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The Analyst’s Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

Analyst’s traveling salesman theorem

For a cube Q ⊆ Rn of sidelength `(Q) and E ⊆ Rn compact, let

βE (Q) =
width of smallest tube containing E ∩Q

`(Q)
.

{βE (Q)`(Q)

Q

E
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Analyst’s Traveling Salesman Theorem

Theorem (Jones ’90; Okikiolu, ’92; Schul, ’07)
Let E ⊆ Rn.

1. There is a curve Γ containing E so that

H 1(Γ) .

diam E +
∑

Q dyadic
Q∩E 6=∅

βE (3Q)2`(Q)

 .

2. Conversely, if Γ is a curve, then

diam Γ +
∑

Q dyadic
Q∩Γ 6=∅

βΓ(3Q)2`(Q) . H 1(Γ).

Hence, for curves Γ, we have

H 1(Γ) ∼ diam Γ +
∑

Q dyadic
Q∩Γ 6=∅

βΓ(3Q)2`(Q).
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Applications of the TST
Theorem (Bishop, Jones, ’90)
Harmonic measure on Ω ⊆ C simply connected is absolutely continuous w.r.t.
arclength on ∂Ω ∩ Γ, Γ any rectifiable curve.

Theorem (Bishop, Jones, ’97)
Let Γ ⊆ R2 be a curve s.t. βΓ(Q) > ε whenever Q is centered on Γ then
dim Γ > 1 + cε2.

Theorem (A., Schul, ’12)
There is C > 0 so that if Γ ⊆ Rn is a connected set, there is Γ̃ ⊇ Γ
C-quasiconvex so that H 1(Γ̃) .n H 1(Γ).

Γ Γ̃
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Applications of the TST: `2-flatness

Corollary (Bishop, Jones ’90)
If Γ is a compact connected set, it is 1-rectifiable if and only if∑

x∈Q
Q dyadic

βΓ(3Q)2 <∞ for H 1-a.e. x ∈ Γ.

Let Γ be a Lipschitz curve. Then Γ = f ([0, 1]), where f is Lipschitz.

• Rademacher’s theorem says f is differentiable a.e., and so at almost
every x ∈ Γ, βΓ(3Q) ↓ 0 as Q 3 x decreases.

• However, this isn’t enough to imply rectifiability.
• The corollary tells us that the flatness must be decaying fast enough to

characterize rectifiability.
• It also gives us more information for rectifiable sets: Not only does
βΓ(3Q) ↓ 0, but at a square summable rate!
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Higher dimensional β’s are not adequate for TST

If E ⊆ Rn, d ≤ n, and we define

βd
E,∞(Q) = inf

{
sup

x∈E∩Q

dist(x ,P)

`(Q)
: P is a d-plane

}
then the first direction of the TST holds for d = 2 (Pajot, ’96) and for d > 2
under some assumptions (David-Toro, ’12), but not the other.

Theorem (Jones, Fang)
There is a 3-dimensional Lipschitz graph Γ in [0, 1]4 so that∑

Q⊆[0,1]4
Q∩E 6=∅

β3
Γ,∞(3Q)2`(Q)3 =∞.

Thus, in generalizing either the TST or the Bishop-Jones corollary, we need a
new β-number.
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Dorronsoro’s theorem, ’85

Let f ∈ W 1,2(Rd ) and define (recall −
∫

B fdµ = 1
µ(B)

∫
B fdµ)

α(x , r) = inf


(
−
∫

B(x,r)

(
f (y)− A(y)

r

)2

dy

) 1
2

: A is linear


Then

||∇f ||22 ∼
∫
Rd

∫ ∞
0

α(x , r)2 dr
r

dx .

R

RdB(x , r)

A
f

17 / 59



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

TST for graphs

For S,E ⊆ Rn, define

βd
E,2(S) = inf

P a d-plane

(
1

(diam S)d

∫
S∩E

(
dist(y ,P)

diam S

)2

dH d (y)

)1/2

Theorem (Dorronsoro)
Let f : Rd → Rn−d be L-Lipschitz (L very small) and Γ ⊆ Rn be its graph.
Then ∫

Γ

∫ ∞
0

βd
Γ,2(B(x , r))2 dr

r
dH d (x) ∼L ||∇f ||22

or equivalently, ∑
Q∩Γ6=∅

βd
Γ,2(3Q)2`(Q)d ∼L ||∇f ||22.

