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Gaussian power series

e {ak}: a deterministic (non-random) sequence of complex numbers
o {Ck(w)}: i.i.d. ~ Ng(0,1), standard complex normal.
@ The random power series

X(2) = X(z,w) =) arli(w)z*
k=0

defines a Gaussian analytic function (GAF) in the same circle of
convergence for the deterministic power series X(z) = > o, axz”.

o Covariance kernel: Sx(z,w) = E[X(z)X(w)] = 322 0|ak| 2(zw)k
determines GAF.

Important example (hyperbolic GAF): a, =

[e.9] 1 )
Xhyp(2) = ;quzk onD = S(z,w) = — (Szegb kernel)

Fact. For each z € D = {|z| < 1}, Xayp(z) ~ Nc(0, (1 — |z[?)71).



Stationary AR(p) model

Autoregressive model AR(p)

Yi=c+p1Yic1+ @Yo+ -+ opYep+ Gt (teZ)

where {(¢}+ez are i.i.d. noise.

@ AR(1): For |z] <1land c =0,
Yt = ZYt_l + Cf (t € Z) (*)

Figure: AR(1) with z = 0.7: Bernoulli noise (left) and R-Gaussian noise (right)

® Xpuyp(2) is the stationary solution to (*) with C-Gaussian noise.



Gaussian power series from AR(1)-model

e AR(1): For |z] <1,
Yi=2zYio1+ G (t€Z)
@ By introducing the shift operator (Sx): = x¢—1 (t € Z), we have
Ye=(25Y)e+ = Ve ={(1-25) "'}y = Ye = ) _ ZK(5*Q):
k=0

@ By expanding the RHS of the equation, we have

Ye=Ye(2) =Y 2k £ Xnypl2) (Yt € Z)
k=0

® Y = {VYi}tez forms a stationary GAF-valued process.



Peres-Virdg's theorem

Theorem (Peres-Virag (2005))

The zeros of the hyperbolic GAF
(oo}
thp(Z) = ngzk onD
k=0

is the determinantal point process associated with Bergman kernel
1
5o

Kz w) = i —Zap

Determinantal point process (DPP)

A point process is said to be a determinantal point process if there exists a kernel
K(z, w) such that the n-th correlation function is given by

p"(z1,...,2,) = det(K(z, Zj))}',jzl,

In particular, the density of points is p(z) = K(z, z).

T = — — wyor?




Several extensions

@ Krishnapur(2009): {Gk}22, are i.i.d. p x p Ginibre matrices = DPP:

Xmatrix(2) = det (i szk>
k=0

@ Forrester(2010), Matsumoto-S.(2013): {¢F}3°, are i.i.d. real Gaussian
random variables = Pfaffian:

Xreal Z) ZC

@ Katori-5.(2022): the i.i.d. Gaussian Laurant series on the annulus Ag:

%CW
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@ Noda-5.(2022): {&k}72, are finitely dependent, stationary Gaussian process
coefficients. Expected number of points inside the ball:

Xdep Z ﬁkZ



Density of zeros of GAF

Theorem (Edelman-Kostlan)

Let X(z) be a GAF on D with covariance function Sx(z, w). Then, the
1-correlation function of the zero process Zx := ). p.x(,)—o 0z of X(2)
(= the density of zeros) at z with Sx(z,z) > 0 is given by

1 1
1 = — = — .
px(2) = ;—Dlog Sx(z,2) = —9;0zlog Sx(z, 2)

Ex.(hyperbolic GAF): Xj,,(2) := Y32, Ckz" on D (i ii.d. ~ Ng(0,1).
Then,

o0
1 .
SXpy, (2, W) Z — (Szegb kernel)
k=0
and then
Y(z) = 18 Oz lo LI 1 (hyperbolic volume)



Calabi’s rigidity for GAF

By analyticity of X, the information of the diagonal Sx(z,z) recovers the
off-diagonal Sx(z, w). From this fact, we have the following:

Theorem (Sodin)

Let X and Y be GAF on D. If the 1-correlation functions p%(z) and
p(z) of the zero processes Zx and Zy coincide, then there exists a
non-vanishing, non-random analytic function h such that

d

Y = hX.

In particular, Zx 4 Zy.

Example: This theorem implies that GAF on D whose density of zeros is
the hyperbolic volume W is essentially unique in law, which is
nothing but Xp,5(2).



Our setting

= {&k}kez is a stationary, centered, complex Gaussian process with
the covariance function v:Z — C, i.e.,

[ v(k =€) = E[¢k&/]

with 7(0) = 1. In particular, & ~ Nc(0, 1) for each k € Z.
@ We consider the Gaussian power series with the covariance above:

X(z) = X=(2) := ngzk
k=0

o If {&k}kez areiiid,, ie., y(k) = ko, the GAF is Xp(2).

Fact: All such GAFs are on D

The convergence radius of Xz is almost surely 1. Then, X=(z) is defined
on D and its zeros are located inside D if exists.

™ = —y = .



