickness of the spectrum, unfortunately), then

- (existence) there is a global solution u(x, t) of KdV with u(x, 0) = V(x);
- (uniqueness) if \tilde{u} is another solution on $\mathbb{R} \times [-T, T]$, and $\tilde{u}, \partial_{xxx} \tilde{u} \in L^{\infty}(\mathbb{R} \times [-T, T])$, then $\tilde{u} = u$;
- (x-dependence) for each t, x → u(x, t) is almost periodic in x (with the same frequency vector);
- (t-dependence) $t \mapsto u(\cdot, t)$ is $W^{4,\infty}(\mathbb{R})$ -almost periodic in t.

KdV: integrability and Deift's conjecture.	Our results: the statements. $O \bullet O$	Reflectionless operators and uniqueness	Existence and almost periodicity 000000
A 11			

Application to quasi-periodic initial data

An explicit class of almost periodic initial data covered by our theorem are small quasiperiodic analytic data:

KdV: integrability and Deift's conjecture. OO	Our results: the statements. $O \bullet O$	Reflectionless operators and uniqueness	Existence and almost periodicity
Application to quasi	noviodio initial d		

Application to quasi-periodic initial data

An explicit class of almost periodic initial data covered by our theorem are small quasiperiodic analytic data:

• Fix a frequency vector $\omega \in \mathbb{R}^d$, $\varepsilon > 0$ and $\kappa \in (0, 1]$.

KdV: integrability and Deift's conjecture.	Our results: the statements. $O \bullet O$	Reflectionless operators and uniqueness	Existence and almost periodicity 000000
A 11 11 1 1			

Application to quasi-periodic initial data

An explicit class of almost periodic initial data covered by our theorem are small quasiperiodic analytic data:

- Fix a frequency vector $\omega \in \mathbb{R}^d$, $\varepsilon > 0$ and $\kappa \in (0, 1]$.
- Let $\mathcal{P}(\omega, \varepsilon, \kappa)$ denote the space of functions of the form $V(x) = U(\omega x)$ for a sampling function $U : \mathbb{T}^d \mapsto \mathbb{R}$ which can be written as $U(\theta) = \sum_{n \in \mathbb{Z}^d} c(n) e^{2\pi i n \theta}, \quad |c(n)| \le \varepsilon \exp(-\kappa |n|).$

KdV: integrability and Deift's conjecture. OO	Our results: the statements. $O \bullet O$	Reflectionless operators and uniqueness	Existence and almost periodicity 000000
Application to quasi-	periodic initial da	ata	

An explicit class of almost periodic initial data covered by our theorem are small guasiperiodic analytic data:

- Fix a frequency vector $\omega \in \mathbb{R}^d$, $\varepsilon > 0$ and $\kappa \in (0, 1]$.
- Let $\mathcal{P}(\omega, \varepsilon, \kappa)$ denote the space of functions of the form $V(x) = U(\omega x)$ for a sampling function $U : \mathbb{T}^d \mapsto \mathbb{R}$ which can be written as $U(\theta) = \sum_{n \in \mathbb{Z}^d} c(n) e^{2\pi i n \theta}, \quad |c(n)| \le \varepsilon \exp(-\kappa |n|).$
- $\bullet\,$ We also assume that ω satisfies the following Diophantine condition

$$|n\omega| \ge a_0 |n|^{-b_0}, \quad n \in \mathbb{Z}^d \setminus \{0\}$$

for some $0 < a_0 < 1$, $d < b_0 < \infty$.

KdV: integrability and Deift's conjecture. 00 Our results: the statements.

Reflectionless operators and uniqueness 000000 Existence and almost periodicity 000000

Application to quasi-periodic initial data

Theorem (B.-Damanik-Goldstein-Lukic).

There exists $\varepsilon_0(a_0, b_0, \kappa) > 0$ such that if $V \in \mathcal{P}(\omega, \varepsilon, \kappa)$, $\varepsilon < \varepsilon_0$, then

- (existence) there is a global solution u(x, t);
- **2** (uniqueness) if \tilde{u} is another solution on $\mathbb{R} \times [-T, T]$, and $\tilde{u}, \partial_{xxx} \tilde{u} \in L^{\infty}(\mathbb{R} \times [-T, T])$, then $\tilde{u} = u$;
- ◎ (x-dependence) for each t, $x \mapsto u(x, t)$ is quasiperiodic in x and $u(\cdot, t) \in \mathcal{P}(\omega, \sqrt{4\varepsilon}, \kappa/4)$;
- (t-dependence) $t \mapsto u(\cdot, t)$ is $\mathcal{P}(\omega, \sqrt{4\varepsilon}, \kappa/4)$ -almost periodic in t.

Reflectionless operators and uniqueness 000000 Existence and almost periodicity 000000

Application to quasi-periodic initial data

Theorem (B.-Damanik-Goldstein-Lukic).

