Main Results: New β -numbers and TST 000 0000000

< □ > < □ > < □ > < □ > < □ >

1/59

An Analyst's Traveling Salesman Theorem for sets of dimension larger than one

Jonas Azzam University of Edinburgh

May 14, 2017

Analyst's traveling salesman theorem

For a cube $Q \subseteq \mathbb{R}^n$ of sidelength $\ell(Q)$ and $E \subseteq \mathbb{R}^n$ compact, let

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07) Let $E \subseteq \mathbb{R}^n$.

1. There is a curve Γ containing E so that

$$\mathscr{H}^1(\Gamma) \lesssim \left({\operatorname{diam}} \, E + \sum_{\substack{Q \; olyaclic \ Q \cap E \neq \emptyset}} \beta_E(3Q)^2 \ell(Q)
ight)$$

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07) Let $E \subseteq \mathbb{R}^n$.

1. There is a curve Γ containing E so that

$$\mathscr{H}^{1}(\Gamma) \lesssim \left(\mathsf{diam} \, E + \sum_{\substack{Q \; olyadic \\ Q \cap E \neq \emptyset}} \beta_{E}(3Q)^{2} \ell(Q)
ight)$$

2. Conversely, if Γ is a curve, then

$$\operatorname{diam} \Gamma + \sum_{\substack{Q \text{ dyadic} \\ Q \cap \Gamma \neq \emptyset}} \beta_{\Gamma} (3Q)^2 \ell(Q) \lesssim \mathscr{H}^1(\Gamma).$$

Analyst's Traveling Salesman Theorem

Theorem (Jones '90; Okikiolu, '92; Schul, '07) Let $E \subseteq \mathbb{R}^n$.

1. There is a curve Γ containing E so that

$$\mathscr{H}^{1}(\Gamma) \lesssim \left(\mathsf{diam} \, E + \sum_{\substack{Q \; dyadic \\ Q \cap E \neq \emptyset}} \beta_{E}(3Q)^{2} \ell(Q)
ight)$$

2. Conversely, if Γ is a curve, then

$$\operatorname{diam} \Gamma + \sum_{\substack{Q \text{ dyadic} \\ Q \cap \Gamma \neq \emptyset}} \beta_{\Gamma} (3Q)^2 \ell(Q) \lesssim \mathscr{H}^1(\Gamma).$$

Hence, for curves Γ , we have

$$\mathscr{H}^1(\Gamma) \sim ext{diam} \ \Gamma + \sum_{\substack{Q ext{ dyadic} \\ Q \cap \Gamma \neq \emptyset}} eta_\Gamma(3Q)^2 \ell(Q).$$

(a)

Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on $\Omega \subseteq \mathbb{C}$ simply connected is absolutely continuous w.r.t. arclength on $\partial \Omega \cap \Gamma$, Γ any rectifiable curve.

Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on $\Omega \subseteq \mathbb{C}$ simply connected is absolutely continuous w.r.t. arclength on $\partial \Omega \cap \Gamma$, Γ any rectifiable curve.

Theorem (Bishop, Jones, '97)

Let $\Gamma \subseteq \mathbb{R}^2$ be a curve s.t. $\beta_{\Gamma}(Q) > \varepsilon$ whenever Q is centered on Γ then $\dim \Gamma > 1 + c\varepsilon^2$.

Applications of the TST

Theorem (Bishop, Jones, '90)

Harmonic measure on $\Omega \subseteq \mathbb{C}$ simply connected is absolutely continuous w.r.t. arclength on $\partial \Omega \cap \Gamma$, Γ any rectifiable curve.

Theorem (Bishop, Jones, '97)

Let $\Gamma \subseteq \mathbb{R}^2$ be a curve s.t. $\beta_{\Gamma}(Q) > \varepsilon$ whenever Q is centered on Γ then $\dim \Gamma > 1 + c\varepsilon^2$.

Theorem (A., Schul, '12)

There is C > 0 so that if $\Gamma \subseteq \mathbb{R}^n$ is a connected set, there is $\tilde{\Gamma} \supseteq \Gamma$ *C*-quasiconvex so that $\mathscr{H}^1(\tilde{\Gamma}) \leq_n \mathscr{H}^1(\Gamma)$.

