An Analyst's Traveling Salesman Theorem for sets of dimension larger than one

Jonas Azzam
University of Edinburgh

May 14, 2017

Analyst's traveling salesman theorem

For a cube $Q \subseteq \mathbb{R}^{n}$ of sidelength $\ell(Q)$ and $E \subseteq \mathbb{R}^{n}$ compact, let

$$
\beta_{E}(Q)=\frac{\text { width of smallest tube containing } E \cap Q}{\ell(Q)}
$$

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07)
Let $E \subseteq \mathbb{R}^{n}$.

1. There is a curve Γ containing E so that

$$
\mathscr{H}^{1}(\Gamma) \lesssim\left(\operatorname{diam} E+\sum_{\substack{Q \text { dyadic } \\ Q E \neq \neq O}} \beta_{E}(3 Q)^{2} \ell(Q)\right) .
$$

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07)
Let $E \subseteq \mathbb{R}^{n}$.

1. There is a curve Γ containing E so that

$$
\mathscr{H}^{1}(\Gamma) \lesssim\left(\operatorname{diam} E+\sum_{\substack{Q \text { dyadic } \\ Q E \neq \mathcal{O}}} \beta_{E}(3 Q)^{2} \ell(Q)\right) .
$$

2. Conversely, if Γ is a curve, then

$$
\operatorname{diam} \Gamma+\sum_{\substack{Q \text { dradic } \\ Q \Gamma \neq 0}} \beta_{\Gamma}(3 Q)^{2} \ell(Q) \lesssim \mathscr{H}^{1}(\Gamma) .
$$

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07)
Let $E \subseteq \mathbb{R}^{n}$.

1. There is a curve Γ containing E so that

$$
\mathscr{H}^{1}(\Gamma) \lesssim\left(\operatorname{diam} E+\sum_{\substack{Q \text { davaic } \\ \text { anE }}} \beta_{E}(3 Q)^{2} \ell(Q)\right) .
$$

2. Conversely, if Γ is a curve, then

$$
\operatorname{diam} \Gamma+\sum_{\substack{Q \text { dyadic } \\ Q \Gamma \neq 0}} \beta_{\Gamma}(3 Q)^{2} \ell(Q) \lesssim \mathscr{H}^{1}(\Gamma) .
$$

Hence, for curves 「, we have

$$
\mathscr{H}^{1}(\Gamma) \sim \operatorname{diam} \Gamma+\sum_{\substack{Q \text { dyadic } \\ Q \Gamma \neq \emptyset}} \beta_{\Gamma}(3 Q)^{2} \ell(Q) .
$$

Applications of the TST

Theorem (Bishop, Jones, '90)
Harmonic measure on $\Omega \subseteq \mathbb{C}$ simply connected is absolutely continuous w.r.t. arclength on $\partial \Omega \cap \Gamma, \Gamma$ any rectifiable curve.

Applications of the TST

Theorem (Bishop, Jones, '90)
Harmonic measure on $\Omega \subseteq \mathbb{C}$ simply connected is absolutely continuous w.r.t. arclength on $\partial \Omega \cap \Gamma, \Gamma$ any rectifiable curve.

Theorem (Bishop, Jones, '97)
Let $\Gamma \subseteq \mathbb{R}^{2}$ be a curve s.t. $\beta_{\Gamma}(Q)>\varepsilon$ whenever Q is centered on Γ then $\operatorname{dim} \Gamma>1+c \varepsilon^{2}$.

Applications of the TST

Theorem (Bishop, Jones, '90)
Harmonic measure on $\Omega \subseteq \mathbb{C}$ simply connected is absolutely continuous w.r.t. arclength on $\partial \Omega \cap \Gamma$, Γ any rectifiable curve.
Theorem (Bishop, Jones, '97)
Let $\Gamma \subseteq \mathbb{R}^{2}$ be a curve s.t. $\beta_{\Gamma}(Q)>\varepsilon$ whenever Q is centered on Γ then $\operatorname{dim} \Gamma>1+c \varepsilon^{2}$.

Theorem (A., Schul, '12)
There is $C>0$ so that if $\Gamma \subseteq \mathbb{R}^{n}$ is a connected set, there is $\tilde{\Gamma} \supseteq \Gamma$ C-quasiconvex so that $\mathscr{H}^{1}(\tilde{\Gamma}) \lesssim_{n} \mathscr{H}^{1}(\Gamma)$.

