Free energy expansion for determinantal and Pfaffian Coulomb gases

Seong-Mi Seo (Chungnam National University)

2024.5.10

Random Matrices and Related Topics in Jeju

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Free energy expansion for determinantal and Pfaffian Coulomb gases

Seong-Mi Seo (Chungnam National University)

2024.5.10

Random Matrices and Related Topics in Jeju

(With Byun and Kang) Partition functions of determinantal and Pfaffian Coulomb gases with radially symmetric potentials, Comm. Math. Phys. (2023)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Ginibre ensemble (Ginibre, 1965)

Consider a random matrix $X = (X_{i,j})_{i,j=1}^N$ whose entries are independent and identically distributed Gaussian random variables.

• Complex Ginibre ensemble : $X_{i,j}$ takes values in \mathbb{C} .

- The system of eigenvalues has an interpretation as a 2D Coulomb gas system at a specific temperature in a specific external field.

• Symplectic Ginibre ensemble : $X_{i,j}$ takes values in the field of real quaternions.

- The system of 2N complex eigenvalues can be interpreted as a 2D Coulomb gas system with complex conjugation symmetry.

Ginibre ensemble (Ginibre, 1965)

Consider a random matrix $X = (X_{i,j})_{i,j=1}^N$ whose entries are independent and identically distributed Gaussian random variables.

• Complex Ginibre ensemble : $X_{i,j}$ takes values in \mathbb{C} .

- The system of eigenvalues has an interpretation as a 2D Coulomb gas system at a specific temperature in a specific external field.

• Symplectic Ginibre ensemble : $X_{i,j}$ takes values in the field of real quaternions.

- The system of 2N complex eigenvalues can be interpreted as a 2D Coulomb gas system with complex conjugation symmetry.

System of points with 2D Coulomb interactions

Complex Ginibre ensemble

(N = 2000)

Symplectic Ginibre ensemble (N = 2000)

・ロト ・ 四ト ・ モト ・ モト

2D Coulomb gas system

We consider a system of N charged particles in \mathbb{C} with pairwise logarithmic interaction, subject to a confining external potential $Q : \mathbb{C} \to \mathbb{R} \cup \{\infty\}$.

• The Hamiltonian of the system:

$$H_N(z_1, \cdots, z_N) = -\sum_{i \neq j} \log |z_i - z_j| + N \sum_{j=1}^N Q(z_j), \quad z_i \in \mathbb{C}$$

• The Boltzmann factor of the system is proportional to

$$e^{-\frac{\beta}{2}H_N(z_1,\cdots,z_N)} = \prod_{i< j} |z_i - z_j|^{\beta} \prod_{j=1}^N e^{-\frac{\beta}{2}NQ(z_j)}, \quad z_i \in \mathbb{C}.$$

うして ふゆ く は く は く む く し く

Here, $\beta > 0$ is the inverse temperature.

• $Q(z) = |z|^2$ and $\beta = 2$: Complex Ginibre ensemble.

2D Coulomb gas with complex conjugation symmetry

A system of charged particles with complex conjugation symmetry subject to a confining external potential $Q(z) = Q(\bar{z})$.

• Hamiltonian of the system:

$$\tilde{H}_N = -\sum_{j \neq k} \log\left(|z_j - z_k| |z_j - \bar{z}_k|\right) - \sum_{j=1}^N \log|z_j - \bar{z}_j|^2 + 2N \sum_{j=1}^N Q(z_j)$$

 \circ The Boltzmann factor of the system is proportional to

$$e^{-\frac{\beta}{2}\tilde{H}_{N}(z_{1},\cdots,z_{N})} = \prod_{j < k} |z_{j} - z_{k}|^{\beta} |z_{j} - \bar{z}_{k}|^{\beta} \prod_{j=1}^{N} |z_{j} - \bar{z}_{j}|^{\beta} e^{-\beta NQ(z_{j})}$$

うして ふゆ く は く は く む く し く

• $Q(z) = |z|^2$ and $\beta = 2$: Symplectic Ginibre ensemble.

