Logarithmically correlated fields in non-Hermitian random matrices

Giorgio Cipolloni, Princeton University
May 10, 2024

Random Matrices and Related Topics in Jeju

Logarithmically correlated fields

A logarithmically ($\log -$)correlated field $X(z)$ is a Gaussian random distribution on \mathbf{R}^{d}.

Logarithmically correlated fields

A logarithmically (log-)correlated field $X(z)$ is a Gaussian random distribution on \mathbf{R}^{d}.
The law of $X(z)$ is determined by

$$
\operatorname{Cov}\left[X\left(z_{1}\right), X\left(z_{2}\right)\right]=-\log \left|z_{1}-z_{2}\right| .
$$

Logarithmically correlated fields

A logarithmically (log-)correlated field $X(z)$ is a Gaussian random distribution on \mathbf{R}^{d}.
The law of $X(z)$ is determined by

$$
\operatorname{Cov}\left[X\left(z_{1}\right), X\left(z_{2}\right)\right]=-\log \left|z_{1}-z_{2}\right| .
$$

Some examples: 2D Gaussian Free Field (GFF), branching random walks.

Logarithmically correlated fields

A logarithmically (log-)correlated field $X(z)$ is a Gaussian random distribution on \mathbf{R}^{d}.
The law of $X(z)$ is determined by

$$
\operatorname{Cov}\left[X\left(z_{1}\right), X\left(z_{2}\right)\right]=-\log \left|z_{1}-z_{2}\right| .
$$

Some examples: 2D Gaussian Free Field (GFF), branching random walks.

Emergence of log-correlated fields: conformal field theory, random surfaces, random matrices, number theory, statistical physics, SPDEs, . . .

(Gaussian) Branching Random Walk

Binary branching random walk (BRW) with increments $Y_{v}(I)$.
Here $Y_{v}(l)$ are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$.

(Gaussian) Branching Random Walk

Binary branching random walk (BRW) with increments $Y_{v}(I)$.
Here $Y_{v}(l)$ are i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$.
BRW:

$$
X_{v}(N)=\sum_{l=1}^{\log N} Y_{v}(l), \quad \mathbf{E}\left[Y_{v}(l) Y_{v^{\prime}}(l)\right]= \begin{cases}\sigma^{2} & \text { if } l \leq v \wedge v^{\prime} \\ 0 & \text { if } l>v \wedge v^{\prime}\end{cases}
$$

Model: I.I.D. Random Matrices

I.I.D. Random Matrices

We consider random matrices

$$
X=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{1 N} \\
\vdots & \ddots & \vdots \\
x_{N 1} & \ldots & x_{N N}
\end{array}\right)
$$

with independent identical distributed (i.i.d.) complex or real entries $x_{a b} \stackrel{d}{=} N^{-1 / 2} \chi$:
(i) $\mathrm{E} \chi=0$,
(ii) $\mathrm{E}|\chi|^{2}=1, \mathrm{E} \chi^{2}=0$, or $\mathrm{E} \chi^{2}=1$,
(iii) $\mathrm{E}|\chi|^{p} \leq C_{p}<\infty$.

I.I.D. Random Matrices

We consider random matrices

$$
X=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{1 N} \\
\vdots & \ddots & \vdots \\
x_{N 1} & \ldots & x_{N N}
\end{array}\right)
$$

with independent identical distributed (i.i.d.) complex or real entries $x_{a b} \stackrel{d}{=} N^{-1 / 2} \chi$:
(i) $\mathrm{E} \chi=0$,
(ii) $\mathbf{E}|\chi|^{2}=1, \mathrm{E} \chi^{2}=0$, or $\mathrm{E} \chi^{2}=1$,
(iii) $\mathbf{E}|\chi|^{p} \leq c_{p}<\infty$.

Normalization guarantees that $\|X\| \sim 1$ as $N \rightarrow \infty$.

I.I.D. Random Matrices

We consider random matrices

$$
X=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{1 N} \\
\vdots & \ddots & \vdots \\
x_{N 1} & \ldots & x_{N N}
\end{array}\right)
$$

with independent identical distributed (i.i.d.) complex or real entries $x_{a b} \stackrel{d}{=} N^{-1 / 2} \chi$:
(i) $\mathrm{E} \chi=0$,
(ii) $\mathbf{E}|\chi|^{2}=1, \mathrm{E} \chi^{2}=0$, or $\mathrm{E} \chi^{2}=1$,
(iii) $\mathbf{E}|\chi|^{p} \leq c_{p}<\infty$.

