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The KdV equation and the Lax pair formalism.

My main hero today: the Korteweg–de Vries (KdV) equation,

∂tu − 6u∂xu + ∂3
xu = 0,

Introduced in the 19th century as a model for the propagation of shallow
water waves in one dimension.

In the 1960s, Gardner, Greene, Kruskal and Miura discovered that the
KdV equation has infinitely many conserved quantities.

Explained by Peter Lax in 1968 through the existence of a “Lax pair”
representation: using the family of Schrödinger operators
H(t) := −∂2

x + u(t) and the family of antisymmetric operators
P(t) := 4∂3

x + 3(∂xu(t) + u(t)∂x) on L2(R, dx), the KdV equation can be
written in the form

∂tH(t) = P(t)H(t)− H(t)P(t).

This means that the family of unitary operators U(t) which solves
d
dt
U = PU, U(0) = I obeys U(t)∗H(t)U(t) = H(0), so the operators H(t)

are mutually unitarily equivalent for all values of t.

Just having a Lax pair is not enough to deduce stronger statements of
integrability, such as almost periodicity in t!
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The KdV equation: integrability.

Integrability of the KdV equation was first established by Gardner, Greene,
Kruskal and Miura in the setting of rapidly decaying initial data u(x , 0) = V (x)
using the inverse scattering transform linearization of the KdV evolution.

In the 1970s, it was proved that for periodic initial data, the KdV equation is a
completely integrable Hamiltonian system, with action-angle variables:

Theorem (McKean-Trubowitz, 1976).

If V ∈ Hn(T), then there is a global solution u(x , t) on T× R. This solution is
Hn(T)-almost periodic in T.

This means that u(·, t) = F (ζt) for some continuous F : T∞ 7→ Hn(T) and
ζ ∈ R∞.

Conjecture (Deift, 2008).

If V : R 7→ R is almost periodic, then there is a global solution u(x , t) that is
almost periodic in t.

Even short time existence of solutions is not known in this generality.
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Global existence, uniqueness, and almost periodicity

We say that an almost periodic V : R 7→ R is a Sodin-Yuditskii function if the
Schrödinger operators HV := −∂2

x + V has purely absolutely continuous
spectrum S which satisfies

1 S is a Carleson homogeneous subset of R:
∃ε > 0 : |(x − δ, x + δ) ∩ S | ≥ εδ, x ∈ S .

2 |R+ \ S | <∞

Theorem (B.-Damanik-Goldstein-Lukic).

If V is a Sodin-Yuditskii function (plus some additional restrictions on the
thickness of the spectrum, unfortunately), then

1 (existence) there is a global solution u(x , t) of KdV with u(x , 0) = V (x);

2 (uniqueness) if ũ is another solution on R× [−T ,T ], and
ũ, ∂xxx ũ ∈ L∞(R× [−T ,T ]),
then ũ = u;

3 (x-dependence) for each t, x 7→ u(x , t) is almost periodic in x (with the
same frequency vector);

4 (t-dependence) t 7→ u(·, t) is W 4,∞(R)-almost periodic in t.
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ũ, ∂xxx ũ ∈ L∞(R× [−T ,T ]),
then ũ = u;
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Application to quasi-periodic initial data

An explicit class of almost periodic initial data covered by our theorem are
small quasiperiodic analytic data:

Fix a frequency vector ω ∈ Rd , ε > 0 and κ ∈ (0, 1].

Let P(ω, ε, κ) denote the space of functions of the form
V (x) = U(ωx)
for a sampling function U : Td 7→ R which can be written as
U(θ) =

∑
n∈Zd c(n)e2πinθ, |c(n)| ≤ ε exp(−κ|n|).

We also assume that ω satisfies the following Diophantine condition

|nω| ≥ a0|n|−b0 , n ∈ Zd \ {0}

for some 0 < a0 < 1, d < b0 <∞.
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Application to quasi-periodic initial data

Theorem (B.-Damanik-Goldstein-Lukic).

