Fluctuations in various regimes of non-Hermiticity

(joint work with G. Akemann and M. Duits)

Leslie Molag

Carlos III University Madrid

May 10, 2024

- The complex elliptic Ginibre ensemble with parameter $0 \leq \tau<1$ consists of $n \times n$ complex matrices M distributed by

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr} V(M)} d M_{n}, \quad d M_{n}=\prod_{1 \leq i, j \leq n} d \operatorname{Re} M_{i j} d \operatorname{Im} M_{i j}
$$

where $V(z)=\frac{|z|^{2}-\tau \operatorname{Re}\left(z^{2}\right)}{1-\tau^{2}}=\frac{z \bar{z}-\frac{\tau}{2}\left(z^{2}+\bar{z}^{2}\right)}{1-\tau^{2}}$
(Ginibre 1965, Girko 1984).

- The complex elliptic Ginibre ensemble with parameter $0 \leq \tau<1$ consists of $n \times n$ complex matrices M distributed by

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr} V(M)} d M_{n}, \quad d M_{n}=\prod_{1 \leq i, j \leq n} d \operatorname{Re} M_{i j} d \operatorname{Im} M_{i j}
$$

where $V(z)=\frac{|z|^{2}-\tau \operatorname{Re}\left(z^{2}\right)}{1-\tau^{2}}=\frac{z \bar{z}-\frac{\tau}{2}\left(z^{2}+\bar{z}^{2}\right)}{1-\tau^{2}}$
(Ginibre 1965, Girko 1984).

- The elliptic Ginibre ensemble interpolates between the Ginibre ensemble ($\tau=0$) and the Gaussian unitary ensemble ($\tau \uparrow 1$).
- The complex elliptic Ginibre ensemble with parameter $0 \leq \tau<1$ consists of $n \times n$ complex matrices M distributed by

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr} V(M)} d M_{n}, \quad d M_{n}=\prod_{1 \leq i, j \leq n} d \operatorname{Re} M_{i j} d \operatorname{Im} M_{i j}
$$

where $V(z)=\frac{|z|^{2}-\tau \operatorname{Re}\left(z^{2}\right)}{1-\tau^{2}}=\frac{z \bar{z}-\frac{\tau}{2}\left(z^{2}+\bar{z}^{2}\right)}{1-\tau^{2}}$
(Ginibre 1965, Girko 1984).

- The elliptic Ginibre ensemble interpolates between the Ginibre ensemble ($\tau=0$) and the Gaussian unitary ensemble ($\tau \uparrow 1$).
- The eigenvalues of the (elliptic) Ginibre ensemble live in the complex plane while those of the Gaussian unitary ensemble are real.
- The complex elliptic Ginibre ensemble with parameter $0 \leq \tau<1$ consists of $n \times n$ complex matrices M distributed by

$$
\frac{1}{Z_{n}} e^{-n \operatorname{Tr} V(M)} d M_{n}, \quad d M_{n}=\prod_{1 \leq i, j \leq n} d \operatorname{Re} M_{i j} d \operatorname{Im} M_{i j}
$$

where $V(z)=\frac{|z|^{2}-\tau \operatorname{Re}\left(z^{2}\right)}{1-\tau^{2}}=\frac{z \bar{z}-\frac{\tau}{2}\left(z^{2}+\bar{z}^{2}\right)}{1-\tau^{2}}$
(Ginibre 1965, Girko 1984).

- The elliptic Ginibre ensemble interpolates between the Ginibre ensemble ($\tau=0$) and the Gaussian unitary ensemble ($\tau \uparrow 1$).
- The eigenvalues of the (elliptic) Ginibre ensemble live in the complex plane while those of the Gaussian unitary ensemble are real.
- The eigenvalues are distributed by

$$
\rho_{n}\left(z_{1}, \ldots, z_{n}\right)=\frac{1}{c_{n}} \prod_{1 \leq i<j \leq n}\left|z_{i}-z_{j}\right|^{2} \prod_{j=1}^{n} e^{-n V\left(z_{j}\right)}, \quad z_{1}, \ldots, z_{n} \in \mathbb{C}
$$

