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The complex elliptic Ginibre ensemble with parameter 0 ≤ τ < 1
consists of n × n complex matrices M distributed by

1

Zn
e−nTrV (M)dMn, dMn =

∏
1≤i ,j≤n

d ReMij d ImMij ,

where V (z) =
|z |2 − τ Re(z2)

1− τ2
=

zz − τ
2 (z

2 + z2)

1− τ2
(Ginibre 1965, Girko 1984).

The elliptic Ginibre ensemble interpolates between the Ginibre
ensemble (τ = 0) and the Gaussian unitary ensemble (τ ↑ 1).

The eigenvalues of the (elliptic) Ginibre ensemble live in the complex
plane while those of the Gaussian unitary ensemble are real.

The eigenvalues are distributed by

ρn(z1, . . . , zn) =
1

cn

∏
1≤i<j≤n

|zi − zj |2
n∏

j=1

e−nV (zj ), z1, . . . , zn ∈ C.
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(Elliptic law) Its eigenvalues accumulate on an elliptic droplet

lim
n→∞

ρ
(1)
n (z) =

{
1

π(1−τ2)
, z ∈ Eτ ,

0, z ∈ C \ Eτ ,

where

Eτ =

{
z ∈ C :

(
Re z

1 + τ

)2

+

(
Im z

1− τ

)2

< 1

}
.
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The eigenvalues of the elliptic Ginibre ensemble form a DPP

ρ
(k)
n (z1, . . . , zk) :=

n!

(n − k)!

∫
Cn−k

ρn(z1, . . . , zn)d
2zk+1 · · · d2zn

=det (Kn(zi , zj))1≤i ,j≤k ,

with correlation kernel constructed with planar orthogonal polynomials

Kn(z ,w) =
√

ω(z)ω(w)
n−1∑
j=0

Pj(z)Pj(w), z ,w ∈ C,

where ω(z) = e−nV (z) and
∫
C Pi (z)Pj(z)ω(z)d

2z = δij .

Explicitly, we have

Pj(z) =


√

n
πj! z

j , τ = 0,√
n
πj!(1− τ2)

1
4

(
τ
2

) j
2 Hj

(√
n
2τ z
)
, τ ∈ (0, 1),

where Hj(z) = (−1)nez
2 d j

dz j
e−z2 are Hermite polynomials of degree j .
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Local scaling limits

(Bulk scaling limit: Ginibre kernel) For z ∈ Eτ and u, v ∈ C

lim
n→∞

1− τ2

n
Kn

(
z +

√
1− τ2

n
u, z +

√
1− τ2

n
v

)

≡ 1

π
exp

(
uv − |u|2 + |v |2

2

)
.

(Edge scaling limit: Faddeeva plasma kernel) For z ∈ ∂Eτ and
u, v ∈ C

lim
n→∞

1− τ2

n
Kn

(
z +

√
1− τ2

n
un⃗(z), z +

√
1− τ2

n
vn⃗(z)

)

≡ 1

π
exp

(
uv − |u|2 + |v |2

2

)
erfc

(
u + v√

2

)
.

(Lee and Riser 2016)
These local scaling limits are universal (bulk: Ameur, Hedenmalm,
Makarov 2010, edge: Tao, Vu 2015, Cipolloni, Erdős, Schröder 2021,
Hedenmalm, Wennman 2021.)

Leslie Molag (Carlos III University Madrid) May 10, 2024 5 / 18



Local scaling limits

(Bulk scaling limit: Ginibre kernel) For z ∈ Eτ and u, v ∈ C

lim
n→∞

1− τ2

n
Kn

(
z +

√
1− τ2

n
u, z +

√
1− τ2

n
v

)

≡ 1

π
exp

(
uv − |u|2 + |v |2

2

)
.

(Edge scaling limit: Faddeeva plasma kernel) For z ∈ ∂Eτ and
u, v ∈ C

lim
n→∞

1− τ2

n
Kn

(
z +

√
1− τ2

n
un⃗(z), z +

√
1− τ2

n
vn⃗(z)

)

≡ 1

π
exp

(
uv − |u|2 + |v |2

2

)
erfc

(
u + v√

2

)
.

(Lee and Riser 2016)

These local scaling limits are universal (bulk: Ameur, Hedenmalm,
Makarov 2010, edge: Tao, Vu 2015, Cipolloni, Erdős, Schröder 2021,
Hedenmalm, Wennman 2021.)

Leslie Molag (Carlos III University Madrid) May 10, 2024 5 / 18



Local scaling limits

(Bulk scaling limit: Ginibre kernel) For z ∈ Eτ and u, v ∈ C

lim
n→∞

1− τ2

n
Kn

(
z +

√
1− τ2

n
u, z +

√
1− τ2

n
v

)

≡ 1

π
exp

(
uv − |u|2 + |v |2

2

)
.