Applications of the TST: ℓ^{2}-flatness

Corollary (Bishop, Jones '90)
If Γ is a compact connected set, it is 1-rectifiable if and only if

$$
\sum_{\substack{x \in Q \\ Q \in \text { dyadic }}} \beta_{\Gamma}(3 Q)^{2}<\infty \text { for } \mathscr{H}^{1} \text {-a.e. } x \in \Gamma .
$$

Applications of the TST: ℓ^{2}-flatness

Corollary (Bishop, Jones '90)
If Γ is a compact connected set, it is 1 -rectifiable if and only if

$$
\sum_{\substack{x \in \infty \\ \text { anyadic }}} \beta_{r}(3 Q)^{2}<\infty \text { for } \mathscr{H}^{1} \text {-a.e. } x \in \Gamma .
$$

Let Γ be a Lipschitz curve. Then $\Gamma=f([0,1])$, where f is Lipschitz.

Applications of the TST: ℓ^{2}-flatness

Corollary (Bishop, Jones '90)
If Γ is a compact connected set, it is 1 -rectifiable if and only if

$$
\sum_{\substack{x \in Q \\ Q^{x} \text { dyadic }}} \beta_{\Gamma}(3 Q)^{2}<\infty \text { for } \mathscr{H}^{1} \text {-a.e. } x \in \Gamma .
$$

Let Γ be a Lipschitz curve. Then $\Gamma=f([0,1])$, where f is Lipschitz.

- Rademacher's theorem says f is differentiable a.e., and so at almost every $x \in \Gamma, \beta_{\Gamma}(3 Q) \downarrow 0$ as $Q \ni x$ decreases.

Applications of the TST: ℓ^{2}-flatness

Corollary (Bishop, Jones '90)
If Γ is a compact connected set, it is 1 -rectifiable if and only if

$$
\sum_{\substack{x \in Q \\ Q^{x} \text { dyadic }}} \beta_{\Gamma}(3 Q)^{2}<\infty \text { for } \mathscr{H}^{1} \text {-a.e. } x \in \Gamma .
$$

Let Γ be a Lipschitz curve. Then $\Gamma=f([0,1])$, where f is Lipschitz.

- Rademacher's theorem says f is differentiable a.e., and so at almost every $x \in \Gamma, \beta_{\Gamma}(3 Q) \downarrow 0$ as $Q \ni x$ decreases.
- However, this isn't enough to imply rectifiability.

Applications of the TST: ℓ^{2}-flatness

Corollary (Bishop, Jones '90)
If Γ is a compact connected set, it is 1 -rectifiable if and only if

$$
\sum_{\substack{x \in Q \\ Q_{\text {dyadic }}}} \beta_{\Gamma}(3 Q)^{2}<\infty \text { for } \mathscr{H}^{1} \text {-a.e. } x \in \Gamma .
$$

Let Γ be a Lipschitz curve. Then $\Gamma=f([0,1])$, where f is Lipschitz.

- Rademacher's theorem says f is differentiable a.e., and so at almost every $x \in \Gamma, \beta_{\Gamma}(3 Q) \downarrow 0$ as $Q \ni x$ decreases.
- However, this isn't enough to imply rectifiability.
- The corollary tells us that the flatness must be decaying fast enough to characterize rectifiability.

Applications of the TST: ℓ^{2}-flatness

Corollary (Bishop, Jones '90)
If Γ is a compact connected set, it is 1-rectifiable if and only if

$$
\sum_{\substack{x \in Q \\ Q \in \text { dyadic }}} \beta_{\Gamma}(3 Q)^{2}<\infty \text { for } \mathscr{H}^{1} \text {-a.e. } x \in \Gamma .
$$

Let Γ be a Lipschitz curve. Then $\Gamma=f([0,1])$, where f is Lipschitz.

- Rademacher's theorem says f is differentiable a.e., and so at almost every $x \in \Gamma, \beta_{\Gamma}(3 Q) \downarrow 0$ as $Q \ni x$ decreases.
- However, this isn't enough to imply rectifiability.
- The corollary tells us that the flatness must be decaying fast enough to characterize rectifiability.
- It also gives us more information for rectifiable sets: Not only does $\beta_{\Gamma}(3 Q) \downarrow 0$, but at a square summable rate!

Higher dimensional β 's are not adequate for TST

If $E \subseteq \mathbb{R}^{n}, d \leq n$, and we define

$$
\beta_{E, \infty}^{d}(Q)=\inf \left\{\sup _{x \in \in \cap Q} \frac{\operatorname{dist}(x, P)}{\ell(Q)}: P \text { is a d-plane }\right\}
$$

then the first direction of the TST holds for $d=2$ (Pajot, '96) and for $d>2$ under some assumptions (David-Toro, '12), but not the other.