- (Elliptic law) Its eigenvalues accumulate on an elliptic droplet

$$
\lim _{n \rightarrow \infty} \rho_{n}^{(1)}(z)= \begin{cases}\frac{1}{\pi\left(1-\tau^{2}\right)}, & z \in \mathscr{E}_{\tau}, \\ 0, & z \in \mathbb{C} \backslash \overline{\mathscr{E}_{\tau}},\end{cases}
$$

where

$$
\mathscr{E}_{\tau}=\left\{z \in \mathbb{C}:\left(\frac{\operatorname{Re} z}{1+\tau}\right)^{2}+\left(\frac{\operatorname{Im} z}{1-\tau}\right)^{2}<1\right\}
$$

- The eigenvalues of the elliptic Ginibre ensemble form a DPP

$$
\begin{aligned}
\rho_{n}^{(k)}\left(z_{1}, \ldots, z_{k}\right): & =\frac{n!}{(n-k)!} \int_{\mathbb{C}^{n-k}} \rho_{n}\left(z_{1}, \ldots, z_{n}\right) d^{2} z_{k+1} \cdots d^{2} z_{n} \\
& =\operatorname{det}\left(\mathscr{K}_{n}\left(z_{i}, z_{j}\right)\right)_{1 \leq i, j \leq k}
\end{aligned}
$$

with correlation kernel constructed with planar orthogonal polynomials

$$
\mathscr{K}_{n}(z, w)=\sqrt{\omega(z) \omega(w)} \sum_{j=0}^{n-1} P_{j}(z) \overline{P_{j}(w)}, \quad z, w \in \mathbb{C},
$$

where $\omega(z)=e^{-n V(z)}$ and $\int_{\mathbb{C}} P_{i}(z) \overline{P_{j}(z)} \omega(z) d^{2} z=\delta_{i j}$.

- The eigenvalues of the elliptic Ginibre ensemble form a DPP

$$
\begin{aligned}
\rho_{n}^{(k)}\left(z_{1}, \ldots, z_{k}\right): & =\frac{n!}{(n-k)!} \int_{\mathbb{C}^{n-k}} \rho_{n}\left(z_{1}, \ldots, z_{n}\right) d^{2} z_{k+1} \cdots d^{2} z_{n} \\
& =\operatorname{det}\left(\mathscr{K}_{n}\left(z_{i}, z_{j}\right)\right)_{1 \leq i, j \leq k}
\end{aligned}
$$

with correlation kernel constructed with planar orthogonal polynomials

$$
\mathscr{K}_{n}(z, w)=\sqrt{\omega(z) \omega(w)} \sum_{j=0}^{n-1} P_{j}(z) \overline{P_{j}(w)}, \quad z, w \in \mathbb{C}
$$

where $\omega(z)=e^{-n V(z)}$ and $\int_{\mathbb{C}} P_{i}(z) \overline{P_{j}(z)} \omega(z) d^{2} z=\delta_{i j}$.

- Explicitly, we have

$$
P_{j}(z)= \begin{cases}\sqrt{\frac{n}{\pi j!}} z^{j}, & \tau=0, \\ \sqrt{\frac{n}{\pi j!}}\left(1-\tau^{2}\right)^{\frac{1}{4}}\left(\frac{\tau}{2}\right)^{\frac{j}{2}} H_{j}\left(\sqrt{\frac{n}{2 \tau}} z\right), & \tau \in(0,1),\end{cases}
$$

where $H_{j}(z)=(-1)^{n} e^{z^{2}} \frac{d^{j}}{d z^{j}} e^{-z^{2}}$ are Hermite polynomials of degree j.