2D Coulomb gas ensemble

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Equilibrium measures and droplets

- Q is a smooth potential satisfying $Q(z) \gg 2 \log |z|$ near infinity.
- Convergence of the empirical measure for 2D Coloumb gas system [Johansson 98, Hedenmalm-Makarov 13, Chafaï-Gozlan-Zitt 14]

$$\frac{1}{N} \sum_{j=1}^{N} \delta_{z_j} \to \sigma_Q, \quad N \to \infty.$$

• Equilibrium measure σ_Q : a unique probability measure that minimizes the weighted logarithmic energy

$$I_Q[\mu] = \iint_{\mathbb{C}^2} \log \frac{1}{|z-t|} \, d\mu(z) \, d\mu(t) + \int_{\mathbb{C}} Q \, d\mu.$$

うしゃ ふゆ きょう きょう うくの

Equilibrium measures and droplets

- Q is a smooth potential satisfying $Q(z) \gg 2 \log |z|$ near infinity.
- Convergence of the empirical measure for 2D Coloumb gas system [Johansson 98, Hedenmalm-Makarov 13, Chafaï-Gozlan-Zitt 14]

$$\frac{1}{N} \sum_{j=1}^{N} \delta_{z_j} \to \sigma_Q, \quad N \to \infty.$$

• Equilibrium measure σ_Q : a unique probability measure that minimizes the weighted logarithmic energy

$$I_Q[\mu] = \iint_{\mathbb{C}^2} \log \frac{1}{|z-t|} \, d\mu(z) \, d\mu(t) + \int_{\mathbb{C}} Q \, d\mu.$$

• σ_Q is of the form $d\sigma_Q(z) = 1_{S_Q}(z)\Delta Q(z) dA(z)$, $dA(z) = d^2 z/\pi$, where $\Delta = \partial \bar{\partial}$ and S_Q is the compact support called the droplet.

Droplets with radially symmetric potentials

• For a radially symmetric potential Q(z) = q(|z|) that is strictly subharmonic,

 $S = \{ z \in \mathbb{C} : r_0 \le |z| \le r_1 \},$

where the pair of constant (r_0, r_1) is characterized by

 $r_0 q'(r_0) = 0, \qquad r_1 q'(r_1) = 1.$

Droplets with radially symmetric potentials

• For a radially symmetric potential Q(z) = q(|z|) that is strictly subharmonic,

 $S = \{ z \in \mathbb{C} : r_0 \le |z| \le r_1 \},$

where the pair of constant (r_0, r_1) is characterized by

 $r_0 q'(r_0) = 0, \qquad r_1 q'(r_1) = 1.$

• If
$$Q(z) = |z|^2$$

$$d\sigma_Q(z) = 1_S(z) \, dA(z), \quad S = \{z \in \mathbb{C} : |z| \le 1\}$$

Droplets with radially symmetric potentials

• For a radially symmetric potential Q(z) = q(|z|) that is strictly subharmonic,

 $S = \{ z \in \mathbb{C} : r_0 \le |z| \le r_1 \},$

where the pair of constant (r_0, r_1) is characterized by

 $r_0 q'(r_0) = 0, \qquad r_1 q'(r_1) = 1.$

• If
$$Q(z) = |z|^2$$

 $d\sigma_Q(z) = 1_S(z) dA(z), \quad S = \{z \in \mathbb{C} : |z| \le 1\}$
• If $Q(z) = |z|^{2\lambda} - 2c \log |z| \ (c > 0),$
 $d\sigma_Q(z) = \lambda^2 |z|^{2\lambda - 2} \ 1_S(z) dA(z), \quad S = \{\left(\frac{c}{\lambda}\right)^{\frac{1}{2\lambda}} \le |z| \le \left(\frac{c+1}{\lambda}\right)^{\frac{1}{2\lambda}}\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Partition function for the Coulomb gas

