Logarithmically correlated fields in non-Hermitian random matrices

Giorgio Cipolloni, Princeton University May 10, 2024

Random Matrices and Related Topics in Jeju

A logarithmically (log–)correlated field X(z) is a Gaussian random distribution on \mathbb{R}^d .

A logarithmically (log-)correlated field X(z) is a Gaussian random distribution on \mathbf{R}^d .

The law of X(z) is determined by

$$Cov[X(z_1), X(z_2)] = -\log |z_1 - z_2|.$$

A logarithmically (log-)correlated field X(z) is a Gaussian random distribution on \mathbb{R}^d .

The law of X(z) is determined by

$$Cov[X(z_1), X(z_2)] = -\log |z_1 - z_2|.$$

Some examples: 2D Gaussian Free Field (GFF), branching random walks.

A logarithmically (log–)correlated field X(z) is a Gaussian random distribution on \mathbb{R}^d .

The law of X(z) is determined by

$$Cov[X(z_1), X(z_2)] = -\log |z_1 - z_2|.$$

Some examples: 2D Gaussian Free Field (GFF), branching random walks.

Emergence of log-correlated fields: conformal field theory, random surfaces, random matrices, number theory, statistical physics, SPDEs, . . .

(Gaussian) Branching Random Walk

Binary branching random walk (BRW) with increments $Y_{V}(l)$.

Here $Y_{v}(l)$ are i.i.d. $\mathcal{N}(0, \sigma^{2})$.

(Gaussian) Branching Random Walk

Here $Y_{v}(l)$ are i.i.d. $\mathcal{N}(0, \sigma^{2})$.

BRW:

$$X_{\nu}(N) = \sum_{l=1}^{\log N} Y_{\nu}(l), \qquad \mathbf{E} \left[Y_{\nu}(l) Y_{\nu'}(l) \right] = \begin{cases} \sigma^2 & \text{if } l \leq \nu \wedge \nu', \\ 0 & \text{if } l > \nu \wedge \nu'. \end{cases}$$

Model: I.I.D. Random Matrices

We consider random matrices

$$X = \begin{pmatrix} x_{11} & \dots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{NN} \end{pmatrix}$$

with independent identical distributed (i.i.d.) complex or real entries $x_{ab} \stackrel{d}{=} N^{-1/2} \chi$:

(i) $E \chi = 0$, (ii) $E|\chi|^2 = 1$, $E \chi^2 = 0$, or $E \chi^2 = 1$, (iii) $E|\chi|^p \le C_p < \infty$. We consider random matrices

$$X = \begin{pmatrix} x_{11} & \dots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{NN} \end{pmatrix}$$

with independent identical distributed (i.i.d.) complex or real entries $x_{ab} \stackrel{d}{=} N^{-1/2} \chi$:

(i) $E \chi = 0$, (ii) $E|\chi|^2 = 1$, $E \chi^2 = 0$, or $E \chi^2 = 1$, (iii) $E|\chi|^p \le C_p < \infty$.

Normalization guarantees that $||X|| \sim 1$ as $N \to \infty$.

We consider random matrices

$$X = \begin{pmatrix} x_{11} & \dots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{NN} \end{pmatrix}$$

with independent identical distributed (i.i.d.) complex or real entries $x_{ab} \stackrel{d}{=} N^{-1/2} \chi$:

- (i) $\mathbf{E} \chi = 0$, (ii) $\mathbf{E} |\chi|^2 = 1$, $\mathbf{E} \chi^2 = 0$, or $\mathbf{E} \chi^2 = 1$,
- (iii) $\mathbf{E}|\chi|^p \leq C_p < \infty$.

Normalization guarantees that $||X|| \sim 1$ as $N \to \infty$.

Remark: No integrable structure if $\chi \neq$ Gaussian.

X is an $N \times N$ matrix with i.i.d. entries

$$E x_{ab} = 0, \qquad E |x_{ab}|^2 = \frac{1}{N}.$$

Figure 1: Real entries

Figure 2: Complex entries

X is an $N \times N$ matrix with i.i.d. entries

$$E x_{ab} = 0, \qquad E |x_{ab}|^2 = \frac{1}{N}.$$

Figure 1: Real entries

Figure 2: Complex entries

X is an $N \times N$ matrix with i.i.d. entries

$$E x_{ab} = 0, \qquad E |x_{ab}|^2 = \frac{1}{N}.$$

Figure 1: Real entries

Figure 2: Complex entries

X is an $N \times N$ matrix with i.i.d. entries

- Circular law: Convergence to the uniform distribution on the unit disk.
- Eigenvalues spacing $\sim N^{-1/2}$.
- Accumulation of $\sim \sqrt{N}$ eigenvalues on the real axis for real matrices.