There exists $\varepsilon_0(a_0, b_0, \kappa) > 0$ such that if $V \in \mathcal{P}(\omega, \varepsilon, \kappa)$, $\varepsilon < \varepsilon_0$, then

- (existence) there is a global solution u(x, t);
- ② (uniqueness) if \tilde{u} is another solution on $\mathbb{R} \times [-T, T]$, and $\tilde{u}, \partial_{xxx}\tilde{u} \in L^{\infty}(\mathbb{R} \times [-T, T])$, then $\tilde{u} = u$;
- ◎ (x-dependence) for each t, $x \mapsto u(x, t)$ is quasiperiodic in x and $u(\cdot, t) \in \mathcal{P}(\omega, \sqrt{4\varepsilon}, \kappa/4)$;
- (t-dependence) $t \mapsto u(\cdot, t)$ is $\mathcal{P}(\omega, \sqrt{4\varepsilon}, \kappa/4)$ -almost periodic in t.

On $\mathcal{P}(\omega, arepsilon, \kappa)$, the L^∞ -norm is equivalent with the norm

$$\|V - \tilde{V}\|_r = \left(\sum_{n \in \mathbb{Z}^d} |c(n) - \tilde{c}(n)|^2 e^{2|n|r}\right)^{1/2}$$

for any $r < \kappa$, and with the Sobolev norm inherited from $W^{k,\infty}(\mathbb{R})$ for any $k \in \mathbb{N}$. So the derivatives of u are also almost periodic in t, and so is each Fourier coefficient c(n, t) of u(x, t).

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

• For $z \in \mathbb{C} \setminus \sigma(H_V)$, the second order differential equation

$$-y'' + Vy = zy$$

has nontrivial solutions $\psi_{\pm}(x; z)$, called *Weyl solutions*, such that $\psi_{\pm}(x; z) \in L^2([0, \pm \infty), dx)$.

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

• For $z \in \mathbb{C} \setminus \sigma(H_V)$, the second order differential equation

$$-y'' + Vy = zy$$

has nontrivial solutions $\psi_{\pm}(x; z)$, called *Weyl solutions*, such that $\psi_{\pm}(x; z) \in L^2([0, \pm \infty), dx)$.

• The half-line m-functions associated with the half-line restrictions of $H_V = -\partial_x^2 + V$ to $[x, \pm \infty)$ with a Dirichlet boundary condition at x are given by

$$m_{\pm}(x;z)=rac{\psi_{\pm}'(x;z)}{\psi_{\pm}(x;z)}.$$

For each x, these are meromorphic functions of $z \in \mathbb{C} \setminus \sigma(H_V)$.

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
	00000	

• For $z \in \mathbb{C} \setminus \sigma(H_V)$, the second order differential equation

$$-y'' + Vy = zy$$

has nontrivial solutions $\psi_{\pm}(x; z)$, called *Weyl solutions*, such that $\psi_{\pm}(x; z) \in L^2([0, \pm \infty), dx)$.

• The half-line m-functions associated with the half-line restrictions of $H_V = -\partial_x^2 + V$ to $[x, \pm \infty)$ with a Dirichlet boundary condition at x are given by

$$m_{\pm}(x;z)=\frac{\psi'_{\pm}(x;z)}{\psi_{\pm}(x;z)}.$$

For each x, these are meromorphic functions of $z \in \mathbb{C} \setminus \sigma(H_V)$.

• The Green function of the Schrödinger operator H_V is the integral kernel of $(H_V - z)^{-1}$; formally

$$G(x, y; z, V) = \langle \delta_x, (H_V - z)^{-1} \delta_y \rangle.$$

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	•00000	000000

• For $z \in \mathbb{C} \setminus \sigma(H_V)$, the second order differential equation

$$-y'' + Vy = zy$$

has nontrivial solutions $\psi_{\pm}(x; z)$, called *Weyl solutions*, such that $\psi_{\pm}(x; z) \in L^2([0, \pm \infty), dx)$.

• The half-line m-functions associated with the half-line restrictions of $H_V = -\partial_x^2 + V$ to $[x, \pm \infty)$ with a Dirichlet boundary condition at x are given by

$$m_{\pm}(x;z)=\frac{\psi'_{\pm}(x;z)}{\psi_{\pm}(x;z)}.$$

For each x, these are meromorphic functions of $z \in \mathbb{C} \setminus \sigma(H_V)$.

• The Green function of the Schrödinger operator H_V is the integral kernel of $(H_V - z)^{-1}$; formally

$$G(x, y; z, V) = \langle \delta_x, (H_V - z)^{-1} \delta_y \rangle.$$

In terms of the Weyl functions, the diagonal Green function is:

$$G(x, x; z, V) = \frac{1}{m_{-}(x; z) - m_{+}(x; z)}$$

and it is an analytic function of $z \in \mathbb{C} \setminus \sigma(H_V)$ for each x.