Higher dimensional β 's are not adequate for TST

If $E \subseteq \mathbb{R}^{n}, d \leq n$, and we define

$$
\beta_{E, \infty}^{d}(Q)=\inf \left\{\sup _{x \in \in \cap Q} \frac{\operatorname{dist}(x, P)}{\ell(Q)}: P \text { is a d-plane }\right\}
$$

then the first direction of the TST holds for $d=2$ (Pajot, '96) and for $d>2$ under some assumptions (David-Toro, '12), but not the other.
Theorem (Jones, Fang)
There is a 3-dimensional Lipschitz graph Γ in $[0,1]^{4}$ so that

$$
\sum_{\substack{Q \subset\left[0,11^{4} \\ Q \cap \neq \emptyset\right.}} \beta_{\Gamma, \infty}^{3}(3 Q)^{2} \ell(Q)^{3}=\infty .
$$

Thus, in generalizing either the TST or the Bishop-Jones corollary, we need a new β-number.

Dorronsoro's theorem, '85

Let $f \in W^{1,2}\left(\mathbb{R}^{d}\right)$ and define (recall $\left.f_{B} f d \mu=\frac{1}{\mu(B)} \int_{B} f d \mu\right)$

$$
\alpha(x, r)=\inf \left\{\left(f_{B(x, r)}\left(\frac{f(y)-A(y)}{r}\right)^{2} d y\right)^{\frac{1}{2}}: A \text { is linear }\right\}
$$

Then

$$
\|\nabla f\|_{2}^{2} \sim \int_{\mathbb{R}^{d}} \int_{0}^{\infty} \alpha(x, r)^{2} \frac{d r}{r} d x .
$$

TST for graphs

For $S, E \subseteq \mathbb{R}^{n}$, define

$$
\beta_{E, 2}^{d}(S)=\inf _{P \text { adplpane }}\left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E}\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2} d \mathscr{H}^{d}(y)\right)^{1 / 2}
$$

Theorem (Dorronsoro)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n-d}$ be L-Lipschitz (L very small) and $\Gamma \subseteq \mathbb{R}^{n}$ be its graph.
Then

$$
\int_{\Gamma} \int_{0}^{\infty} \beta_{\Gamma, 2}^{d}(B(x, r))^{2} \frac{d r}{r} d \mathscr{H}^{d}(x) \sim_{L}\|\nabla f\|_{2}^{2}
$$

or equivalently,

$$
\sum_{Q \cap \neq \emptyset} \beta_{\Gamma, 2}^{d}(3 Q)^{2} \ell(Q)^{d} \sim_{L}\|\nabla f\|_{2}^{2} .
$$

TST for graphs

For $E \subseteq \mathbb{R}^{n}$ and S a cube or ball, define

$$
\beta_{E, 2}^{d}(S)=\inf _{P \text { addplane }}\left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E}\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2} d \mathscr{H}^{d}(y)\right)^{1 / 2}
$$

TST for graphs

For $E \subseteq \mathbb{R}^{n}$ and S a cube or ball, define

$$
\beta_{E, 2}^{d}(S)=\inf _{P \text { ad } d \text { plane }}\left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E}\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2} d \mathscr{H}^{d}(y)\right)^{1 / 2}
$$

If $\operatorname{supp} f=B(0, R) \subseteq \mathbb{R}^{d},\|\nabla f\|_{\infty} \ll 1$, and Γ is its graph over $B(0, R)$,

TST for graphs

For $E \subseteq \mathbb{R}^{n}$ and S a cube or ball, define

$$
\beta_{E, 2}^{d}(S)=\inf _{P \text { ad } d \text { plane }}\left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E}\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2} d \mathscr{H}^{d}(y)\right)^{1 / 2}
$$

If $\operatorname{supp} f=B(0, R) \subseteq \mathbb{R}^{d},\|\nabla f\|_{\infty} \ll 1$, and Γ is its graph over $B(0, R)$,

$$
\begin{aligned}
\|\nabla f\|_{2}^{2} & =\int_{B(0, R)}|\nabla f|^{2} \sim \int_{B(0, R)}\left(\sqrt{1+|\nabla f|^{2}}-1\right) \\
& =\mathscr{H}^{d}(\Gamma)-w_{d} R^{d}
\end{aligned}
$$

TST for graphs

For $E \subseteq \mathbb{R}^{n}$ and S a cube or ball, define

$$
\beta_{E, 2}^{d}(S)=\inf _{P \text { ad } d \text { plane }}\left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E}\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2} d \mathscr{H}^{d}(y)\right)^{1 / 2}
$$

If $\operatorname{supp} f=B(0, R) \subseteq \mathbb{R}^{d},\|\nabla f\|_{\infty} \ll 1$, and Γ is its graph over $B(0, R)$,

$$
\begin{aligned}
\|\nabla f\|_{2}^{2} & =\int_{B(0, R)}|\nabla f|^{2} \sim \int_{B(0, R)}\left(\sqrt{1+|\nabla f|^{2}}-1\right) \\
& =\mathscr{H}^{d}(\Gamma)-w_{d} R^{d}
\end{aligned}
$$

