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COV[X(Zl),X(Zz)] = — |Og |Zl — Z2].

Some examples: 2D Gaussian Free Field (GFF),

Emergence of log-correlated fields: conformal field theory, random surfaces, random
matrices, number theory, statistical physics, SPDEs, . . .
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o2 if I<vAV,
0 if [>vAV.
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X111 ... XN
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XN1 --- XN
with independent identical distributed (i.i.d.) or real entries xqp ! N=1/2y:
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Remark: No integrable structure if



Eigenvalues of random matrices with independent entries

Xisan N x N matrix with entries
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Eigenvalues of random matrices with independent entries

Xisan N x N matrix with entries

2 1
Exgp =0, Elxop|” = N

Figure 1: Real entries Figure 2: entries

Convergence to the uniform distribution on the unit disk.
Eigenvalues spacing ~ N—1/2,

Accumulation of ~ +/N eigenvalues on the real axis for real matrices. 5



Fluctuations around the Circular Law

CLT: Let oy, ..., oy be the eigenvalues of X, then

N
1 1
Ty:=N|=Y 65 —=1(|z] < 1)d?z| — GFF.
" {NZ ~1(lz < 1) ]

Figure 3: (Smoothed) fluctuations of 1000 eigenvalues of i.i.d. random matrices (left) vs. 1000
independent points uniformly distributed in the unit disk (right). Eigenvalues fluctuate much less.



Log-correlated fields in NH Random
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Theorem (Rider-Virag 2007)
Let X be a complex Ginibre matrix (i.e. x is Gaussian), then for z;, z, € D:

Cov [log |det(X — z1)|, log |det(X — z,)|] & — log |21 — 23|

More precisely: Letf, g € H!, and let (o; € Spec(X)) Ly(f) := >_; f(o7) —EY_; f(0j). Then

ELy(F)Lu(g) ~ — /D /D Af(z1)Ag(23) log |21 — 22| d2z1.d22,.

Remark 1: Proven for radial f by (Forrester 1999). Also predicted general formula.

Remark 2: Similar result holds for (C.-Erdés-Schréder 2019).
For dependence on the fourth cumulant x4 of the entries.
Remark 3: Similar result for (Ameur-Hedenmalm-Makarov 2008, 2011),

(Ameur, Kang, Seo 2018).
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Consider the Ornstein-Uhlenbeck flow (here Bt is matrix Brownian motion)

1 dB
dXe = —Xedt + ==y Xo = X.

VN

Theorem (Bourgade-C.-Huang 2024)
Let X be an i.i.d. matrix, then

1
Cov [log |det(X; — z1)|, log |det(X: — ) |] ~ - log [|t —s| + |21 — z|*] .

Remark 1: Not known even for Ginibre! No space-time determinantal structure.

Remark 2: Same regularity 2D additive stochastic heat equation

Remark 3: The limiting Gaussian field is not Markovian.
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The Fyodorov-Hiary-Keating (FHK) conjecture

Letewi, ... el“n the eigenvalues of a CUE matrix (Haar unitary). Consider the

N
Xn(Z H "‘le

j=1

FHK conjecture:

3
|m‘ax log [Xn(2)| = mn + &, my = log N — i log log N,
z|=1
with &y expected to converge to the sum of two independent Gumbel, i.e. F(x) = e—¢ "
Theorem (Paquette-Zeitouni 2022)
There exists a C such that
3
|m‘ax log |Xn(z)| — log N — 7 loglogN — C =&,
z|=1

with £ being the sum of two independent random variables.

Previous results: log N-term (Arguin-Belius-Bourgade 2015); log log N-term (Paquette-Zeitouni
2016); max ||, log [Xn(z)| — my is tight (Chhaibi-Madaule-Najnudel 2018).
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Remark 2: Note that even the real Ginibre case was not known!

Remark 3: Maximum over |3z| ~ N~ differentin real and case (# union bound).
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Hermitization+Regularization

Step 1: Notice that (Girko’s formula)
1 *1 __ z
log |det(x — z)| = > log det[(X —2)(X —2)"] = Z log AZ,

with X7 the singular values of X — z.

GOAL:

<% —e) logN < sup [Zlogkf—E(“')

1
<|—=+4+ 5) log N
lz|<1 |5 (ﬁ
Step 2: By comparison for extremal statistics (Landon-Lopatto-Marcinek 2018) it is enough

log N
Wy(z,t) := sup log X (t) —E(--+) ~
(e, 1= sup STleg (0 —E( ) =

Here M (t) are the singular values of X; — z, with X; = X + /X, and t = o(1).

11



Branching random walk representation

Step 3: How to get the branching structure?

12



Branching random walk representation

Step 3: How to get the branching structure?

Instead of convergence (of moments char. pol.) to s

12



Branching random walk representation

Step 3: How to get the branching structure?

Instead of convergence (of moments char. pol.) to s

we use Dyson Brownian Motion (DBM)!

The singular values of X + \/tXg;, — z are the solution of the DBM:

db(t) 1

1
— — dt.
NG ; X0 - N

AN (1) =

12



Branching random walk representation

Step 3: How to get the branching structure?
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we use Dyson Brownian Motion (DBM)!

The singular values of X + \/tXg;, — z are the solution of the DBM:

dbz(t) 1 1
dX ()= ——= + == > 5~ dt.
VAN 2N S X (1) = (D)

Define t; := N /N, for a small c > 0. Using DBM:

i Jt—1

- K . e dbi(s)
Wy (z,t) = ; Yi(2), Yi(2) = Z/ X(s) —is’
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Branching random walk representation

Step 3: How to get the branching structure?

Instead of convergence (of moments char. pol.) to Gaussian Multiplicative Chaos (GMC),

we use Dyson Brownian Motion (DBM)!

The singular values of X + \/tXg;, — z are the solution of the DBM:
dbi(t) 1

dX(t) = TR ; O -%0 dt.

Define t; := N /N, for a small c > 0. Using DBM:

K
V@RI NED K@) Z/
k=1

te—

dbz(s)
L N(s) —is
Remark: Branching structure coming from =, Y, (z):

FlogN if |z — 2 < t,

1
\/ar[Yk(z)] ~ R |OgN7 COV[Yk(Zl), Vk(Zz)} ~ {0 i ‘Z , ‘2 .y
1 — 22 k-

12
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Summary

Main results:
e Emergence of a 3D log-correlated field with respect to
parabolic distance.

o Computation first order max, log |det(X — z)| for general i.i.d.
matrices.

Main technical inputs:

e Branching structure from DBM.
e Analysis of singular values via weakly correlated DBMs.
e Proof of local laws for products of resolvents.
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