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

• The Schrödinger operator is called reflectionless if

 $\lim_{\epsilon \downarrow 0} \operatorname{Re} G(x,x;E+i\epsilon,V) = 0 \ \, \text{for Lebesgue-a.e.} \ \, E \in \sigma(H_V) =: S$

for some $x \in \mathbb{R}$ (and therefore all $x \in \mathbb{R}$; the definition is x-independent). Notation: $V \in \mathcal{R}(S)$.

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

• The Schrödinger operator is called reflectionless if

 $\lim_{\epsilon \downarrow 0} \operatorname{Re} G(x, x; E + i\epsilon, V) = 0 \ \, \text{for Lebesgue-a.e.} \ \, E \in \sigma(H_V) =: S$

for some $x \in \mathbb{R}$ (and therefore all $x \in \mathbb{R}$; the definition is x-independent). Notation: $V \in \mathcal{R}(S)$.

• Equivalently, V is reflectionless if the Weyl functions are *pseudocontinuable*:

$$\lim_{\epsilon \downarrow 0} m_+(E+i\epsilon) = \lim_{\epsilon \downarrow 0} m_-(E-i\epsilon) \text{ for Lebesgue-a.e. } E \in S$$

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

• The Schrödinger operator is called reflectionless if

 $\lim_{\epsilon \downarrow 0} \operatorname{Re} G(x, x; E + i\epsilon, V) = 0 \ \, \text{for Lebesgue-a.e.} \ \, E \in \sigma(H_V) =: S$

for some $x \in \mathbb{R}$ (and therefore all $x \in \mathbb{R}$; the definition is x-independent). Notation: $V \in \mathcal{R}(S)$.

• Equivalently, V is reflectionless if the Weyl functions are *pseudocontinuable*:

$$\lim_{\epsilon \downarrow 0} m_+(E+i\epsilon) = \lim_{\epsilon \downarrow 0} m_-(E-i\epsilon) \text{ for Lebesgue-a.e. } E \in S$$

Theorem (Remling, 2007).

If V is almost periodic and $\sigma_{\rm ac}(H_V) = \sigma(H_V) = S$, then $V \in \mathcal{R}(S)$.

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

• The Schrödinger operator is called reflectionless if

 $\lim_{\epsilon \downarrow 0} \operatorname{Re} G(x, x; E + i\epsilon, V) = 0 \ \, \text{for Lebesgue-a.e.} \ \, E \in \sigma(H_V) =: S$

for some $x \in \mathbb{R}$ (and therefore all $x \in \mathbb{R}$; the definition is x-independent). Notation: $V \in \mathcal{R}(S)$.

• Equivalently, V is reflectionless if the Weyl functions are *pseudocontinuable*:

$$\lim_{\epsilon \downarrow 0} m_+(E+i\epsilon) = \lim_{\epsilon \downarrow 0} m_-(E-i\epsilon) \text{ for Lebesgue-a.e. } E \in S$$

Theorem (Remling, 2007).

If V is almost periodic and $\sigma_{\rm ac}(H_V) = \sigma(H_V) = S$, then $V \in \mathcal{R}(S)$.

Theorem (Rybkin, 2008).

Let $V \in \mathcal{R}(S)$ and $\sigma_{ac}(H_V) = S$. Assume that u(x, t) is a solution of KdV with $u, \partial_{xxx} u \in L^{\infty}(\mathbb{R} \times [-T, T])$, for some T > 0. Then, $u(\cdot, t) \in \mathcal{R}(S)$ for all $t \in [-T, T]$.

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
		00000	

• Write the spectrum as $S = [\underline{E}, \infty) \setminus \bigcup_{j \in J} (E_j^-, E_j^+).$

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity	
		000000		
Tanks of Divisiblet data				

- Torus of Dirichlet data
 - Write the spectrum as $S = [\underline{E}, \infty) \setminus \bigcup_{j \in J} (E_j^-, E_j^+).$
 - Fix a gap (E_j^-, E_j^+) and $x \in \mathbb{R}$. G(x, x; E) is a real strictly increasing function on (E_j^-, E_j^+) .

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

- Write the spectrum as $S = [\underline{E}, \infty) \setminus \bigcup_{j \in J} (E_j^-, E_j^+).$
- Fix a gap (E_j^-, E_j^+) and $x \in \mathbb{R}$. G(x, x; E) is a real strictly increasing function on (E_j^-, E_j^+) .

• Define
$$\mu_j(x) := \begin{cases} E \in (E_j^-, E_j^+) & G(x, x; E) = 0 \\ E_j^+ & G(x, x; E) < 0 \text{ for all } E \in (E_j^-, E_j^+) \\ E_j^- & G(x, x; E) > 0 \text{ for all } E \in (E_j^-, E_j^+) \end{cases}$$

KdV: integrability and Deift's conjecture. 00	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity 000000