• Partition functions of the 2D Coulomb gas system:

$$\begin{split} Z_{N,Q}^{(\beta)} &= \int_{\mathbb{C}^N} \prod_{i < j} |z_i - z_j|^{\beta} \prod_{j=1}^N e^{-\frac{\beta}{2}NQ(z_j)} dA(z_j), \\ \tilde{Z}_{N,Q}^{(\beta)} &= \int_{\mathbb{C}^N} \prod_{j < k} |z_j - z_k|^{\beta} |z_j - \bar{z}_k|^{\beta} \prod_{j=1}^N |z_j - \bar{z}_j|^{\beta} e^{-\beta NQ(z_j)} \, dA(z_j). \end{split}$$

Partition function for the Coulomb gas

• Partition functions of the 2D Coulomb gas system (complex)

$$Z_{N,Q}^{(\beta)} = \int_{\mathbb{C}^N} \prod_{i < j} |z_i - z_j|^{\beta} \prod_{j=1}^N e^{-\frac{\beta}{2}NQ(z_j)} dA(z_j).$$

• Asymptotic up to the O(N)-term: [Leblé and Serfaty, 17], [Bauerschmidt, Bourgade, Nikula, and Yau, 19]

$$\log Z_{N,Q}^{(\beta)} \sim -\frac{\beta}{2} I_Q[\sigma_Q] N^2 + \frac{\beta}{4} N \log N - \left(C(\beta) + \left(1 - \frac{\beta}{4}\right) E_Q[\sigma_Q]\right) N,$$

where $C(\beta)$ is a constant independent of the potential Q.

- $I_Q[\sigma_Q]$: the weighted logarithmic energy.
- $E_Q[\sigma_Q] = \int_{\mathbb{C}} \log \Delta Q \, d\sigma_Q$: the entropy associated with σ_Q .

Conjecture on the partition functions

• An explicit formula for the large N expansion of $Z_{N,Q}^{(\beta)}$ was predicted by Zabrodin and Wiegmann (2006).

It was predicted that

 $\log Z_{N,Q}^{(\beta)} \sim C_0 N^2 + C_1 N \log N + C_2 N + C_3 \log N + C_4$

and they proposed the explicit formulas for the constants $C_i = C_i(Q, \beta)$ $(i = 1, \dots, 4)$.

Conjecture on the partition functions

• Zabrodin-Wiegmann conjecture: [Zabrodin-Wiegmann, 06]

 $\log Z_{N,Q}^{(\beta)} \sim C_0 N^2 + C_1 N \log N + C_2 N + C_3 \log N + C_4.$

• Jancovici et al. conjecture:

 $\log Z_{N,Q}^{(\beta)} \sim C_0 N^2 + C_1 N \log N + C_2 N + \alpha_\beta \sqrt{N} + C_{3,\chi} \log N$

- * $C_{3,\chi} = \left(\frac{1}{2} \frac{\chi}{12}\right)$ where χ is the Euler index of the droplet. ($\chi = 1$ for a disk, $\chi = 2$ for a sphere) [Jancovici, Manificat, and Pisani, 94], [Téllez and Forrester, 99]
- * For the disk geometry, $\alpha_{\beta} = -\frac{4}{3\sqrt{\pi}} \log(\beta/2)$ (surface tension). Lutsyshin, [Can, Forrester, Téllez, and Wiegmann, 15]

It is conjectured that if the droplet is connected, the partition function has the asymptotic expansion of the form

$$\log Z_{N,Q}^{(2)} = -I_Q[\sigma_Q]N^2 + \frac{1}{2}N\log N + \left(\frac{\log(2\pi)}{2} - 1 - \frac{1}{2}E_Q[\sigma_Q]\right)N + \frac{6-\chi}{12}\log N + \frac{\log(2\pi)}{2} + \chi\zeta'(-1) + F_Q + o(1),$$

where χ is the Euler characteristic of the droplet and ζ is the Riemann zeta function.

It is conjectured that if the droplet is connected, the partition function has the asymptotic expansion of the form

$$\log Z_{N,Q}^{(2)} = -I_Q[\sigma_Q]N^2 + \frac{1}{2}N\log N + \left(\frac{\log(2\pi)}{2} - 1 - \frac{1}{2}E_Q[\sigma_Q]\right)N + \frac{6-\chi}{12}\log N + \frac{\log(2\pi)}{2} + \chi\zeta'(-1) + F_Q + o(1),$$

where χ is the Euler characteristic of the droplet and ζ is the Riemann zeta function.