(Edge scaling limit: Faddeeva plasma kernel) For z ∈ ∂Eτ and
u, v ∈ C

lim
n→∞

1− τ2

n
Kn

(
z +

√
1− τ2

n
un⃗(z), z +

√
1− τ2

n
vn⃗(z)

)

≡ 1

π
exp

(
uv − |u|2 + |v |2

2

)
erfc

(
u + v√

2

)
.

(Lee and Riser 2016)
These local scaling limits are universal (bulk: Ameur, Hedenmalm,
Makarov 2010, edge: Tao, Vu 2015, Cipolloni, Erdős, Schröder 2021,
Hedenmalm, Wennman 2021.)

Leslie Molag (Carlos III University Madrid) May 10, 2024 5 / 18



Weak non-Hermiticity regime

The weak non-Hermiticity regime was pioneered by Fyodorov,
Khoruzhenko, and Sommers ’97.

One considers

τ = 1− κ

nα
, α, κ > 0 fixed.

(α = 0 is called strong non-Hermiticity)
(bulk) For α = 1 they showed that for x ∈ (−2, 2)

lim
n→∞

1

n2
Kn

(
x +

u

n
, x +

v

n

)
≡ 1

2
√
πκ

e−
Im(u)2+Im(v)2

2κ

∫ 1
2π

√
4−x2

0
e−πκt2 cos(2π(u − v) t) dt.

For κ ↓ 0 one obtains the sine kernel, for κ → ∞ one obtains the
Ginibre kernel.
(edge) For α = 1

3 one finds a deformation of the Airy kernel near the
edge x = 2 (Bender 2008).
Weak non-Hermiticity regime can be considered for other models
(e.g., Ameur, Byun 2023).
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Global scaling limits: linear statistics

We focus on linear statistics

Sn[f ] = f (z1) + . . .+ f (zn)

where z1, . . . , zn are eigenvalues of the elliptic Ginibre ensemble
(with parameter 0 ≤ τ < 1).

Case 1: Smooth linear statistics.
We assume that f : C → R is smooth (or at least C 2).

Case 2: Rough linear statistics (number variance).
We assume that f : C → {0, 1} is an indicator function f (z) = 1A(z)
where A ⊂ C.
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Theorem (CLT smooth linear statistics, strong non-Hermiticity)

Let 0 ≤ τ < 1 be fixed, and let f : C → R be C 2 and L2. Let
Sn[f ] = f (z1) + . . .+ f (zn), where z1, . . . , zn are picked from the elliptic
Ginibre ensemble. Then, as n → ∞

Sn[f ]− ESn[f ] → N
(
0, σ2 + σ̃2

)
in distribution, where, with ϕ(z) = 1

2(z +
√
z2 − 4τ), we have

σ2 =
1

4π
∥f ◦ ϕ−1∥H1(D) =

1

4π

∫
Eτ

|∇f (z)|2d2z ,

σ̃2 =
1

2
∥f ◦ ϕ−1∥H1/2(∂D)

=
1

4π2

∫
∂Eτ

∫
∂Eτ

∣∣∣∣ f (z)− f (w)

ϕ(z)− ϕ(w)

∣∣∣∣2 |ϕ′(z)dz ||ϕ′(w)dw |.

For τ = 0 this was first proved by Rider and Virag 2007.
A general result for random normal matrices by Ameur, Hedenmalm,
Makarov 2011.
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Rider and Virag 2007 (τ = 0) proved that this implies that

hn(z) = log

∣∣∣∣∣∣
n∏

j=1

(z − zj)

∣∣∣∣∣∣− E log

∣∣∣∣∣∣
n∏

j=1

(z − zj)

∣∣∣∣∣∣
converges weakly to a Gaussian free field h∗ (the planar Gaussian free
field, conditioned to be harmonic outside the unit disk).∫

C
hn(z)f (z)d

2z →
∫
C
h∗(z)f (z)d2z

for test functions f : C → R with continuous partial derivatives in
open neighborhood of unit disk and at most exponential growth
outside.
(and similar for k-point correlation functions.)

Proved in generality for random normal matrices by Ameur,
Hedenmalm, Makarov 2011.
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For any set A the number variance Vn[A] is defined as the variance of the
linear statistic Sn[f ] = f (z1) + . . .+ f (zn) where f (z) = 1A(z).

Theorem (Number variance, strong non-Hermiticity)

Let 0 ≤ τ < 1 be fixed. Write z = x + iy . Suppose that A is a simple
region that is strictly inside Eτ . Suppose that it is parametrized as
|y | ≤ ϕ(|x |), with −a < x < a, for some strictly decreasing C 1 function
ϕ : [0, a] → [0, b] that satisfies ϕ′(0) = 0. Then we have as n → ∞

2π
√
π√

∆V (z)n
Vn[A] = |∂A|+ O(1/

√
n).