Hence,

$$
\mathscr{H}^{d}(\Gamma) \sim\|\nabla f\|_{2}^{2}+w_{d} R^{d} \sim \int_{\Gamma} \int_{0}^{\infty} \beta_{\Gamma, 2}^{d}(B(x, r))^{2} \frac{d r}{r} d \mathscr{H}^{d}(x)+(\operatorname{diam} \Gamma)^{d} .
$$

David-Semmes Theorem

Theorem
Let $E \subseteq \mathbb{R}^{n}$ be Ahlfors d-regular, meaning

$$
\mathscr{H}^{d}(B(x, r) \cap E) \sim r^{d} \quad \text { for all } x \in E, \quad r>0 .
$$

Then the following are equivalent:

1. $d \sigma:=\beta_{E, 2}^{d}(B(x, r))^{2} d x \frac{d r}{r}$ is a Carleson measure, meaning $\sigma(B(x, r) \times(0, r)) \leq C r^{d}$ for all $x \in E$ and $r>0$.

David-Semmes Theorem

Theorem

Let $E \subseteq \mathbb{R}^{n}$ be Ahlfors d-regular, meaning

$$
\mathscr{H}^{d}(B(x, r) \cap E) \sim r^{d} \quad \text { for all } x \in E, \quad r>0 .
$$

Then the following are equivalent:

1. $d \sigma:=\beta_{E, 2}^{d}(B(x, r))^{2} d x \frac{d r}{r}$ is a Carleson measure, meaning $\sigma(B(x, r) \times(0, r)) \leq C r^{d}$ for all $x \in E$ and $r>0$.
2. E is uniformly rectifiable: there is $L>0$ so that for every $x \in E$ and $r>0$, there is $f: A \subseteq \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ L-Lipschitz so that $f(A) \subseteq E \cap B(x, r)$ and $\mathscr{H}^{d}(f(A)) \geq L^{-1} r^{d}$.

David-Semmes Theorem

Theorem

Let $E \subseteq \mathbb{R}^{n}$ be Ahlfors d-regular, meaning

$$
\mathscr{H}^{d}(B(x, r) \cap E) \sim r^{d} \quad \text { for all } x \in E, \quad r>0
$$

Then the following are equivalent:

1. $d \sigma:=\beta_{E, 2}^{d}(B(x, r))^{2} d x \frac{d r}{r}$ is a Carleson measure, meaning

$$
\sigma(B(x, r) \times(0, r)) \leq C r^{d} \text { for all } x \in E \text { and } r>0 .
$$

2. E is uniformly rectifiable: there is $L>0$ so that for every $x \in E$ and $r>0$, there is $f: A \subseteq \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ L-Lipschitz so that $f(A) \subseteq E \cap B(x, r)$ and $\mathscr{H}^{d}(f(A)) \geq L^{-1} r^{d}$.

This is like the TST in the sense that it gives a condition for when a big piece of E is contained in a Lipschitz surface, rather than all of it.

How far we can get with $\beta_{E, 2}^{d}$

Theorem
Let $E \subseteq \mathbb{R}^{n}$ have $0<\mathscr{H}^{d}(E)<\infty$. Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_{0}^{1} \beta_{E, 2}^{2}(B(x, r))^{2} \frac{d r}{r}<\infty$.

How far we can get with $\beta_{E, 2}^{d}$

Theorem
Let $E \subseteq \mathbb{R}^{n}$ have $0<\mathscr{H}^{d}(E)<\infty$. Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_{0}^{1} \beta_{E, 2}^{2}(B(x, r))^{2} \frac{d r}{r}<\infty$.

Theorem (Edelen, Naber, Valtorta, '16)
If μ is Radon on $\mathbb{R}^{n}, \theta_{*}^{d}(\mu, x) \leq b$ and $\int_{0}^{1} \beta_{\mu, 2}^{d}(B(x, r))^{2} \frac{d r}{r} \leq M$ for μ-a.e.
$x \in B(0,1)$, then $\mu(B(x, r)) \lesssim(b+M) r^{d}$ for $x \in B(0,1), r>0$.

How far we can get with $\beta_{E, 2}^{d}$

Theorem
Let $E \subseteq \mathbb{R}^{n}$ have $0<\mathscr{H}^{d}(E)<\infty$. Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_{0}^{1} \beta_{E, 2}^{2}(B(x, r))^{2} \frac{d r}{r}<\infty$.

Theorem (Edelen, Naber, Valtorta, '16)
If μ is Radon on $\mathbb{R}^{n}, \theta_{*}^{d}(\mu, x) \leq b$ and $\int_{0}^{1} \beta_{\mu, 2}^{d}(B(x, r))^{2} \frac{d r}{r} \leq M$ for μ-a.e.
$x \in B(0,1)$, then $\mu(B(x, r)) \lesssim(b+M) r^{d}$ for $x \in B(0,1), r>0$.
There are also other β-numbers defined for measures and results that characterize the 1 -rectifiable structure of the measure (Badger and Schul,'16).