- [Byun-Kang-S. 23] The asymptotic expansion was obtained up to O(1) for radially symmetric Q with $\Delta Q > 0$ in \mathbb{C} .
- The formulae for the $O(\log N)$ and O(1) terms depend on whether the droplet is an annulus($\chi = 0$) or a disk($\chi = 1$).

- The coefficient of $\log N$ agrees with the Jancovici et al. conjecture.

• [Byun-Kang-S. 23] The asymptotic expansion is obtained up to O(1) for radially symmetric Q with $\Delta Q > 0$ in \mathbb{C} .

- The droplet: $S_Q = \{z \in \mathbb{C} : r_0 \le |z| \le r_1\}.$
- $r_0 = 0$: disk ($\chi = 1$), $r_0 > 0$: annulus ($\chi = 0$).

- [Byun-Kang-S. 23] The asymptotic expansion is obtained up to O(1) for radially symmetric Q with $\Delta Q > 0$ in \mathbb{C} .
- The droplet: $S_Q = \{z \in \mathbb{C} : r_0 \le |z| \le r_1\}.$
- $r_0 = 0$: disk ($\chi = 1$), $r_0 > 0$: annulus ($\chi = 0$).
- O(1) term:

$$\frac{1}{2}\log(2\pi) + F_Q + \chi \,\zeta'(-1),$$

$$F_Q = \frac{1}{12} \log \left(\frac{1}{r_1^2 \Delta Q(r_1)} \right) - \frac{1}{16} r_1 \frac{(\partial_r \Delta Q)(r_1)}{\Delta Q(r_1)} + \frac{1}{24} \int_{r_0}^{r_1} \left(\frac{\partial_r \Delta Q(r)}{\Delta Q(r)} \right)^2 r \, dr$$
$$+ \begin{cases} 0 & \text{if } r_0 = 0 \, (\chi = 1), \\ \frac{1}{12} \log(r_0^2 \Delta Q(r_0)) + \frac{1}{16} r_0 \frac{(\partial_r \Delta Q)(r_0)}{\Delta Q(r_0)} & \text{if } r_0 > 0 \, (\chi = 0). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- [Webb-Wong 19], [Deaño-Simm 22], [Byun-Charlier 22] Characteristic polynomials for complex random matrices.
- [Charlier 23]

Large gap asymptotics on annuli in the random normal matrix model.

• [Ameur-Charlier-Cronvall 23]

The asymptotic expansion has been studied for radially symmetric ${\cal Q}$ when the droplet has multiple components.

$$\log Z_{N,Q}^{(2)} = -I_Q[\sigma_Q]N^2 + \frac{1}{2}N\log N + \left(\frac{\log(2\pi)}{2} - 1 - \frac{1}{2}E_Q[\sigma_Q]\right)N + \frac{6-\chi}{12}\log N + \frac{\log(2\pi)}{2} + \chi\zeta'(-1) + F_Q + \mathcal{G}_n + o(1)$$

• [Byun-S.-Yang 24] The asymptotic expansion is obtained for the non-radially symmetric potential

$$Q(z) = |z|^2 - 2c \log |z - a|, \quad c > 0 \text{ and } a \in \mathbb{C}$$

• Partition function of the 2D Coulomb gas system (symplectic case)

$$\tilde{Z}_{N,Q}^{(\beta)} = \int_{\mathbb{C}^N} \prod_{j < k} |z_j - z_k|^\beta |z_j - \bar{z}_k|^\beta \prod_{j=1}^N |z_j - \bar{z}_j|^\beta e^{-\beta N Q(z_j)} \, dA(z_j)$$

うして ふゆ く は く は く む く し く

• [Byun-Kang-S. 23] The asymptotic expansion for $\tilde{Z}_{N,Q}^{(2)}$ was obtained up to O(1) for radially symmetric Q with $\Delta Q > 0$ in \mathbb{C} .