Normalization guarantees that $\|X\| \sim 1$ as $N \rightarrow \infty$.

Remark: No integrable structure if $\chi \neq$ Gaussian.

Eigenvalues of random matrices with independent entries

X is an $N \times N$ matrix with i.i.d. entries

$$
\mathbf{E} x_{a b}=0, \quad \mathbf{E}\left|x_{a b}\right|^{2}=\frac{1}{N}
$$

Figure 1: Real entries

Figure 2: Complex entries

Eigenvalues of random matrices with independent entries

X is an $N \times N$ matrix with i.i.d. entries

$$
\mathbf{E} x_{a b}=0, \quad \mathbf{E}\left|x_{a b}\right|^{2}=\frac{1}{N}
$$

Figure 1: Real entries

Figure 2: Complex entries

Eigenvalues of random matrices with independent entries

X is an $N \times N$ matrix with i.i.d. entries

$$
\mathbf{E} x_{a b}=0, \quad \mathbf{E}\left|x_{a b}\right|^{2}=\frac{1}{N}
$$

Figure 1: Real entries

Figure 2: Complex entries

Eigenvalues of random matrices with independent entries

X is an $N \times N$ matrix with i.i.d. entries

$$
\mathbf{E} x_{a b}=0, \quad \mathbf{E}\left|x_{a b}\right|^{2}=\frac{1}{N} .
$$

Figure 1: Real entries

Figure 2: Complex entries

- Circular law: Convergence to the uniform distribution on the unit disk.
- Eigenvalues spacing $\sim N^{-1 / 2}$.
- Accumulation of $\sim \sqrt{N}$ eigenvalues on the real axis for real matrices.

Fluctuations around the Circular Law

CLT: Let $\sigma_{1}, \ldots, \sigma_{N}$ be the eigenvalues of X, then

$$
\Gamma_{N}:=N\left[\frac{1}{N} \sum_{i=1}^{N} \delta_{\sigma_{i}}-\frac{1}{\pi} 1(|z| \leq 1) d^{2} z\right] \rightarrow G F F
$$

Figure 3: (Smoothed) fluctuations of 1000 eigenvalues of i.i.d. random matrices (left) vs. 1000 independent points uniformly distributed in the unit disk (right). Eigenvalues fluctuate much less.

Log-correlated fields in NH Random
Matrices

Log-correlated field in 2D

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_{1}, z_{2} \in \mathbf{D}$:

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X-z_{2}\right)\right|\right] \approx-\log \left|z_{1}-z_{2}\right|
$$

Log-correlated field in 2D

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_{1}, z_{2} \in \mathrm{D}$:

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X-z_{2}\right)\right|\right] \approx-\log \left|z_{1}-z_{2}\right|
$$

More precisely: Let $f, g \in H^{1}$, and let $\left(\sigma_{i} \in \operatorname{Spec}(X)\right) L_{N}(f):=\sum_{i} f\left(\sigma_{i}\right)-\mathbf{E} \sum_{i} f\left(\sigma_{i}\right)$. Then

$$
\mathbf{E} L_{N}(f) L_{N}(g) \approx-\int_{\mathbf{D}} \int_{\mathbf{D}} \Delta f\left(z_{1}\right) \Delta g\left(z_{2}\right) \log \left|z_{1}-z_{2}\right| \mathrm{d}^{2} z_{1} \mathrm{~d}^{2} z_{2}
$$

Log-correlated field in 2D

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_{1}, z_{2} \in \mathrm{D}$:

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X-z_{2}\right)\right|\right] \approx-\log \left|z_{1}-z_{2}\right|
$$

More precisely: Let $f, g \in H^{1}$, and let $\left(\sigma_{i} \in \operatorname{Spec}(X)\right) L_{N}(f):=\sum_{i} f\left(\sigma_{i}\right)-\mathbf{E} \sum_{i} f\left(\sigma_{i}\right)$. Then

$$
\mathbf{E} L_{N}(f) L_{N}(g) \approx-\int_{\mathbf{D}} \int_{\mathbf{D}} \Delta f\left(z_{1}\right) \Delta g\left(z_{2}\right) \log \left|z_{1}-z_{2}\right| \mathrm{d}^{2} z_{1} \mathrm{~d}^{2} z_{2}
$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Log-correlated field in 2D

