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Ginibre ensemble (Ginibre, 1965)

Consider a random matrix X = (Xi,j)
N
i,j=1 whose entries are independent

and identically distributed Gaussian random variables.

Complex Ginibre ensemble : Xi,j takes values in C.
- The system of eigenvalues has an interpretation as a 2D Coulomb gas
system at a specific temperature in a specific external field.

Symplectic Ginibre ensemble : Xi,j takes values in the field of real
quaternions.

- The system of 2N complex eigenvalues can be interpreted as a 2D
Coulomb gas system with complex conjugation symmetry.
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System of points with 2D Coulomb interactions

Complex Ginibre ensemble

(N = 2000)

Symplectic Ginibre ensemble

(N = 2000)



2D Coulomb gas system

We consider a system of N charged particles in C with pairwise logarithmic
interaction, subject to a confining external potential Q : C → R ∪ {∞}.

The Hamiltonian of the system:

HN (z1, · · · , zN ) = −
∑
i ̸=j

log |zi − zj |+N

N∑
j=1

Q(zj), zi ∈ C

The Boltzmann factor of the system is proportional to

e−
β
2 HN (z1,··· ,zN ) =

∏
i<j

|zi − zj |β
N∏
j=1

e−
β
2 NQ(zj), zi ∈ C.

Here, β > 0 is the inverse temperature.

Q(z) = |z|2 and β = 2: Complex Ginibre ensemble.



2D Coulomb gas with complex conjugation symmetry

A system of charged particles with complex conjugation symmetry subject
to a confining external potential Q(z) = Q(z̄).

◦ Hamiltonian of the system:

H̃N = −
∑
j ̸=k

log (|zj − zk||zj − z̄k|)−
N∑

j=1

log |zj − z̄j |2 + 2N

N∑
j=1

Q(zj)

◦ The Boltzmann factor of the system is proportional to

e−
β
2 H̃N (z1,··· ,zN ) =

∏
j<k

|zj − zk|β |zj − z̄k|β
N∏
j=1

|zj − z̄j |βe−βNQ(zj)

◦ Q(z) = |z|2 and β = 2: Symplectic Ginibre ensemble.



2D Coulomb gas ensemble

Q(z) = |z|2

-1.5 -1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Q(z) = |z|2 − 2 log |z|



Equilibrium measures and droplets

Q is a smooth potential satisfying Q(z) ≫ 2 log |z| near infinity.

Convergence of the empirical measure for 2D Coloumb gas system
[Johansson 98, Hedenmalm-Makarov 13, Chafäı-Gozlan-Zitt 14]

1

N

N∑
j=1

δzj → σQ, N → ∞.

Equilibrium measure σQ: a unique probability measure that minimizes
the weighted logarithmic energy

IQ[µ] =

∫∫
C2

log
1

|z − t|
dµ(z) dµ(t) +

∫
C
Qdµ.

σQ is of the form dσQ(z) = 1SQ
(z)∆Q(z) dA(z), dA(z) = d2z/π,

where ∆ = ∂∂̄ and SQ is the compact support called the droplet.
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Droplets with radially symmetric potentials

For a radially symmetric potential Q(z) = q(|z|) that is strictly
subharmonic,

S = {z ∈ C : r0 ≤ |z| ≤ r1},

where the pair of constant (r0, r1) is characterized by

r0q
′(r0) = 0, r1q

′(r1) = 1.

If Q(z) = |z|2

dσQ(z) = 1S(z) dA(z), S = {z ∈ C : |z| ≤ 1}

If Q(z) = |z|2λ − 2c log |z| (c > 0),

dσQ(z) = λ2|z|2λ−2 1S(z) dA(z), S = {
(
c
λ

) 1
2λ ≤ |z| ≤ ( c+1

λ )
1
2λ }.
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Partition function for the Coulomb gas

Partition functions of the 2D Coulomb gas system:

Z
(β)
N,Q =

∫
CN

∏
i<j

|zi − zj |β
N∏
j=1

e−
β
2 NQ(zj)dA(zj),

Z̃
(β)
N,Q =

∫
CN

∏
j<k

|zj − zk|β |zj − z̄k|β
N∏
j=1

|zj − z̄j |βe−βNQ(zj) dA(zj).