Applications of the TST: ℓ^2 -flatness

Corollary (Bishop, Jones '90)

If Γ is a compact connected set, it is 1-rectifiable if and only if

$$\sum_{x \in Q \atop Q \text{ dyadic}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.$$

Applications of the TST: ℓ^2 -flatness

Corollary (Bishop, Jones '90)

If Γ is a compact connected set, it is 1-rectifiable if and only if

$$\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.$$

Applications of the TST: ℓ^2 -flatness

Corollary (Bishop, Jones '90)

If Γ is a compact connected set, it is 1-rectifiable if and only if

$$\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.$$

Let Γ be a Lipschitz curve. Then $\Gamma = f([0, 1])$, where *f* is Lipschitz.

 Rademacher's theorem says *f* is differentiable a.e., and so at almost every *x* ∈ Γ, β_Γ(3*Q*) ↓ 0 as *Q* ∋ *x* decreases.

Applications of the TST: ℓ^2 -flatness

Corollary (Bishop, Jones '90)

If Γ is a compact connected set, it is 1-rectifiable if and only if

$$\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.$$

- Rademacher's theorem says *f* is differentiable a.e., and so at almost every *x* ∈ Γ, β_Γ(3*Q*) ↓ 0 as *Q* ∋ *x* decreases.
- However, this isn't enough to imply rectifiability.

Applications of the TST: ℓ^2 -flatness

Corollary (Bishop, Jones '90)

If Γ is a compact connected set, it is 1-rectifiable if and only if

$$\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.$$

- Rademacher's theorem says *f* is differentiable a.e., and so at almost every *x* ∈ Γ, β_Γ(3*Q*) ↓ 0 as *Q* ∋ *x* decreases.
- However, this isn't enough to imply rectifiability.
- The corollary tells us that the flatness must be decaying fast enough to characterize rectifiability.

Applications of the TST: ℓ^2 -flatness

Corollary (Bishop, Jones '90)

If Γ is a compact connected set, it is 1-rectifiable if and only if

$$\sum_{\substack{x \in Q \\ Q \text{ dyadic}}} \beta_{\Gamma}(3Q)^2 < \infty \text{ for } \mathscr{H}^1\text{-a.e. } x \in \Gamma.$$

- Rademacher's theorem says *f* is differentiable a.e., and so at almost every *x* ∈ Γ, β_Γ(3*Q*) ↓ 0 as *Q* ∋ *x* decreases.
- However, this isn't enough to imply rectifiability.
- The corollary tells us that the flatness must be decaying fast enough to characterize rectifiability.
- It also gives us more information for rectifiable sets: Not only does $\beta_{\Gamma}(3Q) \downarrow 0$, but at a square summable rate!

Higher dimensional β 's are not adequate for TST

If $E \subseteq \mathbb{R}^n$, $d \le n$, and we define

$$eta^d_{E,\infty}(Q) = \inf \left\{ \sup_{x \in E \cap Q} rac{\operatorname{dist}(x, P)}{\ell(Q)} : P ext{ is a d-plane}
ight\}$$

then the first direction of the TST holds for d = 2 (Pajot, '96) and for d > 2 under some assumptions (David-Toro, '12), but not the other.

Higher dimensional β 's are not adequate for TST

If $E \subseteq \mathbb{R}^n$, $d \leq n$, and we define

$$eta^d_{E,\infty}(\mathcal{Q}) = \inf \left\{ \sup_{x \in E \cap \mathcal{Q}} rac{\operatorname{dist}(x,\mathcal{P})}{\ell(\mathcal{Q})} : \mathcal{P} ext{ is a d-plane}
ight\}$$

then the first direction of the TST holds for d = 2 (Pajot, '96) and for d > 2 under some assumptions (David-Toro, '12), but not the other.

Theorem (Jones, Fang)

There is a 3-dimensional Lipschitz graph Γ in $[0, 1]^4$ so that

$$\sum_{\substack{Q\subseteq [0,1]^4\\Q\cap E\neq \emptyset}}\beta_{\Gamma,\infty}^3(3Q)^2\ell(Q)^3=\infty.$$

Thus, in generalizing either the TST or the Bishop-Jones corollary, we need a new β -number.