• [Byun-Kang-S. 23] The asymptotic expansion for $\tilde{Z}_{N,Q}^{(2)}$ was obtained up to O(1) for radially symmetric Q with $\Delta Q > 0$ in \mathbb{C} .

- Droplet:
$$S_Q = \{z \in \mathbb{C} : r_0 \le |z| \le r_1\}.$$

- $r_0 = 0$ (disk, $\chi = 1$), $r_0 > 0$ (annulus, $\chi = 0$)

$$\log \tilde{Z}_{N,Q}^{(2)} = -2I_Q[\sigma_Q]N^2 + \frac{1}{2}N\log N + \left(\frac{\log(4\pi)}{2} - 1 + \int \log|w - \bar{w}| \, d\sigma_Q(w) - \frac{E_Q[\sigma_Q]}{2}\right)N + \left(\frac{1}{2} - \frac{\chi}{24}\right)\log N + \frac{\log(2\pi)}{2} + \frac{\chi}{2}\left(\zeta'(-1) + \frac{5\log 2}{12}\right) + \frac{1}{2}F_Q + \frac{1}{8}\log\left(\frac{\Delta Q(r_0)}{\Delta Q(r_1)}\right) + o(1).$$

• [Byun-Kang-S. 23] The asymptotic expansion for $\tilde{Z}_{N,Q}^{(2)}$ was obtained up to O(1) for radially symmetric Q with $\Delta Q > 0$ in \mathbb{C} .

- Droplet:
$$S_Q = \{z \in \mathbb{C} : r_0 \le |z| \le r_1\}.$$

- $r_0 = 0$ (disk, $\chi = 1$), $r_0 > 0$ (annulus, $\chi = 0$)

$$\log \tilde{Z}_{N,Q}^{(2)} = -2I_Q[\sigma_Q]N^2 + \frac{1}{2}N\log N + \left(\frac{\log(4\pi)}{2} - 1 + \int \log|w - \bar{w}| \, d\sigma_Q(w) - \frac{E_Q[\sigma_Q]}{2}\right)N + \left(\frac{1}{2} - \frac{\chi}{24}\right)\log N + \frac{\log(2\pi)}{2} + \frac{\chi}{2}\left(\zeta'(-1) + \frac{5\log 2}{12}\right) + \frac{1}{2}F_Q + \frac{1}{8}\log\left(\frac{\Delta Q(r_0)}{\Delta Q(r_1)}\right) + o(1).$$

Large N expansions of partition functions

Theorem (Byun-Kang-S. 2023)

For a radially symmetric potential Q which is smooth, subharmonic in C, and strictly subharmonic in a neighborhood of the droplet, we have

$$\begin{split} \log Z_{N,Q}^{(2)} &= -I_Q[\sigma_Q]N^2 + \frac{1}{2}N\log N + \left(\frac{\log(2\pi)}{2} - 1 - \frac{E_Q[\sigma_Q]}{2}\right)N \\ &+ \left(\frac{1}{2} - \frac{\chi}{12}\right)\log N + \left(\frac{\log(2\pi)}{2} + F_Q + \chi\,\zeta'(-1)\right) + O(N^{-1/12}(\log N)^3), \\ \log \tilde{Z}_{N,Q}^{(2)} &= -2I_Q[\sigma_Q]N^2 + \frac{1}{2}N\log N \\ &+ \left(\frac{\log(4\pi)}{2} - 1 + \int \log|w - \bar{w}|\,d\sigma_Q(w) - \frac{E_Q[\sigma_Q]}{2}\right)N \\ &+ \left(\frac{1}{2} - \frac{\chi}{24}\right)\log N \\ &+ \left(\frac{1}{2} - \frac{\chi}{24}\right)\log N \\ &+ \frac{\log(2\pi)}{2} + \frac{1}{2}F_Q + \frac{1}{8}\log\left(\frac{\Delta Q(r_0)}{\Delta Q(r_1)}\right) + \frac{\chi}{2}\left(\zeta'(-1) + \frac{5\log 2}{12}\right) \\ &+ O(N^{-1/12}(\log N)^3). \end{split}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Determinantal and Pfaffian structures