- Write the spectrum as $S = [\underline{E}, \infty) \setminus \bigcup_{j \in J} (E_j^-, E_j^+).$
- Fix a gap (E⁻_j, E⁺_j) and x ∈ ℝ. G(x, x; E) is a real strictly increasing function on (E⁻_j, E⁺_j).
- Define $\mu_j(x) := \begin{cases} E \in (E_j^-, E_j^+) & G(x, x; E) = 0\\ E_j^+ & G(x, x; E) < 0 \text{ for all } E \in (E_j^-, E_j^+).\\ E_j^- & G(x, x; E) > 0 \text{ for all } E \in (E_j^-, E_j^+) \end{cases}$
- If $\mu_j(x) \in (E_j^-, E_j^+)$, then exactly one of the half-line Schrödinger operators $-\partial_x^2 + V$ on the half-lines $(-\infty, x)$ and (x, ∞) , with Dirichlet boundary condition at x, has an eigenvalue at $\mu_j(x)$. Equivalently, the exactly one Weyl function $m_{\pm}(t, x)$ has a pole at $\mu_j(x)$. The sign $\sigma_j(x) \in \{+, -\}$ labels that half-line.
- View $(\mu_j(x), \sigma_j(x))_{j \in J}$ as an element of the torus $\mathcal{D}(S) = \prod_{j \in J} \mathbb{T}_j$.

KdV: integrability and Deift's conjecture. OO	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity 000000

- Write the spectrum as $S = [\underline{E}, \infty) \setminus \bigcup_{j \in J} (E_j^-, E_j^+).$
- Fix a gap (E_j^-, E_j^+) and $x \in \mathbb{R}$. G(x, x; E) is a real strictly increasing function on (E_j^-, E_j^+) .
- Define $\mu_j(x) := \begin{cases} E \in (E_j^-, E_j^+) & G(x, x; E) = 0\\ E_j^+ & G(x, x; E) < 0 \text{ for all } E \in (E_j^-, E_j^+).\\ E_j^- & G(x, x; E) > 0 \text{ for all } E \in (E_j^-, E_j^+) \end{cases}$
- If µ_j(x) ∈ (E_j⁻, E_j⁺), then exactly one of the half-line Schrödinger operators −∂_x² + V on the half-lines (−∞, x) and (x, ∞), with Dirichlet boundary condition at x, has an eigenvalue at µ_j(x). Equivalently, the exactly one Weyl function m_±(t, x) has a pole at µ_j(x). The sign σ_j(x) ∈ {+, −} labels that half-line.
- View $(\mu_j(x), \sigma_j(x))_{j \in J}$ as an element of the torus $\mathcal{D}(S) = \prod_{j \in J} \mathbb{T}_j$.
- Introduce an angular variable φ_j on \mathbb{T}_j by $\mu_j = E_j^- + (E_j^+ - E_j^-) \cos^2(\varphi_j/2), \quad \sigma_j = \operatorname{sgn} \sin \varphi_j.$

KdV: integrability and Deift's conjecture. 00	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity 000000

- Write the spectrum as $S = [\underline{E}, \infty) \setminus \bigcup_{j \in J} (E_j^-, E_j^+).$
- Fix a gap (E_j^-, E_j^+) and $x \in \mathbb{R}$. G(x, x; E) is a real strictly increasing function on (E_j^-, E_j^+) .
- Define $\mu_j(x) := \begin{cases} E \in (E_j^-, E_j^+) & G(x, x; E) = 0\\ E_j^+ & G(x, x; E) < 0 \text{ for all } E \in (E_j^-, E_j^+).\\ E_j^- & G(x, x; E) > 0 \text{ for all } E \in (E_j^-, E_j^+) \end{cases}$
- If $\mu_j(x) \in (E_j^-, E_j^+)$, then exactly one of the half-line Schrödinger operators $-\partial_x^2 + V$ on the half-lines $(-\infty, x)$ and (x, ∞) , with Dirichlet boundary condition at x, has an eigenvalue at $\mu_j(x)$. Equivalently, the exactly one Weyl function $m_{\pm}(t, x)$ has a pole at $\mu_j(x)$. The sign $\sigma_j(x) \in \{+, -\}$ labels that half-line.
- View $(\mu_j(x), \sigma_j(x))_{j \in J}$ as an element of the torus $\mathcal{D}(S) = \prod_{j \in J} \mathbb{T}_j$.
- Introduce an angular variable φ_j on \mathbb{T}_j by $\mu_j = E_j^- + (E_j^+ - E_j^-) \cos^2(\varphi_j/2), \qquad \sigma_j = \operatorname{sgn} \sin \varphi_j.$

• The metric on $\mathcal{D}(S)$ is given by $\|\varphi - \tilde{\varphi}\|_{\mathcal{D}(S)} = \sup_{j \in J} \gamma_j^{1/2} \|\varphi_j - \tilde{\varphi}_j\|_{\mathbb{T}}.$

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
	000000	

Craig type conditions

• Set $\gamma_j := E_j^+ - E_j^-$. Set $\eta_{j,l} := \text{dist}((E_j^-, E_j^+), (E_l^-, E_l^+))$ for $j, l \in J$ and $\eta_{j,0} := \text{dist}((E_j^-, E_j^+), \underline{E})$ for $j \in J$. Denote

$$C_j = (\eta_{j,0} + \gamma_j)^{1/2} \prod_{\substack{l \in J \ l \neq j}} \left(1 + \frac{\gamma_l}{\eta_{j,l}} \right)^{1/2}.$$