Main Results: New β -numbers and TST 000 0000000

Dorronsoro's theorem, '85

Let $f \in W^{1,2}(\mathbb{R}^d)$ and define (recall $\int_B f d\mu = rac{1}{\mu(B)} \int_B f d\mu$)

$$\alpha(x,r) = \inf\left\{ \left(\oint_{B(x,r)} \left(\frac{f(y) - A(y)}{r} \right)^2 dy \right)^{\frac{1}{2}} : A \text{ is linear } \right\}$$

Then

$$||\nabla f||_2^2 \sim \int_{\mathbb{R}^d} \int_0^\infty \alpha(x,r)^2 \frac{dr}{r} dx.$$

Main Results: New β-numbers and TST 000 0000000

TST for graphs

For $S, E \subseteq \mathbb{R}^n$, define

$$\beta_{E,2}^{d}(S) = \inf_{P \text{ a d-plane}} \left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E} \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} d\mathcal{H}^{d}(y) \right)^{1/2}$$

Theorem (Dorronsoro) Let $f : \mathbb{R}^d \to \mathbb{R}^{n-d}$ be L-Lipschitz (L very small) and $\Gamma \subseteq \mathbb{R}^n$ be its graph. Then

$$\int_{\Gamma}\int_{0}^{\infty}\beta_{\Gamma,2}^{d}(B(x,r))^{2}\frac{dr}{r}d\mathscr{H}^{d}(x)\sim_{L}||\nabla f||_{2}^{2}$$

or equivalently,

$$\sum_{Q\cap\Gamma\neq\emptyset}\beta^d_{\Gamma,2}(\mathbf{3}Q)^2\ell(Q)^d\sim_L||\nabla f||_2^2.$$

<ロ> < (回) < (u) < (

Main Results: New β -numbers and TST 000 0000000

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

19/59

TST for graphs

For $E \subseteq \mathbb{R}^n$ and *S* a cube or ball, define

$$\beta_{E,2}^{d}(S) = \inf_{P \text{ a d-plane}} \left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E} \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} d\mathcal{H}^{d}(y) \right)^{1/2}$$

Main Results: New β -numbers and TST 000 0000000

TST for graphs

For $E \subseteq \mathbb{R}^n$ and *S* a cube or ball, define

$$\beta_{E,2}^{d}(S) = \inf_{P \text{ a d-plane}} \left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E} \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} d\mathcal{H}^{d}(y) \right)^{1/2}$$

If supp $f = B(0, R) \subseteq \mathbb{R}^d$, $||\nabla f||_{\infty} \ll 1$, and Γ is its graph over B(0, R),

Main Results: New β -numbers and TST 000 0000000

TST for graphs

For $E \subseteq \mathbb{R}^n$ and *S* a cube or ball, define

$$\beta_{E,2}^{d}(S) = \inf_{P \text{ a d-plane}} \left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E} \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} d\mathscr{H}^{d}(y) \right)^{1/2}$$

If supp $f = B(0, R) \subseteq \mathbb{R}^d$, $||\nabla f||_{\infty} \ll 1$, and Γ is its graph over B(0, R),

$$||\nabla f||_{2}^{2} = \int_{B(0,R)} |\nabla f|^{2} \sim \int_{B(0,R)} (\sqrt{1 + |\nabla f|^{2}} - 1)$$
$$= \mathscr{H}^{d}(\Gamma) - w_{d}R^{d}$$

Main Results: New β -numbers and TST 000 0000000

TST for graphs

For $E \subseteq \mathbb{R}^n$ and *S* a cube or ball, define

$$\beta_{E,2}^{d}(S) = \inf_{P \text{ a d-plane}} \left(\frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E} \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} d\mathscr{H}^{d}(y) \right)^{1/2}$$

If supp $f = B(0, R) \subseteq \mathbb{R}^d$, $||\nabla f||_{\infty} \ll 1$, and Γ is its graph over B(0, R),

$$\begin{split} ||\nabla f||_2^2 &= \int_{B(0,R)} |\nabla f|^2 \sim \int_{B(0,R)} (\sqrt{1+|\nabla f|^2}-1) \\ &= \mathscr{H}^d(\Gamma) - w_d R^d \end{split}$$

Hence,

$$\mathscr{H}^{d}(\Gamma) \sim ||\nabla f||_{2}^{2} + w_{d}R^{d} \sim \int_{\Gamma} \int_{0}^{\infty} \beta_{\Gamma,2}^{d} (B(x,r))^{2} \frac{dr}{r} d\mathscr{H}^{d}(x) + (\operatorname{diam} \Gamma)^{d}.$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 の 9 0 0
22/59

Main Results: New β -numbers and TST 000 0000000

イロト 不得 とくき とくき とうき

David-Semmes Theorem

Theorem Let $E \subseteq \mathbb{R}^n$ be Ahlfors d-regular, meaning

 $\mathscr{H}^{d}(B(x,r)\cap E)\sim r^{d}$ for all $x\in E, r>0.$

Then the following are equivalent:

1. $d\sigma := \beta_{E,2}^d (B(x,r))^2 dx \frac{dr}{r}$ is a Carleson measure, meaning $\sigma(B(x,r) \times (0,r)) \leq Cr^d$ for all $x \in E$ and r > 0.