• The k-point correlation function of a point process $\{\zeta_j\}$:

$$\mathbf{R}_{N,k}(\eta_1, \cdots, \eta_k) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^{2k}} \mathbf{P}_N \left[\mathcal{N}(D(\eta_j, \epsilon)) \ge 1 \text{ for all } 0 \le j \le k \right],$$

where $\mathcal{N}(D)$ is the number of particles in $D \subset \mathbb{C}$.

Determinantal and Pfaffian structures

• The k-point correlation function of a point process $\{\zeta_j\}$:

 $\mathbf{R}_{N,k}(\eta_1, \cdots, \eta_k) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^{2k}} \mathbf{P}_N \left[\mathcal{N}(D(\eta_j, \epsilon)) \ge 1 \text{ for all } 0 \le j \le k \right],$ where $\mathcal{N}(D)$ is the number of particles in $D \subset \mathbb{C}$.

• For $\beta = 2$, the Coulomb gas forms a determinantal point process.

$$\mathbf{R}_{N,k}(\eta_1,\cdots,\eta_k) = \det\left(\mathbf{K}_N(\eta_i,\eta_j)\right)_{i,j=1}^k,$$

where $\mathbf{K}_N : \mathbb{C}^2 \to \mathbb{C}$ is called a correlation kernel.

• For $\beta = 2$, the Coulomb gas system with complex conjugation symmetry forms a Pfaffian point process.

$$\tilde{\mathbf{R}}_{N,k}(\zeta_1,\cdots,\zeta_k) = \prod_{j=1}^k (\bar{\zeta}_j - \zeta_j) \cdot \operatorname{Pf}_{1 \le i,j \le k} [\mathcal{K}_N(\zeta_i,\zeta_j)],$$

where the 2×2 matrix-valued kernel \mathcal{K}_N .

Correlation kernel for a determinantal Coulomb gas

• Correlation kernel

$$\mathbf{K}_N(\zeta,\eta) = \mathbf{k}_N(\zeta,\eta) e^{-NQ(\zeta)/2 - NQ(\eta)/2}$$

• \mathbf{k}_N : reproducing kernel for the space H_N of analytic polynomials of degree < N equipped with the inner product

$$\langle f,g \rangle = \int_{\mathbb{C}} f \,\bar{g} \,e^{-NQ} \,dA.$$

• $p_{N,j}$: orthonormal polynomial of degree j with respect to $e^{-NQ} dA$.

$$\mathbf{k}_N(\zeta,\eta) = \sum_{j=0}^{N-1} p_{N,j}(\zeta) \,\overline{p_{N,j}(\eta)}.$$

うして ふゆ く は く は く む く し く

Matrix kernel for a Pfaffian Coulomb gas

• The 2×2 matrix-valued kernel \mathcal{K}_N is defined as

$$\mathcal{K}_{N}(\zeta,\eta) = e^{-NQ(\zeta) - NQ(\eta)} \begin{pmatrix} \kappa_{N}(\zeta,\eta) & \kappa_{N}(\zeta,\bar{\eta}) \\ \kappa_{N}(\bar{\zeta},\eta) & \kappa_{N}(\bar{\zeta},\bar{\eta}) \end{pmatrix}.$$

• A skew-symmetric form

$$\langle f,g\rangle_s = \int_{\mathbb{C}} \left(f(\zeta)g(\bar{\zeta}) - g(\zeta)f(\bar{\zeta}) \right) (\zeta - \bar{\zeta})e^{-2NQ(\zeta)} dA(\zeta)$$

• Skew-orthogonality condition: for monic q_m of degree m $\langle q_{2k+1}, q_{2l+1} \rangle_s = \langle q_{2k}, q_{2l} \rangle_s = 0, \quad \langle q_{2k}, q_{2l+1} \rangle_s = -\langle q_{2l+1}, q_{2k} \rangle_s = r_k \delta_{k,l}$

with $r_k > 0$ being their skew-norms.