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_{1}, z_{2} \in \mathbf{D}$:

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X-z_{2}\right)\right|\right] \approx-\log \left|z_{1}-z_{2}\right|
$$

More precisely: Let $f, g \in H^{1}$, and let $\left(\sigma_{i} \in \operatorname{Spec}(X)\right) L_{N}(f):=\sum_{i} f\left(\sigma_{i}\right)-\mathbf{E} \sum_{i} f\left(\sigma_{i}\right)$. Then

$$
\mathbf{E} L_{N}(f) L_{N}(g) \approx-\int_{\mathbf{D}} \int_{\mathbf{D}} \Delta f\left(z_{1}\right) \Delta g\left(z_{2}\right) \log \left|z_{1}-z_{2}\right| \mathrm{d}^{2} z_{1} \mathrm{~d}^{2} z_{2}
$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Remark 2: Similar result holds for general i.i.d. matrices (C.-Erdős-Schröder 2019).

Log-correlated field in 2D

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_{1}, z_{2} \in \mathrm{D}$:

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X-z_{2}\right)\right|\right] \approx-\log \left|z_{1}-z_{2}\right|
$$

More precisely: Let $f, g \in H^{1}$, and let $\left(\sigma_{i} \in \operatorname{Spec}(X)\right) L_{N}(f):=\sum_{i} f\left(\sigma_{i}\right)-\mathbf{E} \sum_{i} f\left(\sigma_{i}\right)$. Then

$$
\mathbf{E} L_{N}(f) L_{N}(g) \approx-\int_{\mathbf{D}} \int_{\mathbf{D}} \Delta f\left(z_{1}\right) \Delta g\left(z_{2}\right) \log \left|z_{1}-z_{2}\right| \mathrm{d}^{2} z_{1} \mathrm{~d}^{2} z_{2}
$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Remark 2: Similar result holds for general i.i.d. matrices (C.-Erdős-Schröder 2019).
For general i.i.d. matrices dependence on the fourth cumulant κ_{4} of the entries.

Log-correlated field in 2D

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_{1}, z_{2} \in \mathrm{D}$:

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X-z_{2}\right)\right|\right] \approx-\log \left|z_{1}-z_{2}\right|
$$

More precisely: Let $f, g \in H^{1}$, and let $\left(\sigma_{i} \in \operatorname{Spec}(X)\right) L_{N}(f):=\sum_{i} f\left(\sigma_{i}\right)-\mathbf{E} \sum_{i} f\left(\sigma_{i}\right)$. Then

$$
\mathbf{E} L_{N}(f) L_{N}(g) \approx-\int_{\mathbf{D}} \int_{\mathbf{D}} \Delta f\left(z_{1}\right) \Delta g\left(z_{2}\right) \log \left|z_{1}-z_{2}\right| \mathrm{d}^{2} z_{1} \mathrm{~d}^{2} z_{2} .
$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Remark 2: Similar result holds for general i.i.d. matrices (C.-Erdős-Schröder 2019).
For general i.i.d. matrices dependence on the fourth cumulant κ_{4} of the entries.

Remark 3: Similar result for normal matrices (Ameur-Hedenmalm-Makarov 2008, 2011), (Ameur, Kang, Seo 2018).

Log-correlated field in 3D

Consider the Ornstein-Uhlenbeck flow (here B_{t} is matrix Brownian motion)

$$
\mathrm{d} X_{t}=-\frac{1}{2} X_{t} \mathrm{~d} t+\frac{\mathrm{d} B_{t}}{\sqrt{N}}, \quad X_{0}=X
$$

Log-correlated field in 3D

Consider the Ornstein-Uhlenbeck flow (here B_{t} is matrix Brownian motion)

$$
\mathrm{d} X_{t}=-\frac{1}{2} X_{t} \mathrm{~d} t+\frac{\mathrm{d} B_{t}}{\sqrt{N}}, \quad X_{0}=X
$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X_{t}-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X_{s}-z_{2}\right)\right|\right] \approx-\frac{1}{2} \log \left[|t-s|+\left|z_{1}-z_{2}\right|^{2}\right]
$$

Log-correlated field in 3D

Consider the Ornstein-Uhlenbeck flow (here B_{t} is matrix Brownian motion)

$$
\mathrm{d} X_{t}=-\frac{1}{2} X_{t} \mathrm{~d} t+\frac{\mathrm{d} B_{t}}{\sqrt{N}}, \quad X_{0}=X
$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X_{t}-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X_{s}-z_{2}\right)\right|\right] \approx-\frac{1}{2} \log \left[|t-s|+\left|z_{1}-z_{2}\right|^{2}\right] .
$$

Remark 1: Not known even for Ginibre! No space-time determinantal structure.