David-Semmes Theorem

Theorem Let $E \subseteq \mathbb{R}^n$ be Ahlfors d-regular, meaning

 $\mathscr{H}^{d}(B(x,r)\cap E)\sim r^{d}$ for all $x\in E, r>0.$

Then the following are equivalent:

- 1. $d\sigma := \beta_{E,2}^d (B(x,r))^2 dx \frac{dr}{r}$ is a **Carleson measure**, meaning $\sigma(B(x,r) \times (0,r)) \leq Cr^d$ for all $x \in E$ and r > 0.
- 2. *E* is **uniformly rectifiable**: there is L > 0 so that for every $x \in E$ and r > 0, there is $f : A \subseteq \mathbb{R}^d \to \mathbb{R}^n$ *L*-Lipschitz so that $f(A) \subseteq E \cap B(x, r)$ and $\mathscr{H}^d(f(A)) \ge L^{-1}r^d$.

David-Semmes Theorem

Theorem Let $E \subseteq \mathbb{R}^n$ be Ahlfors d-regular, meaning

 $\mathscr{H}^{d}(B(x,r)\cap E)\sim r^{d}$ for all $x\in E, r>0.$

Then the following are equivalent:

- 1. $d\sigma := \beta_{E,2}^d (B(x,r))^2 dx \frac{dr}{r}$ is a Carleson measure, meaning $\sigma(B(x,r) \times (0,r)) \leq Cr^d$ for all $x \in E$ and r > 0.
- 2. *E* is **uniformly rectifiable**: there is L > 0 so that for every $x \in E$ and r > 0, there is $f : A \subseteq \mathbb{R}^d \to \mathbb{R}^n$ *L*-Lipschitz so that $f(A) \subseteq E \cap B(x, r)$ and $\mathscr{H}^d(f(A)) \ge L^{-1}r^d$.

This is like the TST in the sense that it gives a condition for when **a big piece** of *E* is contained in a Lipschitz surface, rather than all of it.

Main Results: New β -numbers and TST 000 0000000

・ロ・・ (日)・ (日)・ (日)・

26/59

How far we can get with $\beta_{F,2}^d$

Theorem

Let $E \subseteq \mathbb{R}^n$ have $0 < \mathscr{H}^d(E) < \infty$. Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_0^1 \beta_{E,2}^2 (B(x,r))^2 \frac{dr}{r} < \infty$.

Main Results: New β -numbers and TST 000 0000000

How far we can get with $\beta_{F,2}^d$

Theorem

Let $E \subseteq \mathbb{R}^n$ have $0 < \mathscr{H}^d(E) < \infty$. Then E is d-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_0^1 \beta_{E,2}^2 (B(x,r))^2 \frac{dr}{r} < \infty$.

Theorem (Edelen, Naber, Valtorta, '16) If μ is Radon on \mathbb{R}^n , $\theta^d_*(\mu, x) \leq b$ and $\int_0^1 \beta^d_{\mu,2}(B(x,r))^2 \frac{dr}{r} \leq M$ for μ -a.e. $x \in B(0,1)$, then $\mu(B(x,r)) \lesssim (b+M)r^d$ for $x \in B(0,1)$, r > 0.

Main Results: New β -numbers and TST 000 0000000

How far we can get with $\beta_{F,2}^d$

Theorem

Let $E \subseteq \mathbb{R}^n$ have $0 < \mathscr{H}^d(E) < \infty$. Then E is *d*-rectifiable if (Tolsa, '15) and only if (A., Tolsa, '15) $\int_0^1 \beta_{E,2}^2 (B(x,r))^2 \frac{dr}{r} < \infty$.

Theorem (Edelen, Naber, Valtorta, '16) If μ is Radon on \mathbb{R}^n , $\theta^d_*(\mu, x) \leq b$ and $\int_0^1 \beta^d_{\mu,2}(B(x,r))^2 \frac{dr}{r} \leq M$ for μ -a.e. $x \in B(0,1)$, then $\mu(B(x,r)) \lesssim (b+M)r^d$ for $x \in B(0,1)$, r > 0.

There are also other β -numbers defined for measures and results that characterize the 1-rectifiable structure of the measure (Badger and Schul,'16).