$$\kappa_N(\zeta,\eta) = \sum_{k=0}^{N-1} \frac{q_{2k+1}(\zeta)q_{2k}(\eta) - q_{2k}(\eta)q_{2k+1}(\eta)}{r_k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Cf. [Akemann-Ebke-Parra 22] Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels – Construction of SOP in terms of OP

Integrable structures

Using the determinantal structure (the Pfaffian structure) and de Bruijin's type formula, we have

$$\log Z_{N,Q}^{(2)} = \log N! + \sum_{j=0}^{N-1} \log h_j, \qquad \log \tilde{Z}_{N,Q}^{(2)} = \log N! + \sum_{j=0}^{N-1} \log r_j.$$

For a radially symmetric potential Q,

• h_j is the norm of the monic orthogonal polynomial of degree j with respect to e^{-NQ} .

$$h_j = \int_{\mathbb{C}} |z|^{2j} e^{-NQ(z)} \, dA(z).$$

• r_j is the skew norm of monic skew-orthogonal polynomial:

$$r_j = \langle q_{2j}, q_{2j+1} \rangle_s = 2\tilde{h}_{2j+1}, \qquad \tilde{h}_j := \int_{\mathbb{C}} |z|^{2j} e^{-2NQ(z)} \, dA(z).$$

うしゃ ふゆ きょう きょう うくの

Evolution of equilibrium measures

- Consider the potential $Q_{\tau} = Q/\tau$ for $\tau > 0$.
- Corresponding equilibrium measure: $d\sigma_{\tau} = \frac{1}{\tau} \mathbb{1}_{S_{\tau}} \Delta Q \, dA$
- Chain of S_{τ} : if $\tau_1 \leq \tau_2$ then $S_{\tau_1} \subset S_{\tau_2}$
- The movement of a boundary of the droplet S_{τ} follows a weighted Laplacian growth (or a weighted Hele-Shaw flow).
- The weighted orthogonal polynomial $|p_k(z)|^2 e^{-NQ}$ is concentrated near ∂S_{τ} with $\tau = k/N$.
- Asymptotic expansions of planar orthogonal polynomials for general potentials: [Hedenmalm-Wennman 21], [Hedenmalm 23]

Droplets and Hele-Shaw flows

- The droplets S_{τ} for radially symmetric cases:
- $Q(z) = |z|^2$ (disk case) and $Q(z) = |z|^2 2 \log |z|$ (annulus case). For $Q(z) = |z|^2$, $S_{\tau} = \{z \in \mathbb{C} : |z| \le \sqrt{\tau}\}$ (disk). For $Q(z) = |z|^2 - 2 \log |z|$, $S_{\tau} = \{z \in \mathbb{C} : 1 \le |z| \le \sqrt{1 + \tau}\}$ (annulus).

• Consider
$$S_0 = \lim_{\tau \to 0} S_{\tau}$$
.
For the disk case, S_0 is a point. For the annulus case, S_0 is a circle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

Weighted orthogonal polynomials

- $p_{N,j}$: an orthonormal polynomial of degree j with respect to e^{-NQ} .
- Graphs of $|p_{N,j}|^2 e^{-NQ}$ restricted on \mathbb{R} $(N = 100, j = 0, 10, \dots, 100)$.
- For $\tau = j/N$, the graph has a pick near the outer boundary of S_{τ} .
- Except lower degree polynomials for the disk case, $|p_{N,j}|^2 e^{-NQ}$ is asymptotically gaussian.

Weighted orthogonal polynomial norms

• For radially symmetric cases,

$$\log Z_N^{(2)} = \log N! + \sum_{j=0}^{N-1} \log h_j, \quad h_j = \int_{\mathbb{C}} |z|^{2j} e^{-NQ} \, dA.$$

• For $\tau = j/N$, let r_{τ} be the radius of outer boundary of S_{τ} .