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
	000000	

Craig type conditions

• Set $\gamma_j := E_j^+ - E_j^-$. Set $\eta_{j,l} := \text{dist}((E_j^-, E_j^+), (E_l^-, E_l^+))$ for $j, l \in J$ and $\eta_{j,0} := \text{dist}((E_j^-, E_j^+), \underline{E})$ for $j \in J$. Denote

$$C_j = (\eta_{j,0} + \gamma_j)^{1/2} \prod_{\substack{l \in J \ l \neq j}} \left(1 + \frac{\gamma_l}{\eta_{j,l}} \right)^{1/2}.$$

• We need to assume the Craig-type conditions

$$\sum_{j\in J}\gamma_j^{1/2}<\infty, \qquad \sum_{j\in J}\gamma_j^{1/2}rac{1+\eta_{j,0}}{\eta_{j,0}}\,\mathcal{C}_j<\infty,
onumber \ \sup_{j\in J}\sum_{\substack{l\in J\ l
eq j}}\left(rac{\gamma_j^{1/2}\gamma_l^{1/2}}{\eta_{j,l}}
ight)^a(1+\eta_{j,0})\mathcal{C}_j<\infty \qquad ext{for } a\in\{rac{1}{2},1\},
onumber \ \sum_{j\in J}(1+\eta_{j,0}^2)\gamma_j<\infty.$$

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
	000000	

Craig type conditions

• Set $\gamma_j := E_j^+ - E_j^-$. Set $\eta_{j,l} := \text{dist}((E_j^-, E_j^+), (E_l^-, E_l^+))$ for $j, l \in J$ and $\eta_{j,0} := \text{dist}((E_j^-, E_j^+), \underline{E})$ for $j \in J$. Denote

$$C_j = (\eta_{j,0} + \gamma_j)^{1/2} \prod_{\substack{l \in J \ l \neq j}} \left(1 + \frac{\gamma_l}{\eta_{j,l}} \right)^{1/2}.$$

• We need to assume the Craig-type conditions

$$\begin{split} \sum_{j\in J} \gamma_j^{1/2} < \infty, \qquad \sum_{j\in J} \gamma_j^{1/2} \frac{1+\eta_{j,0}}{\eta_{j,0}} \, \mathcal{C}_j < \infty, \\ \sup_{j\in J} \sum_{\substack{l\in J\\ l\neq j}} \left(\frac{\gamma_j^{1/2} \gamma_l^{1/2}}{\eta_{j,l}} \right)^a (1+\eta_{j,0}) \mathcal{C}_j < \infty \qquad \text{for } a \in \{\frac{1}{2}, 1\}, \\ \sum_{j\in J} (1+\eta_{j,0}^2) \gamma_j < \infty. \end{split}$$

• The conditions imply that the spectrum *S* is Carleson homogeneous (Sodin, using ideas from Jones-Marshall).

KdV: integrability and Deift's conjecture. $\ensuremath{\mathsf{OO}}$ Our results: the statements.

Reflectionless operators and uniqueness

Existence and almost periodicity 000000

The Dubrovin flow and the trace formula

Theorem. (Craig 1989)

Under (a weaker form) of Craig-type conditions on S, the $\varphi_j(x)$ evolve according to the Dubrovin flow

$$\frac{d}{dx}\varphi(x)=\Psi(\varphi(x))$$

which is given by a Lipshitz vector field Ψ ,

$$\Psi_j(\varphi) = \sigma_j \sqrt{4(\underline{E} - \mu_j)(E_j^+ - \mu_j)(E_j^- - \mu_j)} \prod_{k \neq j} \frac{(E_k^- - \mu_j)(E_k^+ - \mu_j)}{(\mu_k - \mu_j)^2},$$

and the trace formula recovers the potential,

$$V(x) = Q_1(\varphi(x)) := \underline{E} + \sum_{j \in J} (E_j^+ + E_j^- - 2\mu_j(x)).$$

KdV: integrability and Deift's conjecture.	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity
		000000	

KdV evolution on Dirichlet data

Add time dependence: consider a solution u(x, t) and its Dirichlet data $\phi(x, t)$.

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

KdV evolution on Dirichlet data

Add time dependence: consider a solution u(x, t) and its Dirichlet data $\phi(x, t)$.

Proposition.

If S obeys the Craig-type conditions, then

$$\partial_x \varphi(x,t) = \Psi(\varphi(x,t)), \qquad \partial_t \varphi(x,t) = \Xi(\varphi(x,t)),$$

where Ξ is a Lipshitz vector field given by

$$\Xi_j = -2(Q_1 + 2\mu_j)\Psi_j,$$

and the trace formula recovers the solution,

$$u(x,t) = Q_1(\varphi(x,t)) = \underline{E} + \sum_{j \in J} (E_j^+ + E_j^- - 2\mu_j(x,t)).$$

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	00000	000000

KdV evolution on Dirichlet data

Add time dependence: consider a solution u(x, t) and its Dirichlet data $\phi(x, t)$.