Main Results: New β -numbers and TST 000 0000000

イロト イヨト イヨト イヨト

29/59

What we'd like to do

Main Results: New β -numbers and TST 000 0000000

What we'd like to do

We'd like to generalize the TST to a *d*-dimensional surface *E*, so we need a β number so that

1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)

What we'd like to do

- 1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)
- 2. we can deduce *E* has finite measure in terms of its beta numbers and bound its area,

What we'd like to do

- 1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)
- 2. we can deduce *E* has finite measure in terms of its beta numbers and bound its area,
- 3. we can bound a square sum of β numbers in terms of $\mathcal{H}^{d}(E)$,

What we'd like to do

- 1. we don't need to assume *E* has finite *d*-measure (or any prescribed measure)
- 2. we can deduce *E* has finite measure in terms of its beta numbers and bound its area,
- 3. we can bound a square sum of β numbers in terms of $\mathcal{H}^{d}(E)$,
- 4. we can't use β_{∞} .

Main Results: New β -numbers and TST $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

A new β -number

Recall that

$$\beta_{E,2}^{d}(S)^{2} = \inf_{\substack{P \text{ a d-plane}}} \frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E} \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} d\mathscr{H}^{d}(y)$$
$$= \inf_{\substack{P \text{ a d-plane}}} \frac{1}{(\operatorname{diam} S)^{d}} \int_{0}^{\infty} \mathscr{H}^{d} \left(\left\{ x \in S \cap E : \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} > t \right\} \right) dt.$$

Main Results: New β -numbers and TST $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

A new β -number

Recall that

$$\hat{\beta}_{E,2}^{d}(S)^{2} = \inf_{P \text{ a d-plane}} \frac{1}{(\operatorname{diam} S)^{d}} \int_{S \cap E} \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} d\mathscr{H}_{\infty}^{d}(y)$$
$$= \inf_{P \text{ a d-plane}} \frac{1}{(\operatorname{diam} S)^{d}} \int_{0}^{\infty} \mathscr{H}_{\infty}^{d} \left(\left\{ x \in S \cap E : \left(\frac{\operatorname{dist}(y, P)}{\operatorname{diam} S} \right)^{2} > t \right\} \right) dt.$$

Main Results: New β -numbers and TST $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$

A TST for "nice" surfaces

Theorem (A., Schul) Let $E \subseteq \mathbb{R}^n$ be so that for all $x \in E$ and $r \in (0, \operatorname{diam} E)$, $\mathscr{H}^d_{\infty}(E \cap B(x, r)) > cr^d$.

Then

$$\mathscr{H}^{d}(E) \lesssim \left(\operatorname{diam} E\right)^{d} + \sum_{Q \cap E \neq \emptyset} \hat{\beta}^{d}_{E,2} (3Q)^{2} \ell(Q)^{d}.$$

Moreover, for "nice" surfaces,

$$(\operatorname{diam} E)^d + \sum_{Q \cap E \neq \emptyset} \hat{\beta}^d_{E,2} (3Q)^2 \ell(Q)^d \lesssim \mathscr{H}^d(E).$$

<ロ> (四) (四) (日) (日) (日)

37/59

Nice surfaces

 ϵ -Reifenberg flat sets: Let $\delta > 0$, $E \subseteq \mathbb{R}^n$ be so that, for all $x \in E$ and $0 < r < \delta$ diam *E*, there is a *d*-plane $P_{x,r}$ so that

$$\operatorname{dist}_{Haus}(E \cap B(x,r), P_{x,r} \cap B(x,r)) \leq \epsilon r.$$

For these kinds of sets, we have

$$(\operatorname{diam} E)^d + \sum_{Q \cap E \neq \emptyset} \hat{\beta}^d_{E,2} (3Q)^2 \ell(Q)^d \sim_{\delta} \mathscr{H}^d(E)$$

Nice surfaces

 ϵ -Reifenberg flat sets: Let $\delta > 0$, $E \subseteq \mathbb{R}^n$ be so that, for all $x \in E$ and $0 < r < \delta$ diam *E*, there is a *d*-plane $P_{x,r}$ so that

$$\operatorname{dist}_{Haus}(E \cap B(x,r), P_{x,r} \cap B(x,r)) \leq \epsilon r.$$

For these kinds of sets, we have

$$(\operatorname{diam} E)^d + \sum_{Q \cap E \neq \emptyset} \hat{\beta}^d_{E,2} (3Q)^2 \ell(Q)^d \sim_{\delta} \mathscr{H}^d(E)$$

Proof: Let \mathscr{D}_k denote Christ cubes on *E* of sidelength *k*. Let $\mathscr{D} = \bigcup \mathscr{D}_k$, and for $Q \in \mathscr{D}$, let B_Q be a large ball around Q.