Fluctuations around the Circular Law

CLT: Let $\sigma_1, \ldots, \sigma_N$ be the eigenvalues of X, then

$$\Gamma_N := \mathbf{N} \left[\frac{1}{N} \sum_{i=1}^N \delta_{\sigma_i} - \frac{1}{\pi} \mathbf{1} (|z| \le 1) \, \mathrm{d}^2 z \right] \to \textit{GFF}.$$

Figure 3: (Smoothed) fluctuations of 1000 eigenvalues of i.i.d. random matrices (left) vs. 1000 independent points uniformly distributed in the unit disk (right). Eigenvalues fluctuate much less.

Log–correlated fields in NH Random Matrices

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_1, z_2 \in \mathbf{D}$:

$$\operatorname{Cov}\left[\log\left|\det(X-z_{1})\right|,\log\left|\det(X-z_{2})\right|\right]\approx-\log|z_{1}-z_{2}|.$$

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_1, z_2 \in \mathbf{D}$:

$$\operatorname{Cov}\left[\log\left|\det(X-z_{1})\right|,\log\left|\det(X-z_{2})\right|\right]\approx-\log|z_{1}-z_{2}|.$$

More precisely: Let $f, g \in H^1$, and let $(\sigma_i \in \text{Spec}(X)) L_N(f) := \sum_i f(\sigma_i) - \mathsf{E} \sum_i f(\sigma_i)$. Then

$$\mathsf{E} L_N(f)L_N(g) \approx -\int_{\mathsf{D}} \int_{\mathsf{D}} \Delta f(z_1) \Delta g(z_2) \log |z_1 - z_2| \, \mathrm{d}^2 z_1 \, \mathrm{d}^2 z_2.$$

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_1, z_2 \in \mathbf{D}$:

$$\operatorname{Cov}\left[\log\left|\det(X-z_{1})\right|,\log\left|\det(X-z_{2})\right|\right]\approx-\log|z_{1}-z_{2}|.$$

More precisely: Let $f, g \in H^1$, and let $(\sigma_i \in \text{Spec}(X)) L_N(f) := \sum_i f(\sigma_i) - \mathsf{E} \sum_i f(\sigma_i)$. Then

$$\mathsf{E} L_N(f)L_N(g) \approx -\int_{\mathsf{D}}\int_{\mathsf{D}}\Delta f(z_1)\Delta g(z_2)\log|z_1-z_2|\,\,\mathrm{d}^2 z_1\,\mathrm{d}^2 z_2.$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_1, z_2 \in \mathbf{D}$:

$$\operatorname{Cov}\left[\log\left|\det(X-z_{1})\right|,\log\left|\det(X-z_{2})\right|\right]\approx-\log|z_{1}-z_{2}|.$$

More precisely: Let $f, g \in H^1$, and let $(\sigma_i \in \text{Spec}(X)) L_N(f) := \sum_i f(\sigma_i) - \mathsf{E} \sum_i f(\sigma_i)$. Then

$$\mathsf{E} L_N(f)L_N(g) \approx -\int_{\mathsf{D}}\int_{\mathsf{D}}\Delta f(z_1)\Delta g(z_2)\log|z_1-z_2|\,\,\mathrm{d}^2 z_1\,\mathrm{d}^2 z_2.$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Remark 2: Similar result holds for general i.i.d. matrices (C.-Erdős-Schröder 2019).

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_1, z_2 \in \mathbf{D}$:

$$\operatorname{Cov}\left[\log\left|\det(X-z_{1})\right|,\log\left|\det(X-z_{2})\right|\right]\approx-\log|z_{1}-z_{2}|.$$

More precisely: Let $f, g \in H^1$, and let $(\sigma_i \in \text{Spec}(X)) L_N(f) := \sum_i f(\sigma_i) - \mathbf{E} \sum_i f(\sigma_i)$. Then

$$\mathbf{E} L_N(f)L_N(g) \approx -\int_{\mathbf{D}} \int_{\mathbf{D}} \Delta f(z_1) \Delta g(z_2) \log |z_1 - z_2| \, \mathrm{d}^2 z_1 \, \mathrm{d}^2 z_2.$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Remark 2: Similar result holds for general i.i.d. matrices (C.–Erdős–Schröder 2019). For general i.i.d. matrices dependence on the fourth cumulant κ_4 of the entries.