What we'd like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a β number so that

What we'd like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a β number so that

1. we don't need to assume E has finite d-measure (or any prescribed measure)

What we'd like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a β number so that

1. we don't need to assume E has finite d-measure (or any prescribed measure)
2. we can deduce E has finite measure in terms of its beta numbers and bound its area,

What we'd like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a β number so that

1. we don't need to assume E has finite d-measure (or any prescribed measure)
2. we can deduce E has finite measure in terms of its beta numbers and bound its area,
3. we can bound a square sum of β numbers in terms of $\mathscr{H}^{d}(E)$,

What we'd like to do

We'd like to generalize the TST to a d-dimensional surface E, so we need a β number so that

1. we don't need to assume E has finite d-measure (or any prescribed measure)
2. we can deduce E has finite measure in terms of its beta numbers and bound its area,
3. we can bound a square sum of β numbers in terms of $\mathscr{H}^{d}(E)$,
4. we can't use β_{∞}.

A new β-number

Recall that

$$
\begin{aligned}
& \beta_{E, 2}^{d}(S)^{2}=\inf _{P \mathrm{idaplane}} \frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E}\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2} d \mathscr{H}^{d}(y) \\
& \quad=\inf _{P \text { adplane }} \frac{1}{(\operatorname{diam} S)^{d}} \int_{0}^{\infty} \mathscr{H}^{d}\left(\left\{x \in S \cap E:\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2}>t\right\}\right) d t .
\end{aligned}
$$

A new β-number

Recall that

$$
\begin{aligned}
& \hat{\beta}_{E, 2}^{d}(S)^{2}=\inf _{P \text { adplane }} \frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E}\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2} d \mathscr{H}_{\infty}^{d}(y) \\
& \quad=\inf _{\text {Padplane }} \frac{1}{(\operatorname{diam} S)^{d}} \int_{0}^{\infty} \mathscr{H}_{\infty}^{d}\left(\left\{x \in S \cap E:\left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S}\right)^{2}>t\right\}\right) d t .
\end{aligned}
$$

A TST for "nice" surfaces

Theorem (A., Schul)
Let $E \subseteq \mathbb{R}^{n}$ be so that for all $x \in E$ and $r \in(0, \operatorname{diam} E)$,

$$
\mathscr{H}_{\infty}^{d}(E \cap B(x, r)) \geq c r^{d}
$$

Then

$$
\mathscr{H}^{d}(E) \lesssim(\operatorname{diam} E)^{d}+\sum_{Q \cap E \neq \emptyset} \hat{\beta}_{E, 2}^{d}(3 Q)^{2} \ell(Q)^{d} .
$$

Moreover, for "nice" surfaces,

$$
(\operatorname{diam} E)^{d}+\sum_{Q \cap E \neq \emptyset} \hat{\beta}_{E, 2}^{d}(3 Q)^{2} \ell(Q)^{d} \lesssim \mathscr{H}^{d}(E) .
$$

Nice surfaces

ϵ-Reifenberg flat sets: Let $\delta>0, E \subseteq \mathbb{R}^{n}$ be so that, for all $x \in E$ and $0<r<\delta \operatorname{diam} E$, there is a d-plane $P_{x, r}$ so that

$$
\underset{\text { Haus }}{\operatorname{dist}}\left(E \cap B(x, r), P_{x, r} \cap B(x, r)\right) \leq \epsilon r
$$

For these kinds of sets, we have

$$
(\operatorname{diam} E)^{d}+\sum_{Q \cap E \neq \emptyset} \hat{\beta}_{E, 2}^{d}(3 Q)^{2} \ell(Q)^{d} \sim_{\delta} \mathscr{H}^{d}(E)
$$

Nice surfaces

ϵ-Reifenberg flat sets: Let $\delta>0, E \subseteq \mathbb{R}^{n}$ be so that, for all $x \in E$ and $0<r<\delta$ diam E, there is a d-plane $P_{x, r}$ so that

$$
\underset{\text { Haus }}{\operatorname{dist}}\left(E \cap B(x, r), P_{x, r} \cap B(x, r)\right) \leq \epsilon r
$$

For these kinds of sets, we have

$$
(\operatorname{diam} E)^{d}+\sum_{Q \cap E \neq \emptyset} \hat{\beta}_{E, 2}^{d}(3 Q)^{2} \ell(Q)^{d} \sim_{\delta} \mathscr{H}^{d}(E)
$$

Proof: Let \mathscr{D}_{k} denote Christ cubes on E of sidelength k. Let $\mathscr{D}=\bigcup \mathscr{D}_{k}$, and for $Q \in \mathscr{D}$, let B_{Q} be a large ball around Q.