Log-correlated field in 3D

Consider the Ornstein-Uhlenbeck flow (here B_{t} is matrix Brownian motion)

$$
\mathrm{d} X_{t}=-\frac{1}{2} X_{t} \mathrm{~d} t+\frac{\mathrm{d} B_{t}}{\sqrt{N}}, \quad X_{0}=X
$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X_{t}-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X_{s}-z_{2}\right)\right|\right] \approx-\frac{1}{2} \log \left[|t-s|+\left|z_{1}-z_{2}\right|^{2}\right]
$$

Remark 1: Not known even for Ginibre! No space-time determinantal structure.
Remark 2: Same regularity $2 D$ additive stochastic heat equation (Edwards-Wilkinson universality class).

Log-correlated field in 3D

Consider the Ornstein-Uhlenbeck flow (here B_{t} is matrix Brownian motion)

$$
\mathrm{d} X_{t}=-\frac{1}{2} X_{t} \mathrm{~d} t+\frac{\mathrm{d} B_{t}}{\sqrt{N}}, \quad X_{0}=X
$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

$$
\operatorname{Cov}\left[\log \left|\operatorname{det}\left(X_{t}-z_{1}\right)\right|, \log \left|\operatorname{det}\left(X_{s}-z_{2}\right)\right|\right] \approx-\frac{1}{2} \log \left[|t-s|+\left|z_{1}-z_{2}\right|^{2}\right]
$$

Remark 1: Not known even for Ginibre! No space-time determinantal structure.
Remark 2: Same regularity $2 D$ additive stochastic heat equation (Edwards-Wilkinson universality class).

Remark 3: The limiting Gaussian field is not Markovian.

The Fyodorov-Hiary-Keating (FHK) conjecture

The Fyodorov-Hiary-Keating (FHK) conjecture

Let $e^{i \omega_{1}}, \ldots, e^{i \omega_{N}}$ the eigenvalues of a CUE matrix (Haar unitary).

The Fyodorov-Hiary-Keating (FHK) conjecture

Let $e^{i \omega_{1}}, \ldots, e^{i \omega_{N}}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$
x_{n}(z)=\prod_{j=1}^{N}\left(1-e^{i \omega_{j} z}\right)
$$

The Fyodorov-Hiary-Keating (FHK) conjecture

Let $e^{i \omega_{1}}, \ldots, e^{i \omega_{N}}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$
x_{n}(z)=\prod_{j=1}^{N}\left(1-e^{i \omega_{j} z}\right)
$$

FHK conjecture:

$$
\max _{|z|=1}^{\log }\left|X_{N}(z)\right|=m_{N}+\xi_{N}, \quad m_{N}:=\log N-\frac{3}{4} \log \log N,
$$

with ξ_{N} expected to converge to the sum of two independent Gumbel, i.e. $F(x)=e^{-e^{-x}}$.

The Fyodorov-Hiary-Keating (FHK) conjecture

Let $e^{i \omega_{1}}, \ldots, e^{i \omega_{N}}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$
x_{n}(z)=\prod_{j=1}^{N}\left(1-e^{i \omega_{j} z}\right)
$$

FHK conjecture:

$$
\max _{|z|=1}^{\log }\left|X_{N}(z)\right|=m_{N}+\xi_{N}, \quad m_{N}:=\log N-\frac{3}{4} \log \log N,
$$

with ξ_{N} expected to converge to the sum of two independent Gumbel, i.e. $F(x)=e^{-e^{-x}}$.

Theorem (Paquette-Zeitouni 2022)

There exists a deterministic C such that

$$
\max _{|z|=1} \log \left|X_{N}(z)\right|-\log N-\frac{3}{4} \log \log N-C \Longrightarrow \xi
$$

with ξ being the sum of two independent random variables.