Theorem (Rider-Virag 2007)

Let X be a complex Ginibre matrix (i.e. χ is Gaussian), then for $z_1, z_2 \in \mathbf{D}$:

$$\operatorname{Cov}\left[\log\left|\det(X-z_{1})\right|,\log\left|\det(X-z_{2})\right|\right]\approx -\log|z_{1}-z_{2}|.$$

More precisely: Let $f, g \in H^1$, and let $(\sigma_i \in \text{Spec}(X)) L_N(f) := \sum_i f(\sigma_i) - \mathbf{E} \sum_i f(\sigma_i)$. Then

$$\mathbf{E} L_N(f)L_N(g) \approx -\int_{\mathbf{D}} \int_{\mathbf{D}} \Delta f(z_1) \Delta g(z_2) \log |z_1 - z_2| \, \mathrm{d}^2 z_1 \, \mathrm{d}^2 z_2.$$

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Remark 2: Similar result holds for general i.i.d. matrices (C.-Erdős-Schröder 2019).

For general i.i.d. matrices dependence on the fourth cumulant κ_4 of the entries.

Remark 3: Similar result for normal matrices (Ameur-Hedenmalm-Makarov 2008, 2011), (Ameur, Kang, Seo 2018).

$$\mathrm{d}X_t = -\frac{1}{2}X_t\,\mathrm{d}t + \frac{\mathrm{d}B_t}{\sqrt{N}}, \qquad X_0 = X.$$

$$\mathrm{d}X_t = -\frac{1}{2}X_t\,\mathrm{d}t + \frac{\mathrm{d}B_t}{\sqrt{N}}, \qquad X_0 = X.$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

$$\operatorname{Cov}\left[\log\left|\det(X_{t}-z_{1})\right|,\log\left|\det(X_{s}-z_{2})\right|\right]\approx-\frac{1}{2}\log\left[\left|t-s\right|+\left|z_{1}-z_{2}\right|^{2}\right].$$

$$dX_t = -\frac{1}{2}X_t dt + \frac{dB_t}{\sqrt{N}}, \qquad X_0 = X.$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

$$\operatorname{Cov}\left[\log\left|\det(X_t-z_1)\right|, \log\left|\det(X_s-z_2)\right|\right] \approx -\frac{1}{2}\log\left[|t-s|+|z_1-z_2|^2\right].$$

Remark 1: Not known even for Ginibre! No space-time determinantal structure.

$$dX_t = -\frac{1}{2}X_t dt + \frac{dB_t}{\sqrt{N}}, \qquad X_0 = X.$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

$$\operatorname{Cov}\left[\log\left|\det(X_t-z_1)\right|,\log\left|\det(X_s-z_2)\right|\right]\approx -\frac{1}{2}\log\left[|t-s|+|z_1-z_2|^2\right].$$

Remark 1: Not known even for Ginibre! No space-time determinantal structure.

Remark 2: Same regularity 2D additive stochastic heat equation (Edwards–Wilkinson universality class).

$$dX_t = -\frac{1}{2}X_t dt + \frac{dB_t}{\sqrt{N}}, \qquad X_0 = X.$$

Theorem (Bourgade-C.-Huang 2024)

Let X be an i.i.d. matrix, then

Cov
$$\left[\log \left|\det(X_t - z_1)\right|, \log \left|\det(X_s - z_2)\right|\right] \approx -\frac{1}{2} \log \left[|t - s| + |z_1 - z_2|^2\right].$$

Remark 1: Not known even for Ginibre! No space-time determinantal structure.

Remark 2: Same regularity 2D additive stochastic heat equation (Edwards–Wilkinson universality class).

Remark 3: The limiting Gaussian field is not Markovian.

Let $e^{i\omega_1}, \ldots, e^{i\omega_N}$ the eigenvalues of a CUE matrix (Haar unitary).