If $Q_{0} \in \mathscr{D}_{0}$ and $\varepsilon>0$ small enough, we'll show

$$
\sum_{R \subseteq Q_{0}} \beta_{E}\left(B_{Q}\right)^{2} \ell(R)^{d} \lesssim \mathscr{H}^{d}(E)
$$

Sketch of proof for Reifenberg flat sets

- Let P_{Q} be the best approximating plane to E in B_{Q}.

Sketch of proof for Reifenberg flat sets

- Let P_{Q} be the best approximating plane to E in B_{Q}.
- Construct $S_{0} \subseteq \mathscr{D}$ by putting $Q_{0} \in S$ and adding $Q \in \mathscr{D}$ to S if its parent is in S and $\angle\left(P_{Q}, P_{Q_{0}}\right)<\alpha$. Remove a few bottom cubes so that minimal cubes in S close to each other have comparable sizes. Let Stop(1) be these minimal cubes and $\operatorname{Total}(1)=S_{0}$.

Sketch of proof for Reifenberg flat sets

- Let P_{Q} be the best approximating plane to E in B_{Q}.
- Construct $S_{0} \subseteq \mathscr{D}$ by putting $Q_{0} \in S$ and adding $Q \in \mathscr{D}$ to S if its parent is in S and $\angle\left(P_{Q}, P_{Q_{0}}\right)<\alpha$. Remove a few bottom cubes so that minimal cubes in S close to each other have comparable sizes. Let Stop(1) be these minimal cubes and $\operatorname{Total}(1)=S_{0}$.
- For each $R \in \operatorname{Stop}(N)$, make a stopping-time region S_{R} by putting $R \in S_{R}$ and adding cubes Q to S_{R} if Q 's parent is in S_{R} and if $\angle\left(P_{Q}, P_{R}\right)<\alpha$. Again, remove a cube to smoothen out minimal cubes, then let

$$
\operatorname{Stop}(N+1)=\bigcup_{R \in \operatorname{Stop}(N)} \text { minimal cubes in } S_{R} \text {. }
$$

$\operatorname{Total}(N+1)=$ cubes not contained in any cube from $\operatorname{Stop}(N+1)$.

- We can use David-Toro to construct a surface E_{N} so that

$$
\operatorname{dist}\left(x, E_{N}\right) \lesssim \inf _{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \text { for all } x \in E
$$

and E_{N} is a $C \varepsilon$-Lip graph near Q (i.e. in B_{Q}) over P_{Q}.

- If we never stop over x in our N-th stopping time, $x \in E_{N} \cap E$.

- We can use David-Toro to construct a surface E_{N} so that

$$
\operatorname{dist}\left(x, E_{N}\right) \lesssim \inf _{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \text { for all } x \in E
$$

and E_{N} is a $C \varepsilon$-Lip graph near Q (i.e. in B_{Q}) over P_{Q}.

- If we never stop over x in our N-th stopping time, $x \in E_{N} \cap E$.

- We can use David-Toro to construct a surface E_{N} so that

$$
\operatorname{dist}\left(x, E_{N}\right) \lesssim \inf _{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \text { for all } x \in E
$$

and E_{N} is a $C \varepsilon$-Lip graph near Q (i.e. in B_{Q}) over P_{Q}.

- If we never stop over x in our N-th stopping time, $x \in E_{N} \cap E$.

- We can use David-Toro to construct a surface E_{N} so that

$$
\operatorname{dist}\left(x, E_{N}\right) \lesssim \inf _{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \text { for all } x \in E
$$

and E_{N} is a $C \varepsilon$-Lip graph near Q (i.e. in B_{Q}) over P_{Q}.

- If we never stop over x in our N-th stopping time, $x \in E_{N} \cap E$.
- For $Q \in \operatorname{Stop}(N), \Gamma_{Q}^{N}:=B_{Q} \cap E_{N+1}$ is a graph above $B_{Q} \cap P_{Q}$ with respect to a $C \alpha$-Lipschitz function $A_{Q}^{N}: P_{Q} \rightarrow P_{Q}^{\perp}$.

- We can use David-Toro to construct a surface E_{N} so that

$$
\operatorname{dist}\left(x, E_{N}\right) \lesssim_{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \text { for all } x \in E
$$

and E_{N} is a $C \varepsilon$-Lip graph near Q (i.e. in B_{Q}) over P_{Q}.