Local scaling limits

- (Bulk scaling limit: Ginibre kernel) For $z \in \mathscr{E}_{\tau}$ and $u, v \in \mathbb{C}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1-\tau^{2}}{n} \mathscr{K}_{n}\left(z+\sqrt{\frac{1-\tau^{2}}{n}} u, z\right. & \left.+\sqrt{\frac{1-\tau^{2}}{n}} v\right) \\
& \equiv \frac{1}{\pi} \exp \left(u \bar{v}-\frac{|u|^{2}+|v|^{2}}{2}\right)
\end{aligned}
$$

Local scaling limits

- (Bulk scaling limit: Ginibre kernel) For $z \in \mathscr{E}_{\tau}$ and $u, v \in \mathbb{C}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1-\tau^{2}}{n} \mathscr{K}_{n}\left(z+\sqrt{\frac{1-\tau^{2}}{n}} u, z\right. & \left.+\sqrt{\frac{1-\tau^{2}}{n}} v\right) \\
& \equiv \frac{1}{\pi} \exp \left(u \bar{v}-\frac{|u|^{2}+|v|^{2}}{2}\right)
\end{aligned}
$$

- (Edge scaling limit: Faddeeva plasma kernel) For $z \in \partial \mathscr{E}_{\tau}$ and $u, v \in \mathbb{C}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1-\tau^{2}}{n} \mathscr{K}_{n}(z+ & \left.\sqrt{\frac{1-\tau^{2}}{n}} u \vec{n}(z), z+\sqrt{\frac{1-\tau^{2}}{n}} v \vec{n}(z)\right) \\
& \equiv \frac{1}{\pi} \exp \left(u \bar{v}-\frac{|u|^{2}+|v|^{2}}{2}\right) \operatorname{erfc}\left(\frac{u+\bar{v}}{\sqrt{2}}\right)
\end{aligned}
$$

(Lee and Riser 2016)

Local scaling limits

- (Bulk scaling limit: Ginibre kernel) For $z \in \mathscr{E}_{\tau}$ and $u, v \in \mathbb{C}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1-\tau^{2}}{n} \mathscr{K}_{n}\left(z+\sqrt{\frac{1-\tau^{2}}{n}} u, z\right. & \left.+\sqrt{\frac{1-\tau^{2}}{n}} v\right) \\
& \equiv \frac{1}{\pi} \exp \left(u \bar{v}-\frac{|u|^{2}+|v|^{2}}{2}\right) .
\end{aligned}
$$

- (Edge scaling limit: Faddeeva plasma kernel) For $z \in \partial \mathscr{E}_{\tau}$ and $u, v \in \mathbb{C}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1-\tau^{2}}{n} \mathscr{K}_{n}(z+ & \left.\sqrt{\frac{1-\tau^{2}}{n}} u \vec{n}(z), z+\sqrt{\frac{1-\tau^{2}}{n}} v \vec{n}(z)\right) \\
& \equiv \frac{1}{\pi} \exp \left(u \bar{v}-\frac{|u|^{2}+|v|^{2}}{2}\right) \operatorname{erfc}\left(\frac{u+\bar{v}}{\sqrt{2}}\right) .
\end{aligned}
$$

(Lee and Riser 2016)

- These local scaling limits are universal (bulk: Ameur, Hedenmalm, Makarov 2010, edge: Tao, Vu 2015, Cipolloni, Erdős, Schröder 2021, Hedenmalm, Wennman 2021.)

Weak non-Hermiticity regime

- The weak non-Hermiticity regime was pioneered by Fyodorov, Khoruzhenko, and Sommers '97.

Weak non-Hermiticity regime

- The weak non-Hermiticity regime was pioneered by Fyodorov, Khoruzhenko, and Sommers '97.
- One considers

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha, \kappa>0 \text { fixed }
$$

($\alpha=0$ is called strong non-Hermiticity)

Weak non-Hermiticity regime

- The weak non-Hermiticity regime was pioneered by Fyodorov, Khoruzhenko, and Sommers '97.
- One considers

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha, \kappa>0 \text { fixed }
$$

($\alpha=0$ is called strong non-Hermiticity)

- (bulk) For $\alpha=1$ they showed that for $x \in(-2,2)$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{1}{n^{2}} \mathscr{K}_{n}\left(x+\frac{u}{n}, x+\frac{v}{n}\right) \\
& \equiv \frac{1}{2 \sqrt{\pi \kappa}} e^{-\frac{\operatorname{lm}(u)^{2}+\operatorname{lm}(v)^{2}}{2 \kappa}} \int_{0}^{\frac{1}{2 \pi} \sqrt{4-x^{2}}} e^{-\pi \kappa t^{2}} \cos (2 \pi(u-\bar{v}) t) d t
\end{aligned}
$$