Covariance function and spectral function

@ Covariance kernel: There is a special covariance structure:

Sx(z,w) = thyp(z, w)Ga(z,w) =

— ZwW

x  Gp(z,w)
—_——

spectral densit
Szegd kernel P y

where

Go(z,w) =1+ G(z) + G(w), G(z2)= Zmzk.
k=1

o Spectral measure dF(6): Since (k) is positive definite,

7

1K) = [ edr ()

—T

o If dF(0) = F’(G)%, then F’(0) is called the spectral density.



Example 1: 1-dependent case

1 k=0
v(k)=<¢a k=+1 for |a] <1/2
0 otherwise

o G(z)=az, Gyz,w)=1+a(z+w)
@ |t is easy to see that

T . _do
ik@ i —i6
1 — = ~v(k
/_Fe (1+ ae' + ae )27r ~v(k)
@ This means that
F'(0) = Gy(e', e) =14 2acosb.

Spectral density

When G(z) is nice enough, we have

F'(0) = Gz(eie,eie)




Example 2: Gaussian Markov case

For 0 < p <1 and {(p}nez i.i.d. ~ Ng(0,1),

§ni=\1—p? Zkanfk (i V31— p2thP(p))
k=0

[ y(k)=p* (0<p<1)
. pz 5 ) = 1—p?zz
R A A (e ()

o G(z) is analytic in |z| < p~ 1,

1—p? 1—p?

F'(9) = : — =
() (1 — pel?)(1 — pe=i®) 1 —2pcosf + p?

>0




Expected number of zeros of X=

e Nx(D)=#{z € D: X(z) = 0}: the number of zeros inside D.
@ From the Edelman-Kostlan formula and the Stokes formula,

E[Nx(D) /AIogSX(Z z)dm(z) = ?{ 0, log Sx(z,z)dz

@ In the present setting, since Sx(z,z) = Sx, ,(z,2)G2(z, 2)

BN (D) = 5o f Lf cla)

27i Jop 1 — |z|? T ap Ga(z,2)

NI

Vv vV
main term error term

o We focus on the case where D =D, = {z € D : |z| < r}. We write
Nx(r) for Nx(D,).

r2

BN = -z + J0)

error term

——
E[Nx,, (1]



Examples: the error term is O(1)

e Example 0. (i.i.d. case, hypberbolic GAF) When (k) = 40,

r2

E[Nx,,, ()] = 1_,2
e Example 1. (1-dependent) When |a| < 1/2,
1 1 )
E[Nx(r)] = 1—r2*§(m*1)+0(1_r ) asr—1

o Example 2. (Gaussian Markov) When ~(k) = plkl (p € (0,1)),

2 2

r p
E[Nx(r)] = 21 2 +0(1—-r? asr—1

Remark. For all the above cases, the spectral measures are absolutely
continuous and their spectral density are strictly positive.



Examples: the error term is O((1 — r?)~%/2) or more

e Example 1. (1-dependent) When |a|] = 1/2,

r? 1 1
—= +0
1—r2 241 —1r2

When |a|] = 1/2, the spectral measure has zeros on the unit circle, a.e.

E[Nx(r)] = (1) asr—1

F'(6) =1+ 2acosf =1+ cosf > 0.

For a certain kernel related to fractional BM, S. Mukeru et al. shows that

K ! 1 < E[Nx(r)] < S ! L
—_— S — r N — S —
1-r2 Moyi—p 2) -t Imr T 012 2

for0 < r<1.



Result A: Comparison of the expected number of zeros

Proposition (Noda-S.)
e D C D: 9D: a domain with smooth boundary
o Nx(D)=#{z € D: X(z) = 0}: the number of zeros inside D

E[Nx(D)] < E[Nx,,,(D)]-

The equality “=" holds for some (also any) domain D if and only if
d
X(2) = Xnyp(2).

When D = D,, ,
r
E[Nx(r)] = 12 J(r) .
~—— error term
E[Nx,,, ()]
where
1 1 1G'(2)?
_ —_= <0.
70) =+ [ 0u0c108 Gale 2)am(z) = — [ ZE dm(z) < 0



Error term coming from modified spectral function

The error term can be expressed as

- i G/(Z) L r G’(rz) L
J(r) = 27i 7({911), Gz(z,z)d C2mi ]é)ﬂ)) ©(2) %

Note that, since z = r?/z on D,

0.(2) = (Galz.2)| . )

z

= Z’y(k)rwzk, G(z) = ZTk)zk.
k=1

keZ

z—rz

Remark. ©1(e?) on 9D is equal to the spectral density F’(f) when the
spectral measure is absolutely continuous. Roughly speaking, as r — 1,
the poles of the integrand in Z(r) approach to the zeros of F'(0) if exist.



Example 2: Gaussian Markov case. O(1)-error

o G'(rz)
J(n) = 2ri ap ©r(2) o
where , , (1 2)z2
=T OO T e

@ Note that F’(0) is strictly positive on 9.