- If we never stop over x in our N-th stopping time, $x \in E_{N} \cap E$.
- For $Q \in \operatorname{Stop}(N), \Gamma_{Q}^{N}:=B_{Q} \cap E_{N+1}$ is a graph above $B_{Q} \cap P_{Q}$ with respect to a $C \alpha$-Lipschitz function $A_{Q}^{N}: P_{Q} \rightarrow P_{Q}^{\perp}$. Note that

$$
\left|D A_{Q}^{N}\right| \gtrsim \alpha \chi_{\pi_{P_{Q}}(R)} \text { when } R \in \operatorname{Stop}(N+1) \text {. }
$$

Sketch of proof for Reifenberg flat sets

Lemma

$$
\sum_{N} \sum_{Q \in S t o p(N)} \ell(Q)^{d} \lesssim \mathscr{H}^{d}(E) .
$$

Sketch of proof for Reifenberg flat sets

Lemma

$$
\sum_{N} \sum_{Q \in S t o p(N)} \ell(Q)^{d} \lesssim \mathscr{H}^{d}(E) .
$$

- Say $Q \in \operatorname{Type}(1, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right|<C \varepsilon \ell(Q)^{d} .
$$

Sketch of proof for Reifenberg flat sets

Lemma

$$
\sum_{N} \sum_{Q \in S t o p(N)} \ell(Q)^{d} \lesssim \mathscr{H}^{d}(E) .
$$

- Say $Q \in \operatorname{Type}(1, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right|<C \varepsilon \ell(Q)^{d} .
$$

Then for $\varepsilon \ll \alpha$,

$$
\begin{aligned}
\sum_{\substack{R \in S t i o p(N+1) \\
R \subseteq Q}} \ell(R)^{d} & \lesssim \int_{P_{Q}} \chi_{\pi_{P_{Q}}(R)} \lesssim \alpha^{-2} \int_{P_{Q}}\left|D A_{Q}^{N}\right|^{2} \\
& \sim \alpha^{-2}\left(\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right|\right)<\frac{C \varepsilon}{\alpha^{2}} \ell(Q)^{d} \ll \ell(Q)^{d}
\end{aligned}
$$

Sketch of proof for Reifenberg flat sets

Lemma

$$
\sum_{N} \sum_{Q \in S t o p(N)} \ell(Q)^{d} \lesssim \mathscr{H}^{d}(E) .
$$

- Say $Q \in \operatorname{Type}(1, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right|<C \varepsilon \ell(Q)^{d} .
$$

Then for $\varepsilon \ll \alpha$,

$$
\begin{aligned}
\sum_{\substack{R \in \operatorname{Stop}(N+1) \\
R \subseteq Q}} \ell(R)^{d} & \lesssim \int_{P_{Q}} \chi_{\pi_{P_{Q}}(R)} \lesssim \alpha^{-2} \int_{P_{Q}}\left|D A_{Q}^{N}\right|^{2} \\
& \sim \alpha^{-2}\left(\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right|\right)<\frac{C \varepsilon}{\alpha^{2}} \ell(Q)^{d} \ll \ell(Q)^{d}
\end{aligned}
$$

- If $Z(Q) \subseteq Q$ are points not contained in a cube from $\operatorname{Stop}(N+1)$,

$$
\sum_{N} \sum_{Q \in \operatorname{Type}(1, N)} \ell(Q)^{d} \lesssim \sum_{N} \sum_{Q \in \operatorname{Type}(1, N)} \mathscr{H}^{d}(Z(Q)) \leq \mathscr{H}^{d}(E)
$$

Sketch of proof for Reifenberg flat sets

- Say $Q \in \operatorname{Type}(2, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right| \geq C \varepsilon \ell(Q)^{d} .
$$

Sketch of proof for Reifenberg flat sets

- Say $Q \in \operatorname{Type}(2, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right| \geq C \varepsilon \ell(Q)^{d} .
$$

- Define a map $F_{N}: E_{N} \rightarrow E_{N+1}$ by "looking up at E_{N+1} from E_{N} ".

Sketch of proof for Reifenberg flat sets

- Say $Q \in \operatorname{Type}(2, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right| \geq C \varepsilon \ell(Q)^{d} .
$$

- Define a map $F_{N}: E_{N} \rightarrow E_{N+1}$ by "looking up at E_{N+1} from E_{N} ".
- $\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right) \approx \mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)$ and $\left|B_{Q} \cap P_{Q}\right| \approx \mathscr{H}^{d}\left(B_{Q} \cap E_{N}\right) \mid$ for $\varepsilon>0$ small, and so for C large

$$
\mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)-\mathscr{H}^{d}\left(E_{N} \cap B_{Q}\right)>\varepsilon \ell(Q)^{d} .
$$

Sketch of proof for Reifenberg flat sets

- Say $Q \in \operatorname{Type}(2, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right| \geq C \varepsilon \ell(Q)^{d} .
$$