Let $e^{i\omega_1}, \ldots, e^{i\omega_N}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$X_n(z) = \prod_{j=1}^N (1 - e^{\mathrm{i}\omega_j} z).$$

Let $e^{i\omega_1}, \ldots, e^{i\omega_N}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$X_n(z) = \prod_{j=1}^N (1 - e^{i\omega_j} z).$$

FHK conjecture:

$$\max_{|z|=1} \log |X_N(z)| = m_N + \xi_N, \qquad m_N := \log N - \frac{3}{4} \log \log N,$$

with ξ_N expected to converge to the sum of two independent Gumbel, i.e. $F(x) = e^{-e^{-x}}$.

Let $e^{i\omega_1}, \ldots, e^{i\omega_N}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$X_n(z) = \prod_{j=1}^N (1 - e^{i\omega_j} z).$$

FHK conjecture:

$$\max_{|z|=1} \log |X_N(z)| = m_N + \xi_N, \qquad m_N := \log N - \frac{3}{4} \log \log N.$$

with ξ_N expected to converge to the sum of two independent Gumbel, i.e. $F(x) = e^{-e^{-x}}$.

Theorem (Paquette-Zeitouni 2022)

There exists a deterministic C such that

$$\max_{|z|=1} \log |X_N(z)| - \log N - \frac{3}{4} \log \log N - C \Longrightarrow \xi,$$

with ξ being the sum of two independent random variables.

Let $e^{i\omega_1}, \ldots, e^{i\omega_N}$ the eigenvalues of a CUE matrix (Haar unitary). Consider the characteristic polynomial

$$X_n(z) = \prod_{j=1}^N (1 - e^{i\omega_j} z).$$

FHK conjecture:

$$\max_{|z|=1} \log |X_N(z)| = m_N + \xi_N, \qquad m_N := \log N - \frac{3}{4} \log \log N.$$

with ξ_N expected to converge to the sum of two independent Gumbel, i.e. $F(x) = e^{-e^{-x}}$.

Theorem (Paquette-Zeitouni 2022)

There exists a deterministic C such that

$$\max_{|z|=1} \log |X_N(z)| - \log N - \frac{3}{4} \log \log N - C \Longrightarrow \xi,$$

with ξ being the sum of two independent random variables.

Previous results: log *N*-term (Arguin-Belius-Bourgade 2015); log log *N*-term (Paquette-Zeitouni 2016); max_{|z|=1} log $|X_N(z)| - m_N$ is tight (Chhaibi-Madaule-Najnudel 2018).

Consider the (centered) log-characteristic polynomial (here $\sigma_i \in \text{Spec}(X)$)

$$\Psi_N(z) := \log \left(\prod_{i=1}^N |\sigma_i - z| \right) - \mathsf{E}(\cdots) = \log \left| \det(X - z) \right| - \mathsf{E}(\cdots).$$

Consider the (centered) log-characteristic polynomial (here $\sigma_i \in \text{Spec}(X)$)

$$\Psi_N(z) := \log \left(\prod_{i=1}^N |\sigma_i - z| \right) - \mathbf{E}(\cdots) = \log \left| \det(X - z) \right| - \mathbf{E}(\cdots).$$

Conjecture (Non–Hermitian FHK):

$$\max_{|z|\leq 1}\Psi_N(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4}\log\log N+\xi_N\right).$$

Consider the (centered) log-characteristic polynomial (here $\sigma_i \in \text{Spec}(X)$)

$$\Psi_N(z) := \log \left(\prod_{i=1}^N |\sigma_i - z| \right) - \mathbf{E}(\cdots) = \log \left| \det(X - z) \right| - \mathbf{E}(\cdots).$$

Conjecture (Non-Hermitian FHK):

$$\max_{|z|\leq 1}\Psi_N(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4}\log\log N+\xi_N\right).$$

No conjectures about ξ_N for any 2D ensemble!

Consider the (centered) log-characteristic polynomial (here $\sigma_i \in \text{Spec}(X)$)

$$\Psi_N(z) := \log \left(\prod_{i=1}^N |\sigma_i - z| \right) - \mathsf{E}(\cdots) = \log \left| \det(X - z) \right| - \mathsf{E}(\cdots).$$

Conjecture (Non-Hermitian FHK):

$$\max_{|z|\leq 1}\Psi_N(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4}\log\log N+\xi_N\right).$$

No conjectures about ξ_N for any 2D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon > 0$ we have

$$\lim_{N \to \infty} \mathsf{P}\left(\left(\frac{1}{\sqrt{2}} - \epsilon\right) \log N \le \max_{|z| \le 1} \Psi_N(z) \le \left(\frac{1}{\sqrt{2}} + \epsilon\right) \log N\right) = 1.$$