Weak non-Hermiticity regime

- The weak non-Hermiticity regime was pioneered by Fyodorov, Khoruzhenko, and Sommers '97.
- One considers

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha, \kappa>0 \text { fixed }
$$

($\alpha=0$ is called strong non-Hermiticity)

- (bulk) For $\alpha=1$ they showed that for $x \in(-2,2)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \mathscr{K}_{n}\left(x+\frac{u}{n}, x+\frac{v}{n}\right) \\
& \quad \equiv \frac{1}{2 \sqrt{\pi \kappa}} e^{-\frac{\operatorname{lm}(u)^{2}+\ln (v)^{2}}{2 \kappa}} \int_{0}^{\frac{1}{2 \pi} \sqrt{4-x^{2}}} e^{-\pi \kappa t^{2}} \cos (2 \pi(u-\bar{v}) t) d t
\end{aligned}
$$

- For $\kappa \downarrow 0$ one obtains the sine kernel, for $\kappa \rightarrow \infty$ one obtains the Ginibre kernel.

Weak non-Hermiticity regime

- The weak non-Hermiticity regime was pioneered by Fyodorov, Khoruzhenko, and Sommers '97.
- One considers

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha, \kappa>0 \text { fixed }
$$

($\alpha=0$ is called strong non-Hermiticity)

- (bulk) For $\alpha=1$ they showed that for $x \in(-2,2)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \mathscr{K}_{n}\left(x+\frac{u}{n}, x+\frac{v}{n}\right) \\
& \quad \equiv \frac{1}{2 \sqrt{\pi \kappa}} e^{-\frac{\operatorname{lm}(u)^{2}+\ln (v)^{2}}{2 \kappa}} \int_{0}^{\frac{1}{2 \pi} \sqrt{4-x^{2}}} e^{-\pi \kappa t^{2}} \cos (2 \pi(u-\bar{v}) t) d t
\end{aligned}
$$

- For $\kappa \downarrow 0$ one obtains the sine kernel, for $\kappa \rightarrow \infty$ one obtains the Ginibre kernel.
- (edge) For $\alpha=\frac{1}{3}$ one finds a deformation of the Airy kernel near the edge $x=2$ (Bender 2008).

Weak non-Hermiticity regime

- The weak non-Hermiticity regime was pioneered by Fyodorov, Khoruzhenko, and Sommers '97.
- One considers

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha, \kappa>0 \text { fixed }
$$

($\alpha=0$ is called strong non-Hermiticity)

- (bulk) For $\alpha=1$ they showed that for $x \in(-2,2)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \mathscr{K}_{n}\left(x+\frac{u}{n}, x+\frac{v}{n}\right) \\
& \quad \equiv \frac{1}{2 \sqrt{\pi \kappa}} e^{-\frac{\operatorname{lm}(u)^{2}+\ln (v)^{2}}{2 \kappa}} \int_{0}^{\frac{1}{2 \pi} \sqrt{4-x^{2}}} e^{-\pi \kappa t^{2}} \cos (2 \pi(u-\bar{v}) t) d t
\end{aligned}
$$

- For $\kappa \downarrow 0$ one obtains the sine kernel, for $\kappa \rightarrow \infty$ one obtains the Ginibre kernel.
- (edge) For $\alpha=\frac{1}{3}$ one finds a deformation of the Airy kernel near the edge $x=2$ (Bender 2008).
- Weak non-Hermiticity regime can be considered for other models (e.g., Ameur, Byun 2023).

Global scaling limits: linear statistics

- We focus on linear statistics

$$
S_{n}[f]=f\left(z_{1}\right)+\ldots+f\left(z_{n}\right)
$$

where z_{1}, \ldots, z_{n} are eigenvalues of the elliptic Ginibre ensemble (with parameter $0 \leq \tau<1$).

Global scaling limits: linear statistics

- We focus on linear statistics

$$
S_{n}[f]=f\left(z_{1}\right)+\ldots+f\left(z_{n}\right)
$$

where z_{1}, \ldots, z_{n} are eigenvalues of the elliptic Ginibre ensemble (with parameter $0 \leq \tau<1$).