18 / 59



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

TST for graphs

For E ⊆ Rn and S a cube or ball, define

βd
E,2(S) = inf

P a d-plane

(
1

(diam S)d

∫
S∩E

(
dist(y ,P)

diam S

)2

dH d (y)

)1/2

If supp f = B(0,R) ⊆ Rd , ||∇f ||∞ � 1, and Γ is its graph over B(0,R),

||∇f ||22 =

∫
B(0,R)

|∇f |2 ∼
∫

B(0,R)

(
√

1 + |∇f |2 − 1)

= H d (Γ)− wd Rd

Hence,

H d (Γ) ∼ ||∇f ||22 + wd Rd ∼
∫

Γ

∫ ∞
0

βd
Γ,2(B(x , r))2 dr

r
dH d (x) + (diam Γ)d .
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David-Semmes Theorem

Theorem
Let E ⊆ Rn be Ahlfors d-regular, meaning

H d (B(x , r) ∩ E) ∼ r d for all x ∈ E , r > 0.

Then the following are equivalent:

1. dσ := βd
E,2(B(x , r))2dx dr

r is a Carleson measure, meaning
σ(B(x , r)× (0, r)) ≤ Cr d for all x ∈ E and r > 0.

2. E is uniformly rectifiable: there is L > 0 so that for every x ∈ E and
r > 0, there is f : A ⊆ Rd → Rn L-Lipschitz so that f (A) ⊆ E ∩ B(x , r)
and H d (f (A)) ≥ L−1r d .

This is like the TST in the sense that it gives a condition for when a big piece
of E is contained in a Lipschitz surface, rather than all of it.
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How far we can get with βd
E ,2

Theorem
Let E ⊆ Rn have 0 < H d (E) <∞. Then E is d-rectifiable if (Tolsa, ’15) and
only if (A., Tolsa, ’15)

∫ 1
0 β

2
E,2(B(x , r))2 dr

r <∞.

Theorem (Edelen, Naber, Valtorta, ’16)
If µ is Radon on Rn, θd

∗(µ, x) ≤ b and
∫ 1

0 β
d
µ,2(B(x , r))2 dr

r ≤ M for µ-a.e.
x ∈ B(0, 1), then µ(B(x , r)) . (b + M)r d for x ∈ B(0, 1), r > 0.

There are also other β-numbers defined for measures and results that
characterize the 1-rectifiable structure of the measure (Badger and Schul,’16).
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What we’d like to do

We’d like to generalize the TST to a d-dimensional surface E , so we need a β
number so that

1. we don’t need to assume E has finite d-measure (or any prescribed
measure)

2. we can deduce E has finite measure in terms of its beta numbers and
bound its area,

3. we can bound a square sum of β numbers in terms of H d (E),

4. we can’t use β∞.
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A new β-number

Recall that

βd
E,2(S)2 = inf

P a d-plane

1
(diam S)d

∫
S∩E

(
dist(y ,P)

diam S

)2

dH d (y)

= inf
P a d-plane

1
(diam S)d

∫ ∞
0

H d

({
x ∈ S ∩ E :

(
dist(y ,P)

diam S

)2

> t

})
dt .
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A new β-number

Recall that

β̂d
E,2(S)2 = inf

P a d-plane

1
(diam S)d

∫
S∩E

(
dist(y ,P)

diam S

)2

dH d
∞(y)

= inf
P a d-plane

1
(diam S)d

∫ ∞
0

H d
∞

({
x ∈ S ∩ E :

(
dist(y ,P)

diam S

)2

> t

})
dt .
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A TST for ”nice” surfaces

Theorem (A., Schul)
Let E ⊆ Rn be so that for all x ∈ E and r ∈ (0, diam E),

H d
∞(E ∩ B(x , r)) ≥ cr d .

Then
H d (E) . (diam E)d +

∑
Q∩E 6=∅

β̂d
E,2(3Q)2`(Q)d .

Moreover, for ”nice” surfaces,

(diam E)d +
∑

Q∩E 6=∅

β̂d
E,2(3Q)2`(Q)d . H d (E).
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Nice surfaces

ε-Reifenberg flat sets: Let δ > 0, E ⊆ Rn be so that, for all x ∈ E and
0 < r < δ diam E , there is a d-plane Px,r so that

dist
Haus

(E ∩ B(x , r),Px,r ∩ B(x , r)) ≤ εr .