Consider the (centered) log-characteristic polynomial (here $\sigma_i \in \text{Spec}(X)$)

$$\Psi_N(z) := \log \left(\prod_{i=1}^N |\sigma_i - z| \right) - \mathsf{E}(\cdots) = \log \left| \det(X - z) \right| - \mathsf{E}(\cdots).$$

Conjecture (Non-Hermitian FHK):

$$\max_{|z|\leq 1}\Psi_N(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4}\log\log N+\xi_N\right).$$

No conjectures about ξ_N for any 2D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon > 0$ we have

$$\lim_{N \to \infty} \mathsf{P}\left(\left(\frac{1}{\sqrt{2}} - \epsilon\right) \log N \le \max_{|z| \le 1} \Psi_N(z) \le \left(\frac{1}{\sqrt{2}} + \epsilon\right) \log N\right) = 1.$$

Remark 1: Previously known only when X is complex Ginibre (Lambert 2019).

Consider the (centered) log-characteristic polynomial (here $\sigma_i \in \text{Spec}(X)$)

$$\Psi_N(z) := \log \left(\prod_{i=1}^N |\sigma_i - z| \right) - \mathsf{E}(\cdots) = \log \left| \det(X - z) \right| - \mathsf{E}(\cdots).$$

Conjecture (Non-Hermitian FHK):

$$\max_{|z|\leq 1}\Psi_N(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4}\log\log N+\xi_N\right).$$

No conjectures about ξ_N for any 2D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon > 0$ we have

$$\lim_{N \to \infty} \mathsf{P}\left(\left(\frac{1}{\sqrt{2}} - \epsilon\right) \log N \le \max_{|z| \le 1} \Psi_N(z) \le \left(\frac{1}{\sqrt{2}} + \epsilon\right) \log N\right) = 1.$$

Remark 1: Previously known only when X is complex Ginibre (Lambert 2019).

Remark 2: Note that even the real Ginibre case was not known!

Consider the (centered) log-characteristic polynomial (here $\sigma_i \in \text{Spec}(X)$)

$$\Psi_N(z) := \log \left(\prod_{i=1}^N |\sigma_i - z| \right) - \mathsf{E}(\cdots) = \log \left| \det(X - z) \right| - \mathsf{E}(\cdots).$$

Conjecture (Non-Hermitian FHK):

$$\max_{|z|\leq 1}\Psi_N(z)=\frac{1}{\sqrt{2}}\left(\log N-\frac{3}{4}\log\log N+\xi_N\right).$$

No conjectures about ξ_N for any 2D ensemble!

Theorem (C., Landon 2024)

Let X be a real or complex i.i.d. matrix then for any $\epsilon > 0$ we have

$$\lim_{N \to \infty} \mathsf{P}\left(\left(\frac{1}{\sqrt{2}} - \epsilon\right) \log N \le \max_{|z| \le 1} \Psi_N(z) \le \left(\frac{1}{\sqrt{2}} + \epsilon\right) \log N\right) = 1.$$

Remark 1: Previously known only when X is complex Ginibre (Lambert 2019).

Remark 2: Note that even the real Ginibre case was not known!

Remark 3: Maximum over $|\Im z| \sim N^{-\alpha}$ different in real and complex case (\neq union bound).

Sketch proof NH FHK (first order)

Step 1: Notice that (Girko's formula)

$$\log \left|\det(X-z)\right| = \frac{1}{2} \log \det[(X-z)(X-z)^*] = \sum_i \log \lambda_i^z,$$

with λ_i^z the singular values of X - z.

Step 1: Notice that (Girko's formula)

$$\log \left|\det(X-z)\right| = \frac{1}{2} \log \det[(X-z)(X-z)^*] = \sum_i \log \lambda_i^z,$$

with λ_i^z the singular values of X - z.

GOAL:

$$\left(\frac{1}{\sqrt{2}} - \epsilon\right) \log N \leq \sup_{|z| \leq 1} \left[\sum_{i} \log \lambda_{i}^{z} - \mathsf{E}(\cdots)\right] \leq \left(\frac{1}{\sqrt{2}} + \epsilon\right) \log N$$

Step 1: Notice that (Girko's formula)

$$\log \left|\det(X-z)\right| = \frac{1}{2} \log \det[(X-z)(X-z)^*] = \sum_i \log \lambda_i^z,$$

with λ_i^z the singular values of X - z.