Partition function for the Coulomb gas

Partition functions of the 2D Coulomb gas system (complex)

Z
(β)
N,Q =

∫
CN

∏
i<j

|zi − zj |β
N∏
j=1

e−
β
2 NQ(zj)dA(zj).

Asymptotic up to the O(N)-term:
[Leblé and Serfaty, 17], [Bauerschmidt, Bourgade, Nikula, and Yau, 19]

logZ
(β)
N,Q ∼− β

2
IQ[σQ]N

2 +
β

4
N logN −

(
C(β) +

(
1− β

4

)
EQ[σQ]

)
N,

where C(β) is a constant independent of the potential Q.

◦ IQ[σQ]: the weighted logarithmic energy.

◦ EQ[σQ] =
∫
C log∆QdσQ: the entropy associated with σQ.



Conjecture on the partition functions

An explicit formula for the large N expansion of Z
(β)
N,Q was predicted

by Zabrodin and Wiegmann (2006).

It was predicted that

logZ
(β)
N,Q ∼ C0N

2 + C1N logN + C2N + C3 logN + C4

and they proposed the explicit formulas for the constants
Ci = Ci(Q, β) (i = 1, · · · , 4).



Conjecture on the partition functions

Zabrodin-Wiegmann conjecture: [Zabrodin-Wiegmann, 06]

logZ
(β)
N,Q ∼ C0N

2 + C1N logN + C2N + C3 logN + C4.

Jancovici et al. conjecture:

logZ
(β)
N,Q ∼ C0N

2 + C1N logN + C2N + αβ

√
N + C3,χ logN

⋆ C3,χ =
(
1
2 − χ

12

)
where χ is the Euler index of the droplet.

(χ = 1 for a disk, χ = 2 for a sphere)

[Jancovici, Manificat, and Pisani, 94], [Téllez and Forrester, 99]

⋆ For the disk geometry, αβ = − 4
3
√
π
log(β/2) (surface tension).

Lutsyshin, [Can, Forrester, Téllez, and Wiegmann, 15]



Results on the partition functions (β = 2, complex)

It is conjectured that if the droplet is connected, the partition function has
the asymptotic expansion of the form

logZ
(2)
N,Q = −IQ[σQ]N

2 +
1

2
N logN +

( log(2π)
2

− 1− 1

2
EQ[σQ]

)
N

+
6− χ

12
logN +

log(2π)

2
+ χζ ′(−1) + FQ + o(1),

where χ is the Euler characteristic of the droplet and ζ is the Riemann
zeta function.

[Byun-Kang-S. 23] The asymptotic expansion was obtained up to O(1)
for radially symmetric Q with ∆Q > 0 in C.

- The formulae for the O(logN) and O(1) terms depend on whether the
droplet is an annulus(χ = 0) or a disk(χ = 1).

- The coefficient of logN agrees with the Jancovici et al. conjecture.
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Results on the partition functions (β = 2, complex)

[Byun-Kang-S. 23] The asymptotic expansion is obtained up to O(1)
for radially symmetric Q with ∆Q > 0 in C.

- The droplet: SQ = {z ∈ C : r0 ≤ |z| ≤ r1}.

- r0 = 0: disk (χ = 1), r0 > 0: annulus (χ = 0).