For these kinds of sets, we have

(diam E)d +
∑

Q∩E 6=∅

β̂d
E,2(3Q)2`(Q)d ∼δ H d (E)

Proof: Let Dk denote Christ cubes on E of sidelength k . Let D =
⋃

Dk , and
for Q ∈ D ,let BQ be a large ball around Q.

If Q0 ∈ D0 and ε > 0 small enough, we’ll show∑
R⊆Q0

βE (BQ)2`(R)d . H d (E).
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Sketch of proof for Reifenberg flat sets

• Let PQ be the best approximating plane to E in BQ .

• Construct S0 ⊆ D by putting Q0 ∈ S and adding Q ∈ D to S if its parent
is in S and ∠(PQ ,PQ0 ) < α. Remove a few bottom cubes so that minimal
cubes in S close to each other have comparable sizes. Let Stop(1) be
these minimal cubes and Total(1) = S0.

• For each R ∈ Stop(N), make a stopping-time region SR by putting
R ∈ SR and adding cubes Q to SR if Q’s parent is in SR and if
∠(PQ ,PR) < α. Again, remove a cube to smoothen out minimal cubes,
then let

Stop(N + 1) =
⋃

R∈Stop(N)

minimal cubes in SR .

Total(N + 1) = cubes not contained in any cube from Stop(N + 1).
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• We can use David-Toro to construct a surface EN so that

dist(x ,EN) . inf
x∈Q∈Total(N)

ε`(Q) for all x ∈ E

and EN is a Cε-Lip graph near Q (i.e. in BQ) over PQ .

• If we never stop over x in our N-th stopping time, x ∈ EN ∩ E .

Q ⊆ E

EN
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• We can use David-Toro to construct a surface EN so that

dist(x ,EN) . inf
x∈Q∈Total(N)

ε`(Q) for all x ∈ E

and EN is a Cε-Lip graph near Q (i.e. in BQ) over PQ .

• If we never stop over x in our N-th stopping time, x ∈ EN ∩ E .

• For Q ∈ Stop(N), ΓN
Q := BQ ∩ EN+1 is a graph above BQ ∩ PQ with

respect to a Cα-Lipschitz function AN
Q : PQ → P⊥Q .

Q ⊆ E

EN EN+1

x

x + AN
Q(x)

PQ
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• We can use David-Toro to construct a surface EN so that

dist(x ,EN) . inf
x∈Q∈Total(N)

ε`(Q) for all x ∈ E

and EN is a Cε-Lip graph near Q (i.e. in BQ) over PQ .

• If we never stop over x in our N-th stopping time, x ∈ EN ∩ E .

• For Q ∈ Stop(N), ΓN
Q := BQ ∩ EN+1 is a graph above BQ ∩ PQ with

respect to a Cα-Lipschitz function AN
Q : PQ → P⊥Q . Note that

|DAN
Q | & αχπPQ

(R) when R ∈ Stop(N + 1).

Q ⊆ E

EN EN+1

x

x + AN
Q(x)

PQ
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Sketch of proof for Reifenberg flat sets
Lemma ∑

N

∑
Q∈Stop(N)

`(Q)d . H d (E).

• Say Q ∈ Type(1,N) if Q ∈ Stop(N) and

H d (ΓN
Q)− |BQ ∩ PQ | < Cε`(Q)d .

Then for ε� α,∑
R∈Stop(N+1)

R⊆Q

`(R)d .
∫

PQ

χπPQ
(R) . α−2

∫
PQ

|DAN
Q |2

∼ α−2(H d (ΓN
Q)− |BQ ∩ PQ |) <

Cε
α2 `(Q)d � `(Q)d

• If Z (Q) ⊆ Q are points not contained in a cube from Stop(N + 1),∑
N

∑
Q∈Type(1,N)

`(Q)d .
∑

N

∑
Q∈Type(1,N)

H d (Z (Q)) ≤H d (E).
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Sketch of proof for Reifenberg flat sets

• Say Q ∈ Type(2,N) if Q ∈ Stop(N) and

H d (ΓN
Q)− |BQ ∩ PQ | ≥ Cε`(Q)d .

• Define a map FN : EN → EN+1 by ”looking up at EN+1 from EN ”.
• H d (ΓN

Q) ≈H d (FN(BQ ∩ EN)) and |BQ ∩ PQ | ≈H d (BQ ∩ EN)| for ε > 0
small, and so for C large

H d (FN(BQ ∩ EN))−H d (EN ∩ BQ) > ε`(Q)d .