- Case 1: Smooth linear statistics. We assume that $f: \mathbb{C} \rightarrow \mathbb{R}$ is smooth (or at least C^{2}).

Global scaling limits: linear statistics

- We focus on linear statistics

$$
S_{n}[f]=f\left(z_{1}\right)+\ldots+f\left(z_{n}\right)
$$

where z_{1}, \ldots, z_{n} are eigenvalues of the elliptic Ginibre ensemble (with parameter $0 \leq \tau<1$).

- Case 1: Smooth linear statistics. We assume that $f: \mathbb{C} \rightarrow \mathbb{R}$ is smooth (or at least C^{2}).
- Case 2: Rough linear statistics (number variance). We assume that $f: \mathbb{C} \rightarrow\{0,1\}$ is an indicator function $f(z)=1_{A}(z)$ where $A \subset \mathbb{C}$.

Theorem (CLT smooth linear statistics, strong non-Hermiticity)

 Let $0 \leq \tau<1$ be fixed, and let $f: \mathbb{C} \rightarrow \mathbb{R}$ be C^{2} and L^{2}. Let $S_{n}[f]=f\left(z_{1}\right)+\ldots+f\left(z_{n}\right)$, where z_{1}, \ldots, z_{n} are picked from the elliptic Ginibre ensemble. Then, as $n \rightarrow \infty$$$
S_{n}[f]-\mathbb{E} S_{n}[f] \rightarrow N\left(0, \sigma^{2}+\tilde{\sigma}^{2}\right)
$$

in distribution, where, with $\phi(z)=\frac{1}{2}\left(z+\sqrt{z^{2}-4 \tau}\right)$, we have

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{4 \pi}\left\|f \circ \phi^{-1}\right\|_{H^{1}(\mathbb{D})}=\frac{1}{4 \pi} \int_{\mathscr{E}_{\tau}}|\nabla f(z)|^{2} d^{2} z, \\
\tilde{\sigma}^{2} & =\frac{1}{2}\left\|f \circ \phi^{-1}\right\|_{H^{1 / 2}(\partial \mathbb{D})} \\
& =\frac{1}{4 \pi^{2}} \int_{\partial \mathscr{E}_{\tau}} \int_{\partial \mathscr{E}_{\tau}}\left|\frac{f(z)-f(w)}{\phi(z)-\phi(w)}\right|^{2}\left|\phi^{\prime}(z) d z \| \phi^{\prime}(w) d w\right| .
\end{aligned}
$$

- For $\tau=0$ this was first proved by Rider and Virag 2007.
- A general result for random normal matrices by Ameur, Hedenmalm, Makarov 2011.
- Rider and Virag $2007(\tau=0)$ proved that this implies that

$$
h_{n}(z)=\log \left|\prod_{j=1}^{n}\left(z-z_{j}\right)\right|-\mathbb{E} \log \left|\prod_{j=1}^{n}\left(z-z_{j}\right)\right|
$$

converges weakly to a Gaussian free field h^{*} (the planar Gaussian free field, conditioned to be harmonic outside the unit disk).

$$
\int_{\mathbb{C}} h_{n}(z) f(z) d^{2} z \rightarrow \int_{\mathbb{C}} h^{*}(z) f(z) d^{2} z
$$

for test functions $f: \mathbb{C} \rightarrow \mathbb{R}$ with continuous partial derivatives in open neighborhood of unit disk and at most exponential growth outside.
(and similar for k-point correlation functions.)

- Proved in generality for random normal matrices by Ameur, Hedenmalm, Makarov 2011.

For any set A the number variance $V_{n}[A]$ is defined as the variance of the linear statistic $S_{n}[f]=f\left(z_{1}\right)+\ldots+f\left(z_{n}\right)$ where $f(z)=1_{A}(z)$.