Proposition.

If S obeys the Craig-type conditions, then

$$\partial_x \varphi(x,t) = \Psi(\varphi(x,t)), \qquad \partial_t \varphi(x,t) = \Xi(\varphi(x,t)),$$

where Ξ is a Lipshitz vector field given by

$$\Xi_j = -2(Q_1 + 2\mu_j)\Psi_j,$$

and the trace formula recovers the solution,

$$u(x,t) = Q_1(\varphi(x,t)) = \underline{E} + \sum_{j \in J} (E_j^+ + E_j^- - 2\mu_j(x,t))$$

An important step: For $E \in \left\{E_{\pm}^{j}\right\}$, there exists a nontrivial eigensolution which is a normalized limit of Weyl solutions at the gap edges $E \in \left\{E_{\pm}^{j}\right\}$: $\lim_{z \in (E_{i}^{-}, E_{i}^{+}); \ z \to E} c_{\pm}(z)\psi_{\pm}(x; z) = \tilde{\psi}(x)$

uniformly on compacts, for some normalizing $c_{\pm}(z)$.

KdV: integrability and Deift's conjecture. $\bigcirc \bigcirc$ Our results: the statements.

Reflectionless operators and uniqueness 000000 Existence and almost periodicity

Dirichlet data determines a reflectionless potential and its derivatives

Under the Craig-type conditions on S, we prove

Proposition.

Let $f \in \mathcal{D}(S)$. There exists unique $\varphi : \mathbb{R} \to \mathcal{D}(S)$ such that $\varphi(0) = f$ and

 $\partial_x \varphi(x,t) = \Psi(\varphi(x,t)).$

If we define $V : \mathbb{R}^2 \to \mathbb{R}$ by

$$V(x) = Q_1(\varphi(x))$$

then $V(x) \in \mathcal{R}(S) \cap C^4(\mathbb{R}) \cap W^{4,\infty}$ and B(V(x)) = f. If we define $Q_k = \underline{E}^k + \sum_{j \in J} ((E_j^-)^k + (E_j^+)^k - 2\mu_j^k)$, then V obeys the higher order trace formulas

$$Q_2 \circ \varphi = -\frac{1}{2}V'' + V^2$$
$$Q_3 \circ \varphi = \frac{3}{16}V^{(4)} - \frac{3}{2}VV'' - \frac{15}{16}(V')^2 + V^3$$

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	000000	00000

Existence of solutions

Now we add the time dependence to obtain a solution of the KdV equation:

Proposition.

Let S satisfy Craig-type conditions and let $V(x) \in \mathcal{R}(S)$. Let $f = B(V) \in \mathcal{D}(S)$. Then there exists $\varphi : \mathbb{R}^2 \to \mathcal{D}(S)$ such that $\varphi(0,0) = f$ and $\partial_x \varphi(x,t) = \Psi(\varphi(x,t)), \qquad \partial_t \varphi(x,t) = \Xi(\varphi(x,t)).$ If we define $u : \mathbb{R}^2 \to \mathbb{R}$ by $u(x,t) = Q_1(\varphi(x,t))$, then the function u(x,t)obeys the KdV equation with u(x,0) = V(x). Moreover, for each $t \in \mathbb{R}$, we have $u(\cdot,t) \in \mathcal{R}(S)$ and $B(u(\cdot,t)) = \varphi(0,t)$, and

$$Q_2 \circ \varphi = -\frac{1}{2} \partial_x^2 u + u^2$$
$$Q_3 \circ \varphi = \frac{3}{16} \partial_x^4 u - \frac{3}{2} u \partial_x^2 u - \frac{15}{16} (\partial_x u)^2 + u^3$$

KdV: integrability and Deift's conjecture.		Reflectionless operators and uniqueness	Existence and almost periodicity
00	000	000000	00000

Existence of solutions

Now we add the time dependence to obtain a solution of the KdV equation:

Proposition.

Let S satisfy Craig-type conditions and let $V(x) \in \mathcal{R}(S)$. Let $f = B(V) \in \mathcal{D}(S)$. Then there exists $\varphi : \mathbb{R}^2 \to \mathcal{D}(S)$ such that $\varphi(0,0) = f$ and $\partial_x \varphi(x,t) = \Psi(\varphi(x,t)), \qquad \partial_t \varphi(x,t) = \Xi(\varphi(x,t)).$ If we define $u : \mathbb{R}^2 \to \mathbb{R}$ by $u(x,t) = Q_1(\varphi(x,t))$, then the function u(x,t)obeys the KdV equation with u(x,0) = V(x). Moreover, for each $t \in \mathbb{R}$, we have $u(\cdot,t) \in \mathcal{R}(S)$ and $B(u(\cdot,t)) = \varphi(0,t)$, and $Q_2 \circ \varphi = -\frac{1}{2}\partial_x^2 u + u^2$

$$Q_3 \circ \varphi = rac{3}{16} \partial_x^4 u - rac{3}{2} u \partial_x^2 u - rac{15}{16} (\partial_x u)^2 + u^3$$

The two results are proven by showing convergence of approximants with finite gap spectra $S^N = [\underline{E}, \infty) \setminus \bigcup_{j=1}^N (E_j^-, E_j^+)$, for which the above statements were known.