If $Q_0 \in \mathscr{D}_0$ and $\varepsilon > 0$ small enough, we'll show

$$\sum_{R\subseteq Q_0}\beta_E(B_Q)^2\ell(R)^d\lesssim \mathscr{H}^d(E).$$

Main Results: New β -numbers and TST $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$

Sketch of proof for Reifenberg flat sets

• Let P_Q be the best approximating plane to E in B_Q .

(a) < (a) < (b) < (b)

40/59

Sketch of proof for Reifenberg flat sets

- Let P_Q be the best approximating plane to E in B_Q .
- Construct S₀ ⊆ Ø by putting Q₀ ∈ S and adding Q ∈ Ø to S if its parent is in S and ∠(P_Q, P_{Q₀}) < α. Remove a few bottom cubes so that minimal cubes in S close to each other have comparable sizes. Let Stop(1) be these minimal cubes and Total(1) = S₀.

- Let P_Q be the best approximating plane to E in B_Q .
- Construct S₀ ⊆ 𝒴 by putting Q₀ ∈ S and adding Q ∈ 𝒴 to S if its parent is in S and ∠(P_Q, P_{Q₀}) < α. Remove a few bottom cubes so that minimal cubes in S close to each other have comparable sizes. Let Stop(1) be these minimal cubes and Total(1) = S₀.
- For each *R* ∈ *Stop*(*N*), make a stopping-time region *S_R* by putting *R* ∈ *S_R* and adding cubes *Q* to *S_R* if *Q*'s parent is in *S_R* and if ∠(*P_Q*, *P_R*) < α. Again, remove a cube to smoothen out minimal cubes, then let

$$Stop(N+1) = \bigcup_{R \in Stop(N)}$$
 minimal cubes in S_R .

Total(N + 1) = cubes not contained in any cube from Stop(N + 1).

Main Results: New β -numbers and TST $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc$

• We can use David-Toro to construct a surface E_N so that

 $\operatorname{dist}(x, E_N) \lesssim \inf_{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \quad \text{for all } x \in E$

and E_N is a $C\varepsilon$ -Lip graph near Q (i.e. in B_Q) over P_Q .

• If we never stop over x in our N-th stopping time, $x \in E_N \cap E$.

• We can use David-Toro to construct a surface E_N so that

 $\operatorname{dist}(x, E_N) \lesssim \inf_{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \quad \text{for all } x \in E$

and E_N is a $C\varepsilon$ -Lip graph near Q (i.e. in B_Q) over P_Q .

• If we never stop over x in our N-th stopping time, $x \in E_N \cap E$.

Main Results: New β -numbers and TST $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc$

• We can use David-Toro to construct a surface E_N so that

 $\operatorname{dist}(x, E_N) \lesssim \inf_{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \quad \text{for all } x \in E$

and E_N is a $C\varepsilon$ -Lip graph near Q (i.e. in B_Q) over P_Q .

• If we never stop over x in our N-th stopping time, $x \in E_N \cap E$.

• We can use David-Toro to construct a surface E_N so that

$$\operatorname{dist}(x, E_N) \lesssim \inf_{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \quad \text{for all } x \in E$$

and E_N is a $C\varepsilon$ -Lip graph near Q (i.e. in B_Q) over P_Q .

- If we never stop over x in our N-th stopping time, $x \in E_N \cap E$.
- For $Q \in Stop(N)$, $\Gamma_Q^N := B_Q \cap E_{N+1}$ is a graph above $B_Q \cap P_Q$ with respect to a $C\alpha$ -Lipschitz function $A_Q^N : P_Q \to P_Q^{\perp}$.

• We can use David-Toro to construct a surface E_N so that

$$\operatorname{dist}(x, E_N) \lesssim \inf_{x \in Q \in \operatorname{Total}(N)} \epsilon \ell(Q) \quad \text{for all } x \in E$$

and E_N is a $C\varepsilon$ -Lip graph near Q (i.e. in B_Q) over P_Q .

- If we never stop over x in our N-th stopping time, $x \in E_N \cap E$.
- For $Q \in Stop(N)$, $\Gamma_Q^N := B_Q \cap E_{N+1}$ is a graph above $B_Q \cap P_Q$ with respect to a $C\alpha$ -Lipschitz function $A_Q^N : P_Q \to P_Q^{\perp}$. Note that

 $|DA_Q^N| \gtrsim \alpha \chi_{\pi_{P_Q}(R)}$ when $R \in Stop(N+1)$.