Theorem (Number variance, strong non-Hermiticity)

Let $0 \leq \tau<1$ be fixed. Write $z=x+i y$. Suppose that A is a simple region that is strictly inside \mathscr{E}_{τ}. Suppose that it is parametrized as $|y| \leq \phi(|x|)$, with $-a<x<a$, for some strictly decreasing C^{1} function $\phi:[0, a] \rightarrow[0, b]$ that satisfies $\phi^{\prime}(0)=0$. Then we have as $n \rightarrow \infty$

$$
\frac{2 \pi \sqrt{\pi}}{\sqrt{\Delta V(z) n}} V_{n}[A]=|\partial A|+\mathscr{O}(1 / \sqrt{n})
$$

- In the case $\tau=0$ (Ginibre), the result is true for any Cacciopoli set (Lin 2023), see also Levi, Marzo, Ortega-Cerdà 2023.

For any set A the number variance $V_{n}[A]$ is defined as the variance of the linear statistic $S_{n}[f]=f\left(z_{1}\right)+\ldots+f\left(z_{n}\right)$ where $f(z)=1_{A}(z)$.

Theorem (Number variance, strong non-Hermiticity)

Let $0 \leq \tau<1$ be fixed. Write $z=x+i y$. Suppose that A is a simple region that is strictly inside \mathscr{E}_{τ}. Suppose that it is parametrized as $|y| \leq \phi(|x|)$, with $-a<x<a$, for some strictly decreasing C^{1} function $\phi:[0, a] \rightarrow[0, b]$ that satisfies $\phi^{\prime}(0)=0$. Then we have as $n \rightarrow \infty$

$$
\frac{2 \pi \sqrt{\pi}}{\sqrt{\Delta V(z) n}} V_{n}[A]=|\partial A|+\mathscr{O}(1 / \sqrt{n})
$$

- In the case $\tau=0$ (Ginibre), the result is true for any Cacciopoli set (Lin 2023), see also Levi, Marzo, Ortega-Cerdà 2023.
- Universality results are known for radial symmetric potentials and radial symmetric sets A (Akemann, Byun, Ebke 2023).

Theorem (Number variance, strong non-Hermiticity)

Let $0 \leq \tau<1$ and define

$$
A=A_{n}(S)= \begin{cases}\mathscr{E}_{\tau} \cup\left\{\left[z+\frac{2}{\sqrt{\Delta V(z) n}} \vec{n}(z) S, z\right]: z \in \partial \mathscr{E}_{\tau}\right\}, & S \geq 0, \\ \mathscr{E}_{\tau} \backslash\left\{\left[z+\frac{2}{\sqrt{\Delta V(z) n}} \vec{n}(z) S, z\right]: z \in \partial \mathscr{E}_{\tau}\right\}, & S<0 .\end{cases}
$$

Here $\vec{n}(z)$ denotes the outward unit normal vector at z on $\partial \mathscr{E}_{\tau}$. Then

$$
\lim _{n \rightarrow \infty} \frac{2 \pi \sqrt{\pi}}{\sqrt{\Delta V(z) n}} \frac{V_{n, A}}{\left|\partial \mathscr{E}_{\tau}\right|}=f(S),
$$

where

$$
f(S)=\sqrt{2 \pi} \int_{-\infty}^{S} \frac{\operatorname{erfc}(t) \operatorname{erfc}(-t)}{4} d t .
$$

- For radial symmetric potentials and radial symmetric A, this was proved by Akemann, Byun, Ebke 2023.

Figure: The set A where $S>0$.

The Rényi entropy with parameter $q>1$ is given by

$$
s_{q}[A]=\frac{1}{q-1} \operatorname{Tr} \log \left(\mathbb{A}^{q}+(\mathbb{I}-\mathbb{A})^{q}\right)
$$

where the overlap matrix \mathbb{A} is given by

$$
\mathbb{A}_{j k}=\int_{A} P_{j}(z) \overline{P_{k}(z)} e^{-n V(z)} d^{2} z
$$

Theorem (Holography for random matrices)
Let $0<\tau \leq 1$. For any $q>1$ the Rényi entropy satisfies the bound

$$
s_{q}[A] \leq \frac{4 q \log 2}{q-1} V_{n, A} .
$$

In particular $s_{q}[A] \leq C_{q}^{\tau} \sqrt{n}|\partial A|$ for some constant $C_{q}^{\tau}>0$, uniformly for sets $A \subset \mathscr{E}_{\tau}$ (as before).