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
		000000

Define $\xi_j(z)$ as the harmonic measure of $S \cap \{y : y \ge E_j^+\}$ in $\mathbb{C} \setminus S$ evaluated at z, i.e. the solution of the Dirichlet problem on $\mathbb{C} \setminus S$ with boundary values on S given by

$$\xi_j(x) = egin{cases} 1 & x \in \mathcal{S}, x \geq E_j^+ \ 0 & x \in \mathcal{S}, x \leq E_j^- \end{cases}$$

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
		000000

Define $\xi_j(z)$ as the harmonic measure of $S \cap \{y : y \ge E_j^+\}$ in $\mathbb{C} \setminus S$ evaluated at z, i.e. the solution of the Dirichlet problem on $\mathbb{C} \setminus S$ with boundary values on S given by

$$\xi_j(x) = egin{cases} 1 & x \in S, x \geq E_j^+ \ 0 & x \in S, x \leq E_j^- \end{cases}$$

Sodin-Yuditskii map (an infinite dimensional version of Abel map) $A: \mathcal{D}(S) \to \mathbb{T}^J = \pi^* (\mathbb{C} \setminus S),$

$$A_j(arphi) = \pi \sum_{k \in J} \sigma_k \left(\xi_j(\mu_k) - \xi_j(E_k^-) \right) \pmod{2\pi \mathbb{Z}}$$

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
		000000

Define $\xi_j(z)$ as the harmonic measure of $S \cap \{y : y \ge E_j^+\}$ in $\mathbb{C} \setminus S$ evaluated at z, i.e. the solution of the Dirichlet problem on $\mathbb{C} \setminus S$ with boundary values on S given by

$$\xi_j(x) = egin{cases} 1 & x \in S, x \geq E_j^+ \ 0 & x \in S, x \leq E_j^- \end{cases}$$

Sodin-Yuditskii map (an infinite dimensional version of Abel map) $A: \mathcal{D}(S) \to \mathbb{T}^J = \pi^* (\mathbb{C} \setminus S),$

$$A_j(arphi) = \pi \sum_{k \in J} \sigma_k \; (\xi_j(\mu_k) - \xi_j(E_k^-)) \pmod{2\pi\mathbb{Z}}$$

Defined for an arbitrary Parreau–Widom subset of \mathbb{R} .

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
		000000

Define $\xi_j(z)$ as the harmonic measure of $S \cap \{y : y \ge E_i^+\}$ in $\mathbb{C} \setminus S$ evaluated at z, i.e. the solution of the Dirichlet problem on $\mathbb{C} \setminus S$ with boundary values on S given by

$$\xi_j(x) = egin{cases} 1 & x \in \mathcal{S}, x \geq E_j^+ \ 0 & x \in \mathcal{S}, x \leq E_j^- \end{cases}$$

Sodin-Yuditskii map (an infinite dimensional version of Abel map) $A: \mathcal{D}(S) \to \mathbb{T}^J = \pi^* (\mathbb{C} \setminus S),$

$$egin{aligned} \mathsf{A}_j(arphi) &= \pi \sum_{k \in J} \sigma_k \; (\xi_j(\mu_k) - \xi_j(oldsymbol{E}_k^-)) \pmod{2\pi \mathbb{Z}} \end{aligned}$$

Defined for an arbitrary Parreau–Widom subset of \mathbb{R} .

Theorem. (Sodin-Yuditskii, 1995)

Let S be a Sodin-Yuditskii set.

Then the map $\mathcal{M} := A \circ B$ is a homeomorphism between $\mathcal{R}(S)$ equipped with uniform topology and $\mathcal{D}(S)$. It linearizes the translation flow:

$$\mathcal{M}(u(\cdot+x))=\mathcal{M}(u(0))+\delta x.$$

for some $\delta \in \mathbb{R}^{J}$.

KdV: integrability and Deift's conjecture.	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity

Almost periodicity of the solution

Proposition.

Let S satisfies Craig-type conditions. Then the map $\mathcal{M} := A \circ B$ is a homeomorphism between $\mathcal{R}(S)$ equipped with $W^{4,\infty}$ topology and $\mathcal{D}(S)$. The map \mathcal{M} linearizes the KdV flow: for some $\delta, \zeta \in \mathbb{R}^J$,

 $\mathcal{M}(u(x,t)) = \mathcal{M}(u(0,0)) + \delta x + \zeta t.$

KdV: integrability and Deift's conjecture. 00	Our results: the statements.	Reflectionless operators and uniqueness	Existence and almost periodicity

Almost periodicity of the solution

Proposition.