Then

51 / 59



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

Sketch of proof for Reifenberg flat sets

• Say Q ∈ Type(2,N) if Q ∈ Stop(N) and

H d (ΓN
Q)− |BQ ∩ PQ | ≥ Cε`(Q)d .

• Define a map FN : EN → EN+1 by ”looking up at EN+1 from EN ”.

• H d (ΓN
Q) ≈H d (FN(BQ ∩ EN)) and |BQ ∩ PQ | ≈H d (BQ ∩ EN)| for ε > 0

small, and so for C large

H d (FN(BQ ∩ EN))−H d (EN ∩ BQ) > ε`(Q)d .

Then

52 / 59



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

Sketch of proof for Reifenberg flat sets

• Say Q ∈ Type(2,N) if Q ∈ Stop(N) and

H d (ΓN
Q)− |BQ ∩ PQ | ≥ Cε`(Q)d .

• Define a map FN : EN → EN+1 by ”looking up at EN+1 from EN ”.
• H d (ΓN

Q) ≈H d (FN(BQ ∩ EN)) and |BQ ∩ PQ | ≈H d (BQ ∩ EN)| for ε > 0
small, and so for C large

H d (FN(BQ ∩ EN))−H d (EN ∩ BQ) > ε`(Q)d .

Then

53 / 59



The Analyst’s Traveling Salesman Theorem (TST) Main Results: New β-numbers and TST

Sketch of proof for Reifenberg flat sets

• Say Q ∈ Type(2,N) if Q ∈ Stop(N) and

H d (ΓN
Q)− |BQ ∩ PQ | ≥ Cε`(Q)d .

• Define a map FN : EN → EN+1 by ”looking up at EN+1 from EN ”.
• H d (ΓN

Q) ≈H d (FN(BQ ∩ EN)) and |BQ ∩ PQ | ≈H d (BQ ∩ EN)| for ε > 0
small, and so for C large

H d (FN(BQ ∩ EN))−H d (EN ∩ BQ) > ε`(Q)d .

Then ∑
Q∈Type(2,N)

`(Q)d .ε
∑

Q∈Type(2,N)

(H d (FN(BQ ∩ EN))−H d (EN ∩ BQ))

=
∑

Q∈Type(2,N)

∫
BQ∩EN

(JFN − 1) .
∫

EN

(JFN − 1)

= H d (EN+1)−H d (EN)
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Sketch of proof for Reifenberg flat sets
• Say Q ∈ Type(2,N) if Q ∈ Stop(N) and

H d (ΓN
Q)− |BQ ∩ PQ | ≥ Cε`(Q)d .

• Define a map FN : EN → EN+1 by ”looking up at EN+1 from EN ”.
• H d (ΓN

Q) ≈H d (FN(BQ ∩ EN)) and |BQ ∩ PQ | ≈H d (BQ ∩ EN)| for ε > 0
small, and so for C large

H d (FN(BQ ∩ EN))−H d (EN ∩ BQ) > ε`(Q)d .

Then

∑
Q∈Type(2,N)

`(Q)d .ε
∑

Q∈Type(2,N)

(H d (FN(BQ ∩ EN))−H d (EN ∩ BQ))

Maybe JFN − 1 < 0! =
∑

Q∈Type(2,N)

∫
BQ∩EN

(JFN − 1) .
∫

EN

(JFN − 1)

= H d (EN+1)−H d (EN) + Error(N)
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Sketch of proof for Reifenberg flat sets

• Use Dorronsoro to show∑
R∈SQ

βΓN
Q

(3R)2`(R)d . `(Q)d whenever Q ∈ Stop(N).

• These approximate∑
R∈⊆Q0

βE (3R)2`(R)d =
∑

N

∑
Q∈Stop(N)

∑
R∈SQ

βE (3R)2`(R)d

.
∑

N

∑
Q∈Stop(N)

∑
R∈SQ

βΓN
Q

(3R)2`(R)d + Error

.
∑

N

∑
Q∈Stop(N)

`(Q)d + Error

. H d (E).
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Future Work

1. Most quantitative rectifiability results are for Ahlfors regular sets, but
maybe we don’t need this.

2. What other kinds of sets are ”nice”?
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Thanks!

Och grattis på födelsedagen!
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