- We believe that

$$
\lim _{n \rightarrow \infty} \frac{s_{q}[A]}{\sqrt{n}}
$$

should exist for any $A \subset \mathscr{E}_{\tau}$ and fixed τ (also for $q=1$).

- We believe that

$$
\lim _{n \rightarrow \infty} \frac{s_{q}[A]}{\sqrt{n}}
$$

should exist for any $A \subset \mathscr{E}_{\tau}$ and fixed τ (also for $q=1$).

- e.g., for $\tau=0$ and radial symmetric sets Lacroix-A-Chez-Toine, Majumdar, Schehr 2018 showed

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} s_{q}[\{z \in \mathbb{C}:|z| \leq a\}] \\
& \quad=\alpha_{q} \int_{a}^{\infty} \log \left(\frac{1}{2^{q}} \operatorname{erfc}(t)^{q}+\frac{1}{2^{q}} \operatorname{erfc}(-t)^{q}\right) d t, \quad 0 \leq a<1
\end{aligned}
$$

- We believe that

$$
\lim _{n \rightarrow \infty} \frac{s_{q}[A]}{\sqrt{n}}
$$

should exist for any $A \subset \mathscr{E}_{\tau}$ and fixed τ (also for $q=1$).

- e.g., for $\tau=0$ and radial symmetric sets Lacroix-A-Chez-Toine, Majumdar, Schehr 2018 showed

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} s_{q}[\{z \in \mathbb{C}:|z| \leq a\}] \\
& \quad=\alpha_{q} \int_{a}^{\infty} \log \left(\frac{1}{2^{q}} \operatorname{erfc}(t)^{q}+\frac{1}{2^{q}} \operatorname{erfc}(-t)^{q}\right) d t, \quad 0 \leq a<1
\end{aligned}
$$

- We suspect that a more explicit limiting relation between the entropy and ∂A exists (as $n \rightarrow \infty$).

Linear statistics in the weak non-Hermiticity regime

- Now we consider linear statistics in the weak non-Hermiticity regime

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha \in(0,1] .
$$

Linear statistics in the weak non-Hermiticity regime

- Now we consider linear statistics in the weak non-Hermiticity regime

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha \in(0,1] .
$$

- Only $\alpha=1$ and $\alpha=\frac{1}{3}$ seem to have been explored in the literature.

Linear statistics in the weak non-Hermiticity regime

- Now we consider linear statistics in the weak non-Hermiticity regime

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha \in(0,1] .
$$

- Only $\alpha=1$ and $\alpha=\frac{1}{3}$ seem to have been explored in the literature.
- Our goal is to find a CLT interpolation as $n \rightarrow \infty$ (depending on κ) between the Ginibre ensemble and the GUE.

Linear statistics in the weak non-Hermiticity regime

- Now we consider linear statistics in the weak non-Hermiticity regime

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha \in(0,1] .
$$

- Only $\alpha=1$ and $\alpha=\frac{1}{3}$ seem to have been explored in the literature.
- Our goal is to find a CLT interpolation as $n \rightarrow \infty$ (depending on κ) between the Ginibre ensemble and the GUE.
- This implies an interpolation between a 2D and 1D Gaussian free field.

Linear statistics in the weak non-Hermiticity regime

- Now we consider linear statistics in the weak non-Hermiticity regime

$$
\tau=1-\frac{\kappa}{n^{\alpha}}, \quad \alpha \in(0,1] .
$$

- Only $\alpha=1$ and $\alpha=\frac{1}{3}$ seem to have been explored in the literature.
- Our goal is to find a CLT interpolation as $n \rightarrow \infty$ (depending on κ) between the Ginibre ensemble and the GUE.
- This implies an interpolation between a 2D and 1D Gaussian free field.
- It appears that $0<\alpha<1$ is the right choice to achieve this.