The Fyodorov-Hiary-Keating (FHK) conjecture

Let $e^{i \omega_{1}}, \ldots, e^{i \omega_{N}}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$
x_{n}(z)=\prod_{j=1}^{N}\left(1-e^{i \omega_{j} z}\right)
$$

FHK conjecture:

$$
\max _{|z|=1}^{\log }\left|X_{N}(z)\right|=m_{N}+\xi_{N}, \quad m_{N}:=\log N-\frac{3}{4} \log \log N,
$$

with ξ_{N} expected to converge to the sum of two independent Gumbel, i.e. $F(x)=e^{-e^{-x}}$.

Theorem (Paquette-Zeitouni 2022)

There exists a deterministic C such that

$$
\max _{|z|=1} \log \left|X_{N}(z)\right|-\log N-\frac{3}{4} \log \log N-C \Longrightarrow \xi
$$

with ξ being the sum of two independent random variables.

Previous results: $\log N$-term (Arguin-Belius-Bourgade 2015); $\log \log N$-term (Paquette-Zeitouni 2016); $\max _{|z|=1} \log \left|X_{N}(z)\right|-m_{N}$ is tight (Chhaibi-Madaule-Najnudel 2018).

Non-Hermitian Fyodorov-Hiary-Keating conjecture

Consider the (centered) log-characteristic polynomial (here $\sigma_{i} \in \operatorname{Spec}(X)$)

$$
\Psi_{N}(z):=\log \left(\prod_{i=1}^{N}\left|\sigma_{i}-z\right|\right)-\mathbf{E}(\cdots)=\log |\operatorname{det}(x-z)|-\mathbf{E}(\cdots)
$$

Non-Hermitian Fyodorov-Hiary-Keating conjecture

Consider the (centered) log-characteristic polynomial (here $\sigma_{i} \in \operatorname{Spec}(X)$)

$$
\Psi_{N}(z):=\log \left(\prod_{i=1}^{N}\left|\sigma_{i}-z\right|\right)-\mathbf{E}(\cdots)=\log |\operatorname{det}(X-z)|-\mathbf{E}(\cdots) .
$$

Conjecture (Non-Hermitian FHK):

$$
\max _{|z| \leq 1} \Psi_{N}(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4} \log \log N+\xi_{N}\right) .
$$

Non-Hermitian Fyodorov-Hiary-Keating conjecture

Consider the (centered) log-characteristic polynomial (here $\sigma_{i} \in \operatorname{Spec}(X)$)

$$
\Psi_{N}(z):=\log \left(\prod_{i=1}^{N}\left|\sigma_{i}-z\right|\right)-\mathbf{E}(\cdots)=\log |\operatorname{det}(X-z)|-\mathbf{E}(\cdots) .
$$

Conjecture (Non-Hermitian FHK):

$$
\max _{|z| \leq 1} \Psi_{N}(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4} \log \log N+\xi_{N}\right) .
$$

No conjectures about ξ_{N} for any 2D ensemble!

Non-Hermitian Fyodorov-Hiary-Keating conjecture

Consider the (centered) log-characteristic polynomial (here $\sigma_{i} \in \operatorname{Spec}(X)$)

$$
\Psi_{N}(z):=\log \left(\prod_{i=1}^{N}\left|\sigma_{i}-z\right|\right)-\mathbf{E}(\cdots)=\log |\operatorname{det}(X-z)|-\mathbf{E}(\cdots)
$$

Conjecture (Non-Hermitian FHK):

$$
\max _{|z| \leq 1} \Psi_{N}(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4} \log \log N+\xi_{N}\right) .
$$

No conjectures about ξ_{N} for any 2D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon>0$ we have

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left(\left(\frac{1}{\sqrt{2}}-\epsilon\right) \log N \leq \max _{|z| \leq 1} \Psi_{N}(z) \leq\left(\frac{1}{\sqrt{2}}+\epsilon\right) \log N\right)=1
$$

Non-Hermitian Fyodorov-Hiary-Keating conjecture

Consider the (centered) log-characteristic polynomial (here $\sigma_{i} \in \operatorname{Spec}(X)$)

$$
\Psi_{N}(z):=\log \left(\prod_{i=1}^{N}\left|\sigma_{i}-z\right|\right)-\mathbf{E}(\cdots)=\log |\operatorname{det}(x-z)|-\mathbf{E}(\cdots)
$$

Conjecture (Non-Hermitian FHK):

$$
\max _{|z| \leq 1} \Psi_{N}(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4} \log \log N+\xi_{N}\right) .
$$

No conjectures about ξ_{N} for any 2D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon>0$ we have

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left(\left(\frac{1}{\sqrt{2}}-\epsilon\right) \log N \leq \max _{|z| \leq 1} \Psi_{N}(z) \leq\left(\frac{1}{\sqrt{2}}+\epsilon\right) \log N\right)=1
$$

Remark 1: Previously known only when X is complex Ginibre (Lambert 2019).