There exists ε0(a0, b0, κ) > 0 such that if V ∈ P(ω, ε, κ), ε < ε0, then

1 (existence) there is a global solution u(x , t);

2 (uniqueness) if ũ is another solution on R× [−T ,T ], and
ũ, ∂xxx ũ ∈ L∞(R× [−T ,T ]),
then ũ = u;

3 (x-dependence) for each t, x 7→ u(x , t) is quasiperiodic in x and
u(·, t) ∈ P(ω,

√
4ε, κ/4);

4 (t-dependence) t 7→ u(·, t) is P(ω,
√

4ε, κ/4)-almost periodic in t.

On P(ω, ε, κ), the L∞-norm is equivalent with the norm

‖V − Ṽ ‖r =

∑
n∈Zd

|c(n)− c̃(n)|2e2|n|r

1/2

for any r < κ, and with the Sobolev norm inherited from W k,∞(R) for any
k ∈ N. So the derivatives of u are also almost periodic in t, and so is each
Fourier coefficient c(n, t) of u(x , t).
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Weyl solutions and Green function

For z ∈ C \ σ(HV ), the second order differential equation

−y ′′ + Vy = zy

has nontrivial solutions ψ±(x ; z), called Weyl solutions, such that
ψ±(x ; z) ∈ L2([0,±∞), dx).

The half-line m-functions associated with the half-line restrictions of
HV = −∂2

x + V to [x ,±∞) with a Dirichlet boundary condition at x are
given by

m±(x ; z) =
ψ′±(x ; z)

ψ±(x ; z)
.

For each x , these are meromorphic functions of z ∈ C \ σ(HV ).

The Green function of the Schrödinger operator HV is the integral kernel
of (HV − z)−1; formally

G(x , y ; z ,V ) = 〈δx , (HV − z)−1δy 〉.

In terms of the Weyl functions, the diagonal Green function is:

G(x , x ; z ,V ) =
1

m−(x ; z)−m+(x ; z)
,

and it is an analytic function of z ∈ C \ σ(HV ) for each x .



KdV: integrability and Deift’s conjecture. Our results: the statements. Reflectionless operators and uniqueness Existence and almost periodicity

Weyl solutions and Green function

For z ∈ C \ σ(HV ), the second order differential equation

−y ′′ + Vy = zy

has nontrivial solutions ψ±(x ; z), called Weyl solutions, such that
ψ±(x ; z) ∈ L2([0,±∞), dx).

The half-line m-functions associated with the half-line restrictions of
HV = −∂2

x + V to [x ,±∞) with a Dirichlet boundary condition at x are
given by

m±(x ; z) =
ψ′±(x ; z)

ψ±(x ; z)
.

For each x , these are meromorphic functions of z ∈ C \ σ(HV ).

The Green function of the Schrödinger operator HV is the integral kernel
of (HV − z)−1; formally

G(x , y ; z ,V ) = 〈δx , (HV − z)−1δy 〉.

In terms of the Weyl functions, the diagonal Green function is:

G(x , x ; z ,V ) =
1

m−(x ; z)−m+(x ; z)
,

and it is an analytic function of z ∈ C \ σ(HV ) for each x .



KdV: integrability and Deift’s conjecture. Our results: the statements. Reflectionless operators and uniqueness Existence and almost periodicity

Weyl solutions and Green function

For z ∈ C \ σ(HV ), the second order differential equation

−y ′′ + Vy = zy

has nontrivial solutions ψ±(x ; z), called Weyl solutions, such that
ψ±(x ; z) ∈ L2([0,±∞), dx).

The half-line m-functions associated with the half-line restrictions of
HV = −∂2

x + V to [x ,±∞) with a Dirichlet boundary condition at x are
given by

m±(x ; z) =
ψ′±(x ; z)

ψ±(x ; z)
.

For each x , these are meromorphic functions of z ∈ C \ σ(HV ).