Theorem (Interpolating variance, weak non-Hermiticity)

Assume that $0<\alpha<1$ and $\kappa>0$ are fixed. Let $f: \mathbb{C} \rightarrow \mathbb{R}$ be a C^{2} function with compact support, and form the linear statistic $S_{n}[f]=\sum_{j=1}^{n} f\left(n^{\alpha} z_{j}\right)$, where the summation is over eigenvalues from the elliptic Ginibre ensemble with parameter $\tau=1-\frac{\kappa}{n^{\alpha}}$. Then we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Var} S_{n}[f]=\frac{1}{4 \pi} & \int_{|\operatorname{lm}(z)| \leq \kappa}|\nabla f(z)|^{2} d^{2} z \\
& \quad+\frac{1}{8 \pi^{2}} \iint_{\operatorname{lm} z=\operatorname{lm} w= \pm \kappa}\left(\frac{f(z)-f(w)}{z-w}\right)^{2} d z d w .
\end{aligned}
$$

- It turns out to be technically difficult to prove the CLT (and thus GFF interpolation).

Theorem (Interpolating variance, weak non-Hermiticity)

Assume that $0<\alpha<1$ and $\kappa>0$ are fixed. Let $f: \mathbb{C} \rightarrow \mathbb{R}$ be a C^{2} function with compact support, and form the linear statistic $S_{n}[f]=\sum_{j=1}^{n} f\left(n^{\alpha} z_{j}\right)$, where the summation is over eigenvalues from the elliptic Ginibre ensemble with parameter $\tau=1-\frac{\kappa}{n^{\alpha}}$. Then we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{Var} S_{n}[f]=\frac{1}{4 \pi} \int_{|\operatorname{Im}(z)| \leq \kappa}|\nabla f(z)|^{2} d^{2} z \\
&+\frac{1}{8 \pi^{2}} \iint_{\operatorname{Im} z=\operatorname{Im} w= \pm \kappa}\left(\frac{f(z)-f(w)}{z-w}\right)^{2} d z d w
\end{aligned}
$$

- It turns out to be technically difficult to prove the CLT (and thus GFF interpolation).
- As $\kappa \rightarrow \infty$, we reobtain the result by Rider-Virag 2007 (without boundary term), while when $\kappa \downarrow \infty$ we obtain (a version of) the GUE counter part (Girko 2001).

Conjecture

Let $\tau=1-\frac{\kappa}{n}$ where $\kappa>0$. For $a \in(0,2)$ and $T \in(0, \infty]$, let $A=[-a, a] \times[-T, T]$. Then the number variance of eigenvalues taken from the elliptic Ginibre ensemble satisfies

$$
V_{n, A}=C_{1}(\kappa) n+C_{\frac{1}{2}}(\kappa) \sqrt{n}+C_{0}(\kappa) \log n+o(\log n)
$$

as $n \rightarrow \infty$, for certain positive constants $C_{1}(\kappa), C_{\frac{1}{2}}(\kappa), C_{0}(\kappa)$.
Furthermore, we have

$$
\begin{aligned}
\lim _{\kappa \downarrow 0} C_{1}(\kappa) & =\lim _{\kappa \downarrow 0} C_{\frac{1}{2}}(\kappa)=0 \\
\lim _{\kappa \rightarrow \infty} C_{1}(\kappa) & =\frac{1}{2 \pi \sqrt{\pi}}|\partial\{z \in 2 \mathbb{D}:|\operatorname{Re} z| \leq a\}|
\end{aligned}
$$

- The $\log n$ behavior should be compared to Costin-Lebowitz 1995 (GUE, $\tau=1$).
- A hint to such a result was already in Fyodorov, Khoruzhenko, and Sommers '97.
- Akemann, Duits, Molag, (under construction)
- Akemann, Duits, Molag, " The Elliptic Ginibre Ensemble: A Unifying Approach to Local and Global Statistics for Higher Dimensions", J. Math. Phys. 64, 023503 (2023).
- Rider, Virag, "The noise in the circular law and the Gaussian free field". Int. Math. Res. Not. (2007).
- Ameur, Hedenmalm, Makarov, "Random normal matrices and Ward identities". Ann. Probab. 43 (2015), 1157-1201
- Akemann, Byun, Ebke, " Universality of the Number Variance in Rotational Invariant Two-Dimensional Coulomb Gases". J Stat Phys 190, 9 (2023)
감사합니다!