Non-Hermitian Fyodorov-Hiary-Keating conjecture

Consider the (centered) log-characteristic polynomial (here $\sigma_{i} \in \operatorname{Spec}(X)$)

$$
\Psi_{N}(z):=\log \left(\prod_{i=1}^{N}\left|\sigma_{i}-z\right|\right)-\mathbf{E}(\cdots)=\log |\operatorname{det}(x-z)|-\mathbf{E}(\cdots)
$$

Conjecture (Non-Hermitian FHK):

$$
\max _{|z| \leq 1} \Psi_{N}(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4} \log \log N+\xi_{N}\right) .
$$

No conjectures about ξ_{N} for any 2 D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon>0$ we have

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left(\left(\frac{1}{\sqrt{2}}-\epsilon\right) \log N \leq \max _{|z| \leq 1} \Psi_{N}(z) \leq\left(\frac{1}{\sqrt{2}}+\epsilon\right) \log N\right)=1
$$

Remark 1: Previously known only when X is complex Ginibre (Lambert 2019).
Remark 2: Note that even the real Ginibre case was not known!

Non-Hermitian Fyodorov-Hiary-Keating conjecture

Consider the (centered) log-characteristic polynomial (here $\sigma_{i} \in \operatorname{Spec}(X)$)

$$
\Psi_{N}(z):=\log \left(\prod_{i=1}^{N}\left|\sigma_{i}-z\right|\right)-\mathbf{E}(\cdots)=\log |\operatorname{det}(x-z)|-\mathbf{E}(\cdots)
$$

Conjecture (Non-Hermitian FHK):

$$
\max _{|z| \leq 1} \Psi_{N}(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4} \log \log N+\xi_{N}\right) .
$$

No conjectures about ξ_{N} for any 2 D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon>0$ we have

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left(\left(\frac{1}{\sqrt{2}}-\epsilon\right) \log N \leq \max _{|z| \leq 1} \Psi_{N}(z) \leq\left(\frac{1}{\sqrt{2}}+\epsilon\right) \log N\right)=1
$$

Remark 1: Previously known only when X is complex Ginibre (Lambert 2019).
Remark 2: Note that even the real Ginibre case was not known!
Remark 3: Maximum over $|\Im z| \sim N^{-\alpha}$ different in real and complex case (\neq union bound).

Sketch proof NH FHK (first order)

Hermitization+Regularization

Step 1: Notice that (Girko's formula)

$$
\log |\operatorname{det}(x-z)|=\frac{1}{2} \log \operatorname{det}\left[(x-z)(x-z)^{*}\right]=\sum_{i} \log \lambda_{i}^{z}
$$

with λ_{i}^{z} the singular values of $X-z$.

Hermitization+Regularization

Step 1: Notice that (Girko's formula)

$$
\log |\operatorname{det}(X-z)|=\frac{1}{2} \log \operatorname{det}\left[(X-z)(X-z)^{*}\right]=\sum_{i} \log \lambda_{i}^{z},
$$

with λ_{i}^{z} the singular values of $X-z$.
GOAL:

$$
\left(\frac{1}{\sqrt{2}}-\epsilon\right) \log N \leq \sup _{|z| \leq 1}\left[\sum_{i} \log \lambda_{i}^{z}-\mathbf{E}(\cdots)\right] \leq\left(\frac{1}{\sqrt{2}}+\epsilon\right) \log N
$$

Hermitization+Regularization

Step 1: Notice that (Girko's formula)

$$
\log |\operatorname{det}(x-z)|=\frac{1}{2} \log \operatorname{det}\left[(x-z)(x-z)^{*}\right]=\sum_{i} \log \lambda_{i}^{z},
$$

with λ_{i}^{z} the singular values of $X-z$.
GOAL:

$$
\left(\frac{1}{\sqrt{2}}-\epsilon\right) \log N \leq \sup _{|z| \leq 1}\left[\sum_{i} \log \lambda_{i}^{z}-\mathbf{E}(\cdots)\right] \leq\left(\frac{1}{\sqrt{2}}+\epsilon\right) \log N
$$

Step 2: By comparison for extremal statistics (Landon-Lopatto-Marcinek 2018) it is enough

$$
\Psi_{N}(z, t):=\sup _{|z| \leq 1} \sum_{i} \log \lambda_{i}^{z}(t)-\mathbf{E}(\cdots) \approx \frac{\log N}{\sqrt{2}} .
$$

Here $\lambda_{i}^{z}(t)$ are the singular values of $X_{t}-z$, with $X_{t}=X+\sqrt{t} X_{\text {Gin }}$ and $t=o(1)$.