- We distinguish the following two cases for $\epsilon > 0$.
- Case 1 $(r_{\tau} \gg N^{-\epsilon})$: If $r_0 > 0$ (annulus), this case covers all $j = 0, 1, \dots, N-1$. If $r_0 = 0$ (disk), this case covers $j = N^{\varepsilon}, \dots, N-1$ with some $\varepsilon > 0$.
- Case 2 $(r_{\tau} \ll N^{-\epsilon})$:

This covers the lower degree terms of disk droplet case $(r_0 = 0)$ $j = 0, \dots, N^{\varepsilon} - 1.$

うして ふゆ く は く は く む く し く

Radially symmetric cases

- Let r_{τ} be the radius of outer boundary of S_{τ} .
- If $\Delta Q > 0$, the function

$$V_{\tau}(r) = Q(r) - 2\tau \log r, \quad r \ge 0$$

has a unique local minimum at $r = r_{\tau}$.

• Apply the Laplace method to

$$h_j = \int_{\mathbb{C}} |z|^{2j} e^{-NQ} \, dA = \int_0^\infty e^{-NV_{\tau(j)}(r)} r \, dr, \quad \tau = \frac{j}{N}$$

for the case when $r_{\tau} \gg N^{-\epsilon}$.

• If $r_{\tau} \ll N^{-\epsilon}$, different estimates are used for h_j .

Radially symmetric case: annular droplet

• Annular case $(r_0 > 0)$: for each j with $0 \le j \le N - 1$,

$$\log h_j \sim -NV_\tau(r_\tau) + \frac{1}{2} \left(\log(2\pi r_\tau^2) - \log N - \log \Delta Q(r_\tau) \right) + \frac{1}{N} \mathcal{B}_1(r_\tau)$$

• Apply the Euler-Maclaurin formula

$$\sum_{j=m}^{n} f(j) = \int_{m}^{n} f(x) \, dx + \frac{f(m) + f(n)}{2} + \sum_{k=1}^{l-1} \frac{B_{2k}}{(2k)!} \left(f^{(2k-1)}(n) - f^{(2k-1)}(m) \right) + \cdots$$

to obtain the large N expansion of

$$\log Z_{N,Q}^{(2)} = \log N! + \sum_{j=0}^{N-1} \log h_j.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Radially symmetric case: disk droplet

• Disk case $(r_0 = 0)$: we compute

$$\sum_{j=0}^{n-1} \log h_j = \sum_{j=0}^{m_N-1} \log h_j + \sum_{j=m_N}^{N-1} \log h_j,$$

where $m_N = N^{\epsilon}$.

• For
$$j = 0, 1, \dots, m_N - 1$$
,
 $\log h_j = -NQ(0) - (j+1)\log\left(\frac{N}{2}\partial_r^2 Q(0)\right) + \log j!$
 $+ O\left(N^{-\frac{1}{2}}(j+1)^{\frac{3}{2}}(\log N)^3\right).$

• For
$$j = m_N, \cdots, N-1$$
,
 $\log h_j = -NV_{\tau(j)}(r_{\tau(j)}) + \frac{1}{2} \Big(\log(2\pi r_{\tau(j)}^2) - \log N - \log \Delta Q(r_{\tau(j)}) \Big)$
 $+ \frac{1}{N} \mathcal{B}_1(r_{\tau(j)}) + O(j^{-\frac{3}{2}} (\log N)^{\alpha}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Spherical one-component plasma

Complex spherical ensemble

• $Q(z) = \frac{N+1}{N} \log(1+|z|^2)$

• Partition function

$$\log Z_{N,Q} = -\frac{N^2}{2} + \frac{1}{2}N\log N + \left(\frac{\log(2\pi)}{2} - 1\right)N + \frac{6-\chi}{12}\log N + \frac{\log(2\pi)}{2} - \frac{1}{12} + \chi\zeta'(-1) + O(N^{-2}).$$

Here, the Euler characteristic is $\chi = 2$.

- [Byun-Park 24] Large gap probabilities of complex and symplectic spherical ensembles with point charges.
- [Byun-Kang-S.-Yang] Partition functions of determinantal and symplectic spherical one component plasma, in preparation

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