- O(1) term:
1

2
log(2π) + FQ + χ ζ ′(−1),

FQ =
1

12
log

( 1

r21∆Q(r1)

)
− 1

16
r1

(∂r∆Q)(r1)

∆Q(r1)
+

1

24

∫ r1

r0

(∂r∆Q(r)

∆Q(r)

)2

r dr

+


0 if r0 = 0 (χ = 1),

1

12
log(r20∆Q(r0)) +

1

16
r0

(∂r∆Q)(r0)

∆Q(r0)
if r0 > 0 (χ = 0).
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Results on the partition functions (β = 2, complex)

[Webb-Wong 19], [Deaño-Simm 22], [Byun-Charlier 22]
Characteristic polynomials for complex random matrices.

[Charlier 23]
Large gap asymptotics on annuli in the random normal matrix model.

[Ameur-Charlier-Cronvall 23]

The asymptotic expansion has been studied for radially symmetric Q
when the droplet has multiple components.

logZ
(2)
N,Q = −IQ[σQ]N

2 +
1

2
N logN +

( log(2π)
2

− 1− 1

2
EQ[σQ]

)
N

+
6− χ

12
logN +

log(2π)

2
+ χζ ′(−1) + FQ + Gn + o(1)

[Byun-S.-Yang 24] The asymptotic expansion is obtained for the
non-radially symmetric potential

Q(z) = |z|2 − 2c log |z − a|, c > 0 and a ∈ C.



Results on the partition functions (β = 2, symplectic)

Partition function of the 2D Coulomb gas system (symplectic case)

Z̃
(β)
N,Q =

∫
CN

∏
j<k

|zj − zk|β |zj − z̄k|β
N∏
j=1

|zj − z̄j |βe−βNQ(zj) dA(zj)

[Byun-Kang-S. 23] The asymptotic expansion for Z̃
(2)
N,Q was obtained

up to O(1) for radially symmetric Q with ∆Q > 0 in C.



Results on the partition functions (β = 2, symplectic)

[Byun-Kang-S. 23] The asymptotic expansion for Z̃
(2)
N,Q was obtained

up to O(1) for radially symmetric Q with ∆Q > 0 in C.

- Droplet: SQ = {z ∈ C : r0 ≤ |z| ≤ r1}.

- r0 = 0 (disk, χ = 1), r0 > 0 (annulus, χ = 0)

log Z̃
(2)
N,Q =− 2IQ[σQ]N

2 +
1

2
N logN

+
( log(4π)

2
− 1 +

∫
log |w − w̄| dσQ(w)−

EQ[σQ]

2

)
N

+
(1
2
− χ

24

)
logN +

log(2π)

2
+

χ

2

(
ζ ′(−1) +

5 log 2

12

)
+

1

2
FQ +

1

8
log

(∆Q(r0)

∆Q(r1)

)
+ o(1).
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8
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Large N expansions of partition functions

Theorem (Byun-Kang-S. 2023)

For a radially symmetric potential Q which is smooth, subharmonic in C,
and strictly subharmonic in a neighborhood of the droplet, we have

logZ
(2)
N,Q = −IQ[σQ]N

2 +
1

2
N logN +

( log(2π)
2

− 1− EQ[σQ]

2

)
N

+
(1
2
− χ

12

)
logN +

( log(2π)
2

+ FQ + χ ζ′(−1)
)
+O(N−1/12(logN)3),

log Z̃
(2)
N,Q = −2IQ[σQ]N

2 +
1

2
N logN

+
( log(4π)

2
− 1 +

∫
log |w − w̄| dσQ(w)− EQ[σQ]

2

)
N

+
(1
2
− χ

24

)
logN

+
log(2π)

2
+

1

2
FQ +

1

8
log

(∆Q(r0)

∆Q(r1)

)
+

χ

2

(
ζ′(−1) +

5 log 2

12

)
+O(N−1/12(logN)3).



Determinantal and Pfaffian structures

The k-point correlation function of a point process {ζj}:

RN,k(η1, · · · , ηk) = lim
ϵ→0

1

ϵ2k
PN [N (D(ηj , ϵ)) ≥ 1 for all 0 ≤ j ≤ k ] ,

where N (D) is the number of particles in D ⊂ C.