Let S satisfies Craig-type conditions. Then the map $\mathcal{M} := A \circ B$ is a homeomorphism between $\mathcal{R}(S)$ equipped with $W^{4,\infty}$ topology and $\mathcal{D}(S)$. The map \mathcal{M} linearizes the KdV flow: for some $\delta, \zeta \in \mathbb{R}^J$,

 $\mathcal{M}(u(x,t)) = \mathcal{M}(u(0,0)) + \delta x + \zeta t.$

• The first part follows from the higher order trace formulas.

KdV: integrability and Deift's conjecture.	Our results: the statements.	Existence and almost periodicity

Almost periodicity of the solution

Proposition.

Let S satisfies Craig-type conditions. Then the map $\mathcal{M} := A \circ B$ is a homeomorphism between $\mathcal{R}(S)$ equipped with $W^{4,\infty}$ topology and $\mathcal{D}(S)$. The map \mathcal{M} linearizes the KdV flow: for some $\delta, \zeta \in \mathbb{R}^J$,

 $\mathcal{M}(u(x,t)) = \mathcal{M}(u(0,0)) + \delta x + \zeta t.$

- The first part follows from the higher order trace formulas.
- For the second part, we work with the flow on $\mathcal{D}(S)$.

KdV: integrability	and [Deift's		
00			000	

results: the statements. O Reflectionless operators and uniqueness

Existence and almost periodicity

Almost periodicity of the solution

Proposition.

Let S satisfies Craig-type conditions. Then the map $\mathcal{M} := A \circ B$ is a homeomorphism between $\mathcal{R}(S)$ equipped with $W^{4,\infty}$ topology and $\mathcal{D}(S)$. The map \mathcal{M} linearizes the KdV flow: for some $\delta, \zeta \in \mathbb{R}^J$,

 $\mathcal{M}(u(x,t)) = \mathcal{M}(u(0,0)) + \delta x + \zeta t.$

- The first part follows from the higher order trace formulas.
- For the second part, we work with the flow on $\mathcal{D}(S)$.
- We use finite gap approximants, for which linearity of the Abel map is known,

$$A_j^N(\varphi^N(x,t)) = A_j^N(\varphi^N(0,0)) + \delta_j^N x + \zeta_j^N t,$$

and uniform convergence on compacts.

KdV: integrability and Deift's conjecture.	Reflectionless operators and uniqueness	Existence and almost periodicity
		000000

Small quasiperiodic initial data.

Theorem. (Damanik-Goldstein-Lukic)

Let ω satisfies the Diophantine conditions. There exists $\varepsilon_0(a_0, b_0, \kappa) > 0$ such that if

$$V \in \mathcal{P}(\omega, \varepsilon, \kappa), \ \varepsilon < \varepsilon_0$$
, and $S = \sigma(H_V),$

then

$$\mathcal{R}(S) \subset \mathcal{P}(\omega, \sqrt{4\varepsilon}, \kappa/4).$$

KdV: integrability	and De		Our	th
00			00	

Reflectionless operators and uniqueness 000000 Existence and almost periodicity

Small quasiperiodic initial data.

Theorem. (Damanik-Goldstein-Lukic)

Let ω satisfies the Diophantine conditions. There exists $\varepsilon_0(a_0, b_0, \kappa) > 0$ such that if

$$V \in \mathcal{P}(\omega, arepsilon, \kappa), \ arepsilon < arepsilon_0$$
, and $S = \sigma(H_V),$

then

$$\mathcal{R}(S) \subset \mathcal{P}(\omega, \sqrt{4\varepsilon}, \kappa/4).$$

• A spectrum of any $V \in \mathcal{P}(\omega, \varepsilon, \kappa)$ satisfies the Craig-type conditions.

KdV:	integrability	Deift's	

Our results: the statements.

Reflectionless operators and uniqueness 000000 Existence and almost periodicity

Small quasiperiodic initial data.

Theorem. (Damanik-Goldstein-Lukic)

Let ω satisfies the Diophantine conditions. There exists $\varepsilon_0(a_0,b_0,\kappa)>0$ such that if

$$V \in \mathcal{P}(\omega, \varepsilon, \kappa), \ \varepsilon < \varepsilon_0$$
, and $S = \sigma(H_V)$,

then

$$\mathcal{R}(S) \subset \mathcal{P}(\omega, \sqrt{4\varepsilon}, \kappa/4).$$

- A spectrum of any $V \in \mathcal{P}(\omega, \varepsilon, \kappa)$ satisfies the Craig-type conditions.
- So the unique solution of KdV for the initial data V satisfies

$$u(\cdot,t)\in\mathcal{P}(\omega,\sqrt{4arepsilon},\kappa/4)$$
 for any $t\geq 0$

KdV: integrability and Deift's conjecture. 00 Our results: the statements 000 Reflectionless operators and uniqueness 000000 Existence and almost periodicity

HAPPY BIRTHDAY PETER!