Sketch of proof for Reifenberg flat sets

Lemma

 $\sum_{N}\sum_{Q\in Stop(N)}\ell(Q)^{d}\lesssim \mathscr{H}^{d}(E).$

Main Results: New β -numbers and TST 000 000000

Sketch of proof for Reifenberg flat sets

Lemma

$$\sum_{N}\sum_{Q\in Stop(N)}\ell(Q)^{d}\lesssim \mathscr{H}^{d}(E).$$

• Say $Q \in Type(1, N)$ if $Q \in Stop(N)$ and

 $\mathscr{H}^{d}(\Gamma^{N}_{Q}) - |B_{Q} \cap P_{Q}| < C \varepsilon \ell(Q)^{d}.$

Sketch of proof for Reifenberg flat sets

Lemma

$$\sum_{N}\sum_{Q\in Stop(N)}\ell(Q)^{d}\lesssim \mathscr{H}^{d}(E).$$

• Say $Q \in Type(1, N)$ if $Q \in Stop(N)$ and

$$\mathscr{H}^{d}(\Gamma^{N}_{Q}) - |B_{Q} \cap P_{Q}| < C \varepsilon \ell(Q)^{d}.$$

Then for $\varepsilon \ll \alpha$, $\sum_{\substack{R \in Stop(N+1) \\ R \subseteq Q}} \ell(R)^d \lesssim \int_{P_Q} \chi_{\pi_{P_Q}(R)} \lesssim \alpha^{-2} \int_{P_Q} |DA_Q^N|^2$ $\sim \alpha^{-2} (\mathscr{H}^d(\Gamma_Q^N) - |B_Q \cap P_Q|) < \frac{C\varepsilon}{\alpha^2} \ell(Q)^d \ll \ell(Q)^d$

Sketch of proof for Reifenberg flat sets

Lemma

$$\sum_{N}\sum_{Q\in Stop(N)}\ell(Q)^{d}\lesssim \mathscr{H}^{d}(E).$$

• Say $Q \in Type(1, N)$ if $Q \in Stop(N)$ and

$$\mathscr{H}^{d}(\Gamma^{N}_{Q}) - |B_{Q} \cap P_{Q}| < C \varepsilon \ell(Q)^{d}.$$

Then for
$$\varepsilon \ll \alpha$$
,

$$\sum_{\substack{R \in Stop(N+1) \\ R \subseteq Q}} \ell(R)^d \lesssim \int_{P_Q} \chi_{\pi_{P_Q}(R)} \lesssim \alpha^{-2} \int_{P_Q} |DA_Q^N|^2$$

$$\sim \alpha^{-2} (\mathscr{H}^d(\Gamma_Q^N) - |B_Q \cap P_Q|) < \frac{C\varepsilon}{\alpha^2} \ell(Q)^d \ll \ell(Q)^d$$

• If $Z(Q) \subseteq Q$ are points not contained in a cube from Stop(N+1),

$$\sum_{N} \sum_{Q \in Type(1,N)} \ell(Q)^d \lesssim \sum_{N} \sum_{Q \in Type(1,N)} \mathscr{H}^d(Z(Q)) \leq \mathscr{H}^d(E).$$

Main Results: New β -numbers and TST 000 0000000

Sketch of proof for Reifenberg flat sets

• Say $Q \in Type(2, N)$ if $Q \in Stop(N)$ and

 $\mathscr{H}^{d}(\Gamma^{N}_{Q}) - |B_{Q} \cap P_{Q}| \geq C \varepsilon \ell(Q)^{d}.$

• Say $Q \in Type(2, N)$ if $Q \in Stop(N)$ and

$$\mathscr{H}^{d}(\Gamma^{N}_{Q}) - |B_{Q} \cap P_{Q}| \geq C \varepsilon \ell(Q)^{d}.$$

• Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".

• Say $Q \in Type(2, N)$ if $Q \in Stop(N)$ and

 $\mathscr{H}^d(\Gamma^N_Q) - |B_Q \cap P_Q| \geq C \varepsilon \ell(Q)^d.$

- Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".
- $\mathscr{H}^{d}(\Gamma_{Q}^{N}) \approx \mathscr{H}^{d}(F_{N}(B_{Q} \cap E_{N}))$ and $|B_{Q} \cap P_{Q}| \approx \mathscr{H}^{d}(B_{Q} \cap E_{N})|$ for $\varepsilon > 0$ small, and so for *C* large

$$\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))-\mathscr{H}^{d}(E_{N}\cap B_{Q})> \varepsilon\ell(Q)^{d}.$$