For β = 2, the Coulomb gas forms a determinantal point process.

RN,k(η1, · · · , ηk) = det (KN (ηi, ηj))
k
i,j=1 ,

where KN : C2 → C is called a correlation kernel.

For β = 2, the Coulomb gas system with complex conjugation
symmetry forms a Pfaffian point process.

R̃N,k(ζ1, · · · , ζk) =
k∏

j=1

(ζ̄j − ζj) · Pf1≤i,j≤k[KN (ζi, ζj)],

where the 2× 2 matrix-valued kernel KN .
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Correlation kernel for a determinantal Coulomb gas

Correlation kernel

KN (ζ, η) = kN (ζ, η) e−NQ(ζ)/2−NQ(η)/2.

kN : reproducing kernel for the space HN of analytic polynomials of
degree < N equipped with the inner product

⟨f, g⟩ =
∫
C
f ḡ e−NQ dA.

pN,j : orthonormal polynomial of degree j with respect to e−NQ dA.

kN (ζ, η) =

N−1∑
j=0

pN,j(ζ) pN,j(η).



Matrix kernel for a Pfaffian Coulomb gas

The 2× 2 matrix-valued kernel KN is defined as

KN (ζ, η) = e−NQ(ζ)−NQ(η)

(
κN (ζ, η) κN (ζ, η̄)
κN (ζ̄, η) κN (ζ̄, η̄)

)
.

A skew-symmetric form

⟨f, g⟩s =
∫
C

(
f(ζ)g(ζ̄)− g(ζ)f(ζ̄)

)
(ζ − ζ̄)e−2NQ(ζ)dA(ζ)

Skew-orthogonality condition: for monic qm of degree m

⟨q2k+1, q2l+1⟩s = ⟨q2k, q2l⟩s = 0, ⟨q2k, q2l+1⟩s = −⟨q2l+1, q2k⟩s = rkδk,l

with rk > 0 being their skew-norms.

κN (ζ, η) =

N−1∑
k=0

q2k+1(ζ)q2k(η)− q2k(η)q2k+1(η)

rk
.

Cf. [Akemann-Ebke-Parra 22] Skew-orthogonal polynomials in the complex

plane and their Bergman-like kernels – Construction of SOP in terms of OP



Integrable structures

Using the determinantal structure (the Pfaffian structure) and de Bruijin’s
type formula, we have

logZ
(2)
N,Q = logN ! +

N−1∑
j=0

log hj , log Z̃
(2)
N,Q = logN ! +

N−1∑
j=0

log rj .

For a radially symmetric potential Q,

hj is the norm of the monic orthogonal polynomial of degree j with
respect to e−NQ.

hj =

∫
C
|z|2je−NQ(z) dA(z).

rj is the skew norm of monic skew-orthogonal polynomial:

rj = ⟨q2j , q2j+1⟩s = 2h̃2j+1, h̃j :=

∫
C
|z|2je−2NQ(z) dA(z).



Evolution of equilibrium measures

Consider the potential Qτ = Q/τ for τ > 0.

Corresponding equilibrium measure: dστ = 1
τ 1Sτ

∆QdA

Chain of Sτ : if τ1 ≤ τ2 then Sτ1 ⊂ Sτ2

The movement of a boundary of the droplet Sτ follows a weighted
Laplacian growth (or a weighted Hele-Shaw flow).

The weighted orthogonal polynomial |pk(z)|2e−NQ is concentrated
near ∂Sτ with τ = k/N .

Asymptotic expansions of planar orthogonal polynomials for general
potentials: [Hedenmalm-Wennman 21], [Hedenmalm 23]



Droplets and Hele-Shaw flows

The droplets Sτ for radially symmetric cases:

Q(z) = |z|2(disk case) and Q(z) = |z|2 − 2 log |z|(annulus case).

For Q(z) = |z|2, Sτ = {z ∈ C : |z| ≤
√
τ} (disk).