The Green function of the Schrödinger operator HV is the integral kernel
of (HV − z)−1; formally

G(x , y ; z ,V ) = 〈δx , (HV − z)−1δy 〉.

In terms of the Weyl functions, the diagonal Green function is:

G(x , x ; z ,V ) =
1

m−(x ; z)−m+(x ; z)
,

and it is an analytic function of z ∈ C \ σ(HV ) for each x .



KdV: integrability and Deift’s conjecture. Our results: the statements. Reflectionless operators and uniqueness Existence and almost periodicity

Weyl solutions and Green function

For z ∈ C \ σ(HV ), the second order differential equation

−y ′′ + Vy = zy

has nontrivial solutions ψ±(x ; z), called Weyl solutions, such that
ψ±(x ; z) ∈ L2([0,±∞), dx).

The half-line m-functions associated with the half-line restrictions of
HV = −∂2

x + V to [x ,±∞) with a Dirichlet boundary condition at x are
given by

m±(x ; z) =
ψ′±(x ; z)

ψ±(x ; z)
.

For each x , these are meromorphic functions of z ∈ C \ σ(HV ).

The Green function of the Schrödinger operator HV is the integral kernel
of (HV − z)−1; formally

G(x , y ; z ,V ) = 〈δx , (HV − z)−1δy 〉.

In terms of the Weyl functions, the diagonal Green function is:

G(x , x ; z ,V ) =
1

m−(x ; z)−m+(x ; z)
,

and it is an analytic function of z ∈ C \ σ(HV ) for each x .



KdV: integrability and Deift’s conjecture. Our results: the statements. Reflectionless operators and uniqueness Existence and almost periodicity

Reflectionless operators

The Schrödinger operator is called reflectionless if

lim
ε↓0

ReG(x , x ;E + iε,V ) = 0 for Lebesgue-a.e. E ∈ σ(HV ) =: S

for some x ∈ R (and therefore all x ∈ R; the definition is x-independent).
Notation: V ∈ R(S).

Equivalently, V is reflectionless if the Weyl functions are
pseudocontinuable:

lim
ε↓0

m+(E + iε) = lim
ε↓0

m−(E − iε) for Lebesgue-a.e. E ∈ S

Theorem (Remling, 2007).

If V is almost periodic and σac(HV ) = σ(HV ) = S , then V ∈ R(S).

Theorem (Rybkin, 2008).

Let V ∈ R(S) and σac(HV ) = S . Assume that u(x , t) is a solution of KdV with
u, ∂xxxu ∈ L∞(R× [−T ,T ]),
for some T > 0. Then, u(·, t) ∈ R(S) for all t ∈ [−T ,T ].
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Torus of Dirichlet data

Write the spectrum as S = [E ,∞) \
⋃

j∈J(E−j ,E
+
j ).

Fix a gap (E−j ,E
+
j ) and x ∈ R. G(x , x ;E) is a real strictly increasing

function on (E−j ,E
+
j ).

Define µj(x) :=


E ∈ (E−j ,E

+
j ) G(x , x ;E) = 0

E+
j G(x , x ;E) < 0 for all E ∈ (E−j ,E

+
j )

E−j G(x , x ;E) > 0 for all E ∈ (E−j ,E
+
j )

.

If µj(x) ∈ (E−j ,E
+
j ), then exactly one of the half-line Schrödinger

operators −∂2
x + V on the half-lines (−∞, x) and (x ,∞), with Dirichlet

boundary condition at x , has an eigenvalue at µj(x). Equivalently, the
exactly one Weyl function m±(t, x) has a pole at µj(x). The sign
σj(x) ∈ {+,−} labels that half-line.

View (µj(x), σj(x))j∈J as an element of the torus D(S) =
∏

j∈J Tj .

Introduce an angular variable ϕj on Tj by
µj = E−j + (E+

j − E−j ) cos2(ϕj/2), σj = sgn sinϕj .