Branching random walk representation

Step 3: How to get the branching structure?

Branching random walk representation

Step 3: How to get the branching structure?
Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC),

Branching random walk representation

Step 3: How to get the branching structure?
Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC), we use Dyson Brownian Motion (DBM)!

The singular values of $X+\sqrt{t} x_{\text {Gin }}-z$ are the solution of the DBM:

$$
\mathrm{d} \lambda_{i}^{z}(t)=\frac{\mathrm{d} b_{i}^{z}(t)}{\sqrt{2 N}}+\frac{1}{2 N} \sum_{j \neq i} \frac{1}{\lambda_{i}^{z}(t)-\lambda_{j}^{z}(t)} \mathrm{d} t .
$$

Branching random walk representation

Step 3: How to get the branching structure?
Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC), we use Dyson Brownian Motion (DBM)!

The singular values of $X+\sqrt{t} x_{\text {Gin }}-z$ are the solution of the DBM:

$$
\mathrm{d} \lambda_{i}^{z}(t)=\frac{\mathrm{d} b_{i}^{z}(t)}{\sqrt{2 N}}+\frac{1}{2 N} \sum_{j \neq i} \frac{1}{\lambda_{i}^{z}(t)-\lambda_{j}^{z}(t)} \mathrm{d} t .
$$

Define $t_{k}:=N^{c k} / N$, for a small $c>0$. Using DBM:

$$
\Psi_{N}(z, t) \approx \sum_{k=1}^{k} Y_{k}(z), \quad Y_{k}(z):=\sum_{i} \int_{t_{k-1}}^{t_{k}} \frac{\mathrm{~d} b_{i}^{z}(s)}{\lambda_{i}^{z}(s)-i s} .
$$

Branching random walk representation

Step 3: How to get the branching structure?
Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC), we use Dyson Brownian Motion (DBM)!

The singular values of $X+\sqrt{t} x_{\text {Gin }}-z$ are the solution of the DBM:

$$
\mathrm{d} \lambda_{i}^{Z}(t)=\frac{\mathrm{d} b_{i}^{z}(t)}{\sqrt{2 N}}+\frac{1}{2 N} \sum_{j \neq i} \frac{1}{\lambda_{i}^{z}(t)-\lambda_{j}^{z}(t)} \mathrm{d} t .
$$

Define $t_{k}:=N^{c k} / N$, for a small $c>0$. Using DBM:

$$
\Psi_{N}(z, t) \approx \sum_{k=1}^{k} Y_{k}(z), \quad Y_{k}(z):=\sum_{i} \int_{t_{k-1}}^{t_{k}} \frac{\mathrm{~d} b_{i}^{z}(s)}{\lambda_{i}^{z}(s)-i s} .
$$

Remark: Branching structure coming from $\sum_{k} Y_{k}(z)$:

$$
\operatorname{Var}\left[Y_{k}(z)\right] \approx \frac{1}{K} \log N, \quad \operatorname{Cov}\left[Y_{k}\left(z_{1}\right), Y_{k}\left(z_{2}\right)\right] \approx\left\{\begin{array}{lll}
\frac{1}{K} \log N & \text { if } & \left|z_{1}-z_{2}\right|^{2} \ll t_{k} \\
0 & \text { if } & \left|z_{1}-z_{2}\right|^{2} \gg t_{k}
\end{array}\right.
$$

Summary

Main results:

- Emergence of a 3D log-correlated field with respect to parabolic distance.
- Computation first order $\max _{z} \log |\operatorname{det}(X-z)|$ for general i.i.d. matrices.

Main results:

- Emergence of a 3D log-correlated field with respect to parabolic distance.
- Computation first order $\max _{z} \log |\operatorname{det}(X-z)|$ for general i.i.d. matrices.

Main technical inputs:

- Branching structure from DBM.
- Analysis of singular values via weakly correlated DBMs.
- Proof of local laws for products of resolvents.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