For Q(z) = |z|2 − 2 log |z|, Sτ = {z ∈ C : 1 ≤ |z| ≤
√
1 + τ} (annulus).

Consider S0 = limτ→0 Sτ .

For the disk case, S0 is a point. For the annulus case, S0 is a circle.
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Weighted orthogonal polynomials

pN,j : an orthonormal polynomial of degree j with respect to e−NQ.

Graphs of |pN,j |2e−NQ restricted on R (N = 100, j = 0, 10, · · · , 100).

For τ = j/N , the graph has a pick near the outer boundary of Sτ .

Except lower degree polynomials for the disk case,

|pN,j |2e−NQ is asymptotically gaussian.
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Weighted orthogonal polynomial norms

For radially symmetric cases,

logZ
(2)
N = logN ! +

N−1∑
j=0

log hj , hj =

∫
C
|z|2je−NQ dA.

For τ = j/N , let rτ be the radius of outer boundary of Sτ .

We distinguish the following two cases for ϵ > 0.

- Case 1 (rτ ≫ N−ϵ) :

If r0 > 0 (annulus), this case covers all j = 0, 1, · · · , N − 1.

If r0 = 0 (disk), this case covers j = Nε, · · · , N − 1 with some ε > 0.

- Case 2 (rτ ≪ N−ϵ) :

This covers the lower degree terms of disk droplet case (r0 = 0)
j = 0, · · · , Nε − 1.



Radially symmetric cases

Let rτ be the radius of outer boundary of Sτ .

If ∆Q > 0, the function

Vτ (r) = Q(r)− 2τ log r, r ≥ 0

has a unique local minimum at r = rτ .

Apply the Laplace method to

hj =

∫
C
|z|2je−NQ dA =

∫ ∞

0

e−NVτ(j)(r)r dr, τ =
j

N

for the case when rτ ≫ N−ϵ.

If rτ ≪ N−ϵ, different estimates are used for hj .



Radially symmetric case: annular droplet

Annular case (r0 > 0): for each j with 0 ≤ j ≤ N − 1,

log hj ∼−NVτ (rτ ) +
1

2

(
log(2πr2τ )− logN − log∆Q(rτ )

)
+

1

N
B1(rτ )

Apply the Euler-Maclaurin formula

n∑
j=m

f(j) =

∫ n

m

f(x) dx+
f(m) + f(n)

2

+

l−1∑
k=1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(m)

)
+ · · · .

to obtain the large N expansion of

logZ
(2)
N,Q = logN ! +

N−1∑
j=0

log hj .



Radially symmetric case: disk droplet

Disk case (r0 = 0): we compute

n−1∑
j=0

log hj =

mN−1∑
j=0

log hj +

N−1∑
j=mN

log hj ,

where mN = N ϵ.

For j = 0, 1, · · · ,mN − 1,

log hj =−NQ(0)− (j + 1) log
(N
2
∂2
rQ(0)

)
+ log j!

+O
(
N− 1

2 (j + 1)
3
2 (logN)3

)
.

For j = mN , · · · , N − 1,

log hj =−NVτ(j)(rτ(j)) +
1

2

(
log(2πr2τ(j))− logN − log∆Q(rτ(j))

)
+

1

N
B1(rτ(j)) +O(j−

3
2 (logN)α).



Spherical one-component plasma

Complex spherical ensemble

Q(z) = N+1
N log(1 + |z|2)

Partition function

logZN,Q = −N2

2
+

1

2
N logN +

( log(2π)
2

− 1
)
N +

6− χ

12
logN

+
log(2π)

2
− 1

12
+ χζ′(−1) +O(N−2).

Here, the Euler characteristic is χ = 2.

[Byun-Park 24] Large gap probabilities of complex and symplectic spherical

ensembles with point charges.

[Byun-Kang-S.-Yang] Partition functions of determinantal and symplectic

spherical one component plasma, in preparation



Thank you for your attention!