The metric on D(S) is given by ‖ϕ− ϕ̃‖D(S) = supj∈J γ
1/2
j ‖ϕj − ϕ̃j‖T.
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Craig type conditions

Set γj := E+
j − E−j . Set ηj,l := dist((E−j ,E

+
j ), (E−l ,E

+
l )) for j , l ∈ J and

ηj,0 := dist((E−j ,E
+
j ),E) for j ∈ J. Denote

Cj = (ηj,0 + γj)
1/2
∏
l∈J
l 6=j

(
1 +

γl
ηj,l

)1/2

.

We need to assume the Craig-type conditions∑
j∈J

γ
1/2
j <∞,

∑
j∈J

γ
1/2
j

1 + ηj,0
ηj,0

Cj <∞,

sup
j∈J

∑
l∈J
l 6=j

(
γ

1/2
j γ

1/2
l

ηj,l

)a

(1 + ηj,0)Cj <∞ for a ∈ { 1
2
, 1},

∑
j∈J

(1 + η2
j,0)γj <∞.

The conditions imply that the spectrum S is Carleson homogeneous
(Sodin, using ideas from Jones-Marshall).
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The Dubrovin flow and the trace formula

Theorem. (Craig 1989)

Under (a weaker form) of Craig-type conditions on S , the ϕj(x) evolve
according to the Dubrovin flow

d

dx
ϕ(x) = Ψ(ϕ(x))

which is given by a Lipshitz vector field Ψ,

Ψj(ϕ) = σj

√√√√4(E − µj)(E+
j − µj)(E−j − µj)

∏
k 6=j

(E−k − µj)(E+
k − µj)

(µk − µj)2
,

and the trace formula recovers the potential,

V (x) = Q1(ϕ(x)) := E +
∑
j∈J

(E+
j + E−j − 2µj(x)).
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KdV evolution on Dirichlet data

Add time dependence: consider a solution u(x , t) and its Dirichlet data φ(x , t).

Proposition.

If S obeys the Craig-type conditions, then

∂xϕ(x , t) = Ψ(ϕ(x , t)), ∂tϕ(x , t) = Ξ(ϕ(x , t)),

where Ξ is a Lipshitz vector field given by

Ξj = −2(Q1 + 2µj)Ψj ,

and the trace formula recovers the solution,

u(x , t) = Q1(ϕ(x , t)) = E +
∑
j∈J

(E+
j + E−j − 2µj(x , t)).

An important step: For E ∈
{
E j
±

}
, there exists a nontrivial eigensolution

which is a normalized limit of Weyl solutions at the gap edges E ∈
{
E j
±

}
:

lim
z∈(E−

j ,E
+
j ); z→E

c±(z)ψ±(x ; z) = ψ̃(x)

uniformly on compacts, for some normalizing c±(z).
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Dirichlet data determines a reflectionless potential and its derivatives

Under the Craig-type conditions on S , we prove

Proposition.

Let f ∈ D(S). There exists unique ϕ : R→ D(S) such that ϕ(0) = f and

∂xϕ(x , t) = Ψ(ϕ(x , t)).

If we define V : R2 → R by

V (x) = Q1(ϕ(x))

then V (x) ∈ R(S) ∩ C 4(R) ∩W 4,∞ and B(V (x)) = f .
If we define Qk = E k +

∑
j∈J((E−j )k + (E+

j )k − 2µk
j ), then V obeys the higher

order trace formulas

Q2 ◦ ϕ = − 1
2
V ′′ + V 2

Q3 ◦ ϕ =
3

16
V (4) − 3

2
VV ′′ − 15

16
(V ′)2 + V 3
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Existence of solutions

Now we add the time dependence to obtain a solution of the KdV equation:

Proposition.

Let S satisfy Craig-type conditions and let V (x) ∈ R(S). Let
f = B(V ) ∈ D(S).
Then there exists ϕ : R2 → D(S) such that ϕ(0, 0) = f and

∂xϕ(x , t) = Ψ(ϕ(x , t)), ∂tϕ(x , t) = Ξ(ϕ(x , t)).