- Define a map $F_{N}: E_{N} \rightarrow E_{N+1}$ by "looking up at E_{N+1} from E_{N} ".
- $\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right) \approx \mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)$ and $\left|B_{Q} \cap P_{Q}\right| \approx \mathscr{H}^{d}\left(B_{Q} \cap E_{N}\right) \mid$ for $\varepsilon>0$ small, and so for C large

$$
\mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)-\mathscr{H}^{d}\left(E_{N} \cap B_{Q}\right)>\varepsilon \ell(Q)^{d} .
$$

Then

$$
\begin{aligned}
\sum_{Q \in \operatorname{Type}(2, N)} \ell(Q)^{d} & \lesssim_{\varepsilon} \sum_{Q \in \operatorname{Type}(2, N)}\left(\mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)-\mathscr{H}^{d}\left(E_{N} \cap B_{Q}\right)\right) \\
& =\sum_{Q \in \operatorname{Type}(2, N)} \int_{B_{Q} \cap E_{N}}\left(J_{F_{N}}-1\right) \lesssim \int_{E_{N}}\left(J_{F_{N}}-1\right) \\
& =\mathscr{H}^{d}\left(E_{N+1}\right)-\mathscr{H}^{d}\left(E_{N}\right)
\end{aligned}
$$

Sketch of proof for Reifenberg flat sets

- Say $Q \in \operatorname{Type}(2, N)$ if $Q \in \operatorname{Stop}(N)$ and

$$
\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right)-\left|B_{Q} \cap P_{Q}\right| \geq C \varepsilon \ell(Q)^{d} .
$$

- Define a map $F_{N}: E_{N} \rightarrow E_{N+1}$ by "looking up at E_{N+1} from E_{N} ".
- $\mathscr{H}^{d}\left(\Gamma_{Q}^{N}\right) \approx \mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)$ and $\left|B_{Q} \cap P_{Q}\right| \approx \mathscr{H}^{d}\left(B_{Q} \cap E_{N}\right) \mid$ for $\varepsilon>0$ small, and so for C large

$$
\mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)-\mathscr{H}^{d}\left(E_{N} \cap B_{Q}\right)>\varepsilon \ell(Q)^{d}
$$

Then

$$
\sum_{Q \in \operatorname{Type}(2, N)} \ell(Q)^{d} \lesssim \varepsilon \sum_{Q \in \operatorname{Type}(2, N)}\left(\mathscr{H}^{d}\left(F_{N}\left(B_{Q} \cap E_{N}\right)\right)-\mathscr{H}^{d}\left(E_{N} \cap B_{Q}\right)\right)
$$

$$
\begin{aligned}
\text { Maybe } J_{F_{N}}-1<0! & =\sum_{Q \in \operatorname{Type}(2, N)} \int_{B_{Q} \cap E_{N}}\left(J_{F_{N}}-1\right) \lesssim \int_{E_{N}}\left(J_{F_{N}}-1\right) \\
& =\mathscr{H}^{d}\left(E_{N+1}\right)-\mathscr{H}^{d}\left(E_{N}\right)+\operatorname{Error}(N)
\end{aligned}
$$

Sketch of proof for Reifenberg flat sets

- Use Dorronsoro to show

$$
\sum_{R \in \mathcal{S}_{Q}} \beta_{\Gamma_{Q}^{N}}(3 R)^{2} \ell(R)^{d} \lesssim \ell(Q)^{d} \text { whenever } Q \in \operatorname{Stop}(N) .
$$

Sketch of proof for Reifenberg flat sets

- Use Dorronsoro to show

$$
\sum_{R \in \mathcal{S}_{Q}} \beta_{\Gamma_{Q}^{N}}(3 R)^{2} \ell(R)^{d} \lesssim \ell(Q)^{d} \text { whenever } Q \in \operatorname{Stop}(N) .
$$

- These approximate

$$
\begin{aligned}
\sum_{R \in \subseteq Q_{0}} \beta_{E}(3 R)^{2} \ell(R)^{d} & =\sum_{N} \sum_{Q \in \text { Stop }(N)} \sum_{R \in S_{Q}} \beta_{E}(3 R)^{2} \ell(R)^{d} \\
& \lesssim \sum_{N} \sum_{Q \in \operatorname{Stop}(N)} \sum_{R \in S_{Q}} \beta_{\Gamma_{Q}}(3 R)^{2} \ell(R)^{d}+\text { Error } \\
& \lesssim \sum_{N} \sum_{Q \in \operatorname{Stop}(N)} \ell(Q)^{d}+\text { Error } \\
& \lesssim \mathscr{H}^{d}(E) .
\end{aligned}
$$

Future Work

1. Most quantitative rectifiability results are for Ahlfors regular sets, but maybe we don't need this.
2. What other kinds of sets are "nice"?

Thanks!

고맙습니다!

Och grattis på födelsedagen!