GOAL:

$$\left(\frac{1}{\sqrt{2}} - \epsilon\right) \log N \leq \sup_{|z| \leq 1} \left[\sum_{i} \log \lambda_{i}^{z} - \mathsf{E}(\cdots)\right] \leq \left(\frac{1}{\sqrt{2}} + \epsilon\right) \log N$$

Step 2: By comparison for extremal statistics (Landon-Lopatto-Marcinek 2018) it is enough

$$\Psi_N(z,t) := \sup_{|z| \le 1} \sum_i \log \lambda_i^z(t) - \mathbf{E}(\cdots) \approx \frac{\log N}{\sqrt{2}}$$

Here $\lambda_i^z(t)$ are the singular values of $X_t - z$, with $X_t = X + \sqrt{t}X_{Gin}$ and t = o(1).

Step 3: How to get the branching structure?

Step 3: How to get the branching structure?

Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC),

Step 3: How to get the branching structure?

Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC), we use Dyson Brownian Motion (DBM)!

The singular values of $X + \sqrt{t}X_{Gin} - z$ are the solution of the DBM:

$$\mathrm{d}\lambda_i^z(t) = rac{\mathrm{d}b_i^z(t)}{\sqrt{2N}} + rac{1}{2N}\sum_{j
eq i}rac{1}{\lambda_i^z(t)-\lambda_j^z(t)} \, \mathrm{d}t.$$

Step 3: How to get the branching structure?

Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC), we use Dyson Brownian Motion (DBM)!

The singular values of $X + \sqrt{t}X_{Gin} - z$ are the solution of the DBM:

$$\mathrm{d}\lambda_i^z(t) = \frac{\mathrm{d}b_i^z(t)}{\sqrt{2N}} + \frac{1}{2N}\sum_{j\neq i}\frac{1}{\lambda_i^z(t) - \lambda_j^z(t)} \,\,\mathrm{d}t.$$

Define $t_k := N^{ck}/N$, for a small c > 0. Using DBM:

$$\Psi_N(z,t) \approx \sum_{k=1}^{\kappa} Y_k(z), \qquad Y_k(z) := \sum_i \int_{t_{k-1}}^{t_k} \frac{\mathrm{d} b_i^z(s)}{\lambda_i^z(s) - \mathrm{i} s}$$

Step 3: How to get the branching structure?

Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC), we use Dyson Brownian Motion (DBM)!

The singular values of $X + \sqrt{t}X_{Gin} - z$ are the solution of the DBM:

$$\mathrm{d}\lambda_i^z(t) = \frac{\mathrm{d}b_i^z(t)}{\sqrt{2N}} + \frac{1}{2N}\sum_{j\neq i}\frac{1}{\lambda_i^z(t) - \lambda_j^z(t)} \,\,\mathrm{d}t.$$

Define $t_k := N^{ck}/N$, for a small c > 0. Using DBM:

$$\Psi_N(z,t) \approx \sum_{k=1}^{K} Y_k(z), \qquad Y_k(z) := \sum_{i} \int_{t_{k-1}}^{t_k} \frac{\mathrm{d}b_i^z(s)}{\lambda_i^z(s) - \mathrm{i}s}$$

Remark: Branching structure coming from $\sum_{k} Y_{k}(z)$:

$$\operatorname{Var}[Y_{k}(z)] \approx \frac{1}{\kappa} \log N, \qquad \operatorname{Cov}[Y_{k}(z_{1}), Y_{k}(z_{2})] \approx \begin{cases} \frac{1}{\kappa} \log N & \text{if } |z_{1} - z_{2}|^{2} \ll t_{k}, \\ 0 & \text{if } |z_{1} - z_{2}|^{2} \gg t_{k}. \end{cases}$$

Summary

Main results:

- Emergence of a 3D log-correlated field with respect to parabolic distance.
- Computation first order max_z log |det(X z)| for general i.i.d. matrices.

Summary

Main results:

- Emergence of a 3D log-correlated field with respect to parabolic distance.
- Computation first order max_z log |det(X z)| for general i.i.d. matrices.

Main technical inputs:

- Branching structure from DBM.
- Analysis of singular values via weakly correlated DBMs.
- Proof of local laws for products of resolvents.

THANK YOU VERY MUCH FOR YOUR ATTENTION!