• Say
$$Q \in Type(2, N)$$
 if $Q \in Stop(N)$ and

$$\mathscr{H}^d(\Gamma^N_Q) - |B_Q \cap P_Q| \geq C \varepsilon \ell(Q)^d.$$

- Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".
- $\mathscr{H}^{d}(\Gamma_{Q}^{N}) \approx \mathscr{H}^{d}(F_{N}(B_{Q} \cap E_{N}))$ and $|B_{Q} \cap P_{Q}| \approx \mathscr{H}^{d}(B_{Q} \cap E_{N})|$ for $\varepsilon > 0$ small, and so for *C* large

$$\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))-\mathscr{H}^{d}(E_{N}\cap B_{Q})>\varepsilon\ell(Q)^{d}.$$

Then

$$\sum_{Q \in Type(2,N)} \ell(Q)^d \lesssim_{\varepsilon} \sum_{Q \in Type(2,N)} (\mathscr{H}^d(F_N(B_Q \cap E_N)) - \mathscr{H}^d(E_N \cap B_Q))$$
$$= \sum_{Q \in Type(2,N)} \int_{B_Q \cap E_N} (J_{F_N} - 1) \lesssim \int_{E_N} (J_{F_N} - 1)$$
$$= \mathscr{H}^d(E_{N+1}) - \mathscr{H}^d(E_N)$$

54/59

<ロ> <同> <同> < 回> < 三> < 三> 三 三

• Say
$$Q \in Type(2, N)$$
 if $Q \in Stop(N)$ and

$$\mathscr{H}^d(\Gamma^N_{Q}) - |B_Q \cap P_Q| \geq C arepsilon \ell(Q)^d.$$

- Define a map $F_N : E_N \to E_{N+1}$ by "looking up at E_{N+1} from E_N ".
- $\mathscr{H}^{d}(\Gamma_{Q}^{N}) \approx \mathscr{H}^{d}(F_{N}(B_{Q} \cap E_{N}))$ and $|B_{Q} \cap P_{Q}| \approx \mathscr{H}^{d}(B_{Q} \cap E_{N})|$ for $\varepsilon > 0$ small, and so for *C* large

$$\mathscr{H}^{d}(F_{N}(B_{Q}\cap E_{N}))-\mathscr{H}^{d}(E_{N}\cap B_{Q})>\varepsilon\ell(Q)^{d}.$$

Then

$$\sum_{Q \in Type(2,N)} \ell(Q)^{d} \lesssim_{\varepsilon} \sum_{Q \in Type(2,N)} (\mathscr{H}^{d}(F_{N}(B_{Q} \cap E_{N})) - \mathscr{H}^{d}(E_{N} \cap B_{Q}))$$

Maybe $J_{F_{N}} - 1 < 0! = \sum_{Q \in Type(2,N)} \int_{B_{Q} \cap E_{N}} (J_{F_{N}} - 1) \lesssim \int_{E_{N}} (J_{F_{N}} - 1)$
$$= \mathscr{H}^{d}(E_{N+1}) - \mathscr{H}^{d}(E_{N}) + Error(N)$$

55/59

<ロ> <四> <四> <三</p>

56/59

Sketch of proof for Reifenberg flat sets

Use Dorronsoro to show

$$\sum_{R\in S_Q}eta_{\Gamma^N_Q}(3R)^2\ell(R)^d\lesssim \ell(Q)^d ext{ whenever } Q\in Stop(N).$$

Main Results: New β -numbers and TST $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc$

Sketch of proof for Reifenberg flat sets

Use Dorronsoro to show

$$\sum_{R\in \mathcal{S}_Q}eta_{\Gamma^N_Q}(3R)^2\ell(R)^d\lesssim \ell(Q)^d ext{ whenever } Q\in Stop(N).$$

These approximate

$$\sum_{R \in \subseteq Q_0} \beta_E (3R)^2 \ell(R)^d = \sum_N \sum_{\substack{Q \in Stop(N) \\ Q \in Stop(N)}} \sum_{R \in S_Q} \beta_E (3R)^2 \ell(R)^d$$
$$\lesssim \sum_N \sum_{\substack{Q \in Stop(N) \\ Q \in Stop(N)}} \ell(Q)^d + Error$$
$$\lesssim \mathscr{H}^d(E).$$

Main Results: New β -numbers and TST 000 000000

Future Work

- 1. Most quantitative rectifiability results are for Ahlfors regular sets, but maybe we don't need this.
- 2. What other kinds of sets are "nice"?

Main Results: New β-numbers and TST ○○○ ○○○○○○●

Thanks!

고맙습니다!

Och grattis på födelsedagen!