In the case τ = 0 (Ginibre), the result is true for any Cacciopoli set
(Lin 2023), see also Levi, Marzo, Ortega-Cerdà 2023.

Universality results are known for radial symmetric potentials and
radial symmetric sets A (Akemann, Byun, Ebke 2023).
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Theorem (Number variance, strong non-Hermiticity)

Let 0 ≤ τ < 1 and define

A = An(S) =


Eτ ∪

{
[z + 2√

∆V (z)n
n⃗(z)S , z ] : z ∈ ∂Eτ

}
, S ≥ 0,

Eτ \
{
[z + 2√

∆V (z)n
n⃗(z)S , z ] : z ∈ ∂Eτ

}
, S < 0.

Here n⃗(z) denotes the outward unit normal vector at z on ∂Eτ . Then

lim
n→∞

2π
√
π√

∆V (z)n

Vn,A

|∂Eτ |
= f (S),

where

f (S) =
√
2π

∫ S

−∞

erfc(t) erfc(−t)

4
dt.

For radial symmetric potentials and radial symmetric A, this was
proved by Akemann, Byun, Ebke 2023.
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Figure: The set A where S > 0.
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The Rényi entropy with parameter q > 1 is given by

sq[A] =
1

q − 1
Tr log(Aq + (I− A)q),

where the overlap matrix A is given by

Ajk =

∫
A
Pj(z)Pk(z)e

−nV (z)d2z .

Theorem (Holography for random matrices)

Let 0 < τ ≤ 1. For any q > 1 the Rényi entropy satisfies the bound

sq[A] ≤
4q log 2

q − 1
Vn,A.

In particular sq[A] ≤ C τ
q

√
n|∂A| for some constant C τ

q > 0, uniformly for
sets A ⊂ Eτ (as before).
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We believe that

lim
n→∞

sq[A]√
n

should exist for any A ⊂ Eτ and fixed τ (also for q = 1).

e.g., for τ = 0 and radial symmetric sets Lacroix-A-Chez-Toine,
Majumdar, Schehr 2018 showed

lim
n→∞

1√
n
sq[{z ∈ C : |z | ≤ a}]

= αq

∫ ∞

a
log

(
1

2q
erfc(t)q +

1

2q
erfc(−t)q

)
dt, 0 ≤ a < 1.

We suspect that a more explicit limiting relation between the entropy
and ∂A exists (as n → ∞).
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= αq

∫ ∞

a
log

(
1

2q
erfc(t)q +

1

2q
erfc(−t)q

)
dt, 0 ≤ a < 1.

We suspect that a more explicit limiting relation between the entropy
and ∂A exists (as n → ∞).
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Linear statistics in the weak non-Hermiticity regime

Now we consider linear statistics in the weak non-Hermiticity regime

τ = 1− κ

nα
, α ∈ (0, 1].

Only α = 1 and α = 1
3 seem to have been explored in the literature.

Our goal is to find a CLT interpolation as n → ∞ (depending on κ)
between the Ginibre ensemble and the GUE.

This implies an interpolation between a 2D and 1D Gaussian free field.

It appears that 0 < α < 1 is the right choice to achieve this.
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Theorem (Interpolating variance, weak non-Hermiticity)

Assume that 0 < α < 1 and κ > 0 are fixed. Let f : C → R be a C 2

function with compact support, and form the linear statistic
Sn[f ] =

∑n
j=1 f (n

αzj), where the summation is over eigenvalues from the
elliptic Ginibre ensemble with parameter τ = 1− κ

nα . Then we have

lim
n→∞

Var Sn[f ] =
1

4π

∫
| Im(z)|≤κ

|∇f (z)|2d2z

+
1

8π2

∫∫
Im z=Imw=±κ

(
f (z)− f (w)

z − w

)2

dzdw .

It turns out to be technically difficult to prove the CLT (and thus
GFF interpolation).

As κ → ∞, we reobtain the result by Rider-Virag 2007 (without
boundary term), while when κ ↓ ∞ we obtain (a version of) the GUE
counter part (Girko 2001).
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Conjecture

Let τ = 1− κ
n where κ > 0. For a ∈ (0, 2) and T ∈ (0,∞], let

A = [−a, a]× [−T ,T ]. Then the number variance of eigenvalues taken
from the elliptic Ginibre ensemble satisfies

Vn,A = C1(κ)n + C 1
2
(κ)

√
n + C0(κ) log n + o(log n)

as n → ∞, for certain positive constants C1(κ),C 1
2
(κ),C0(κ).

Furthermore, we have

lim
κ↓0

C1(κ) = lim
κ↓0

C 1
2
(κ) = 0,

lim
κ→∞

C1(κ) =
1

2π
√
π
|∂{z ∈ 2D : |Re z | ≤ a}| .

The log n behavior should be compared to Costin-Lebowitz 1995
(GUE, τ = 1).

A hint to such a result was already in Fyodorov, Khoruzhenko, and
Sommers ’97.
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