If we define u : R2 → R by u(x , t) = Q1(ϕ(x , t)), then the function u(x , t)
obeys the KdV equation with u(x , 0) = V (x).
Moreover, for each t ∈ R, we have u(·, t) ∈ R(S) and B(u(·, t)) = ϕ(0, t), and

Q2 ◦ ϕ = − 1
2
∂2
xu + u2

Q3 ◦ ϕ =
3

16
∂4
xu −

3

2
u∂2

xu −
15

16
(∂xu)2 + u3

The two results are proven by showing convergence of approximants with finite
gap spectra SN = [E ,∞) \

⋃N
j=1(E−j ,E

+
j ), for which the above statements were

known.
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Sodin-Yuditskii theory

Define ξj(z) as the harmonic measure of S ∩ {y : y ≥ E+
j } in C \ S evaluated

at z , i.e. the solution of the Dirichlet problem on C \ S with boundary values
on S given by

ξj(x) =

{
1 x ∈ S , x ≥ E+

j

0 x ∈ S , x ≤ E−j

Sodin–Yuditskii map (an infinite dimensional version of Abel map)
A : D(S)→ TJ = π∗ (C \ S),

Aj(ϕ) = π
∑
k∈J

σk (ξj(µk)− ξj(E−k )) (mod 2πZ)

Defined for an arbitrary Parreau–Widom subset of R.

Theorem. (Sodin-Yuditskii, 1995)

Let S be a Sodin-Yuditskii set.
Then the map M := A ◦ B is a homeomorphism between R(S) equipped with
uniform topology and D(S).
It linearizes the translation flow:

M(u(·+ x)) =M(u(0)) + δx .

for some δ ∈ RJ .
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at z , i.e. the solution of the Dirichlet problem on C \ S with boundary values
on S given by

ξj(x) =

{
1 x ∈ S , x ≥ E+

j

0 x ∈ S , x ≤ E−j

Sodin–Yuditskii map (an infinite dimensional version of Abel map)
A : D(S)→ TJ = π∗ (C \ S),

Aj(ϕ) = π
∑
k∈J

σk (ξj(µk)− ξj(E−k )) (mod 2πZ)

Defined for an arbitrary Parreau–Widom subset of R.

Theorem. (Sodin-Yuditskii, 1995)

Let S be a Sodin-Yuditskii set.
Then the map M := A ◦ B is a homeomorphism between R(S) equipped with
uniform topology and D(S).
It linearizes the translation flow:

M(u(·+ x)) =M(u(0)) + δx .

for some δ ∈ RJ .
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Almost periodicity of the solution

Proposition.

Let S satisfies Craig-type conditions.
Then the map M := A ◦ B is a homeomorphism between R(S) equipped with
W 4,∞ topology and D(S).
The map M linearizes the KdV flow: for some δ, ζ ∈ RJ ,

M(u(x , t)) =M(u(0, 0)) + δx + ζt.

The first part follows from the higher order trace formulas.

For the second part, we work with the flow on D(S).

We use finite gap approximants, for which linearity of the Abel map is
known,

AN
j (ϕN(x , t)) = AN

j (ϕN(0, 0)) + δNj x + ζNj t,

and uniform convergence on compacts.
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Small quasiperiodic initial data.

Theorem. (Damanik-Goldstein-Lukic)

Let ω satisfies the Diophantine conditions. There exists ε0(a0, b0, κ) > 0 such
that if

V ∈ P(ω, ε, κ), ε < ε0, and S = σ(HV ),

then
R(S) ⊂ P(ω,

√
4ε, κ/4).

A spectrum of any V ∈ P(ω, ε, κ) satisfies the Craig-type conditions.

So the unique solution of KdV for the initial data V satisfies

u(·, t) ∈ P(ω,
√

4ε, κ/4) for any t ≥ 0
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