The zero of ©,(z) is z = 0 indepen-
dent of r. 0s

T(r) = r p(z — pr) 1 d

T 2ni Jop 1—prz (1—p2r?)z
2
11— p2r2
2
= S+ 0(1-r)
1—p Figure: Zero of ©,(z) = Pole




Example 1: 1-dependent case. O(1) or O((1 —

error.
@ When |a] < 1/2, F/(0) > 0. ez
Asr — 1, j(r)_Vr—V,«_l
-1+ V1 —42°
vy — V2T (1),
2a
J(r) 1( L 1)+0(1)
r)=—-(—m— .
2 ,/1 _432 0.5
@ |a] =1/2. When a=1/2,
F/(ﬂ-) = O - 0.‘5 10
Asr—1,v,v; = e™=—1
Ll V1—422r2 2112
r—Yr - -
ar r

J(r) = 11+0(m|).

T 2(1—r2)1/2

igure: Zeros of'©,(z) = Poles




Example 3. 2-dependent case

We consider the coefficient Gaussian process {{x } kez with the following
2-dependent covariance matrix of the form:

1 (k=0)
_Ja (k=41)
Yenlk) =1 (k = +2)

0 (otherwise).

{7Va,b(k)}kez is positive definite iff (a, b) € P, where P is drawn below.

(1 (In




Result B: 2-dependent case

Theorem (Noda-S.)

The asymptotic behavior of the expected number of zeros E[Nx, ,(r)] is
given by the following: as r — 1,

Q (a,b) € 73(/)
E[Nx, ()] = 157 — /5225 by + O(1)
@ (a.b) € Py
E[Nx, ()] = t52 — 34/ =52 = 1)1/2 +0(1)
Q (a,b) = (i2/3, 1/6) Py
Q (a,b) € Pav)
3C(a,b) > 0 st. E[Nx, ,(r)] = C(a,b)+ 0 (1 r?)

Remark. Xp,0(2) = Xhyp(2) is in the case Pavy-



Zeros of ©,(z) as r — 1

The error term can be expressed as

o G'(rz)
j(r) = %ém @r(Z) dz.

case (1) case (IIl)

Figure: case(i) and (ii) F’(#) has two zeros of multiplicity 2. case(iii) F’(#) has a
zero of multiplicity 4.



n-dependent case

@ We consider the n-dependent, stationary complex Gaussian process.

2 2n\ *
Yn(k) = < " ) (:) for |k| =0,1,2,...,n; 0 otherwise.

Figure: i.i.d. case Figure: {730(k) }rez Figure: {760(k)} ez
case case
2n\ *

F’(&):(n> <2cosg>2n 0 € [0, 2m),

where 0 = 7 is the zeros of multiplicity 2n.



Zeros of ©,(z) as r — 1

The error term can be expressed as
r G'(rz)

~ 2ni Jop ©4(2) i

J(r)

degenerated case n=4

-2.0 -1.5

Figure: The degenerated case for n = 4. Red points are the zeros of ©,(z)



Result C: n-dependent case

Theorem (Noda-S.)

Let = = {&k}kez be the Gaussian process with covariance function
2 om —1
Yn(k) = (nﬁk)(:) k| =0,1,2,....,n
0 otherwise,

and X(z) be GAF with coefficients =. Then,

r2

E[Nx(r)] = 1= — Da(1 - )5 40 ((1 _ ﬂy%) o6 =L

0= 5= { () "
2nsm% n—1

where




Result D: Finitely dependent case

In general, if F/(A) has a zero with multiplicity 2k on (—7, 7], the term
(1- rz)f% appears as r — 1 in the asymptotics of E[Nx(r)]. Hence we
have the following:

Corollary (Noda-S.)

o = = {&k}kez: finitely dependent, stationary, complex Gaussian
process with mean 0 and variance 1.

@ The spectral density F’(#) of = has zeros 6; of multipicity 2k; for
j=12,...,p.
@ Set N = maxi<j<p kj.
Then, 9C= > 0 s.t.

r2 2N—-1

E[Nx(r)] = - Cz(1— )% 40 ((1 . r2)*w) asr— 1.

v




Discussions so far

@ The spectral measure of the coefficient Gaussian process plays an
important role for zeros of GAF.

@ So far we have seen finitely dependent cases, where the spectral
function is a trigonometric polynomial.

@ We should study the number of zeros on the sectorial domain
{z€D:a<argz < b} or its directional density.

Figure: {~30(k)}xez case Figure: {~60(k)}kez case



Spectral measure point of view

@ The spectral (probability) measure of = = {{x }kez is dF(s), i.e.,
™ .
WK = [ eedr(s)
—T
@ In this case, =, and thus, X=(z) has a spectral representation
™
1

_ —is
= 1—ze

Xo(z) = Xa(z) = / dz(s)

where Z is a Gaussian random measure on (—m, 7| with independent
increment and

BZAZ(E) = [ _dF(o).

@ The covariance kernel of X(z) is given by

Sx(z,w) = /7r ! . L dF(s)

l—zes 1—we’s




Spectral representation of 1-intensity

@ When z = re¥,

Sx(z,2) = /ﬂ =10 /_F Py — t)dF(t),

where P,(0) is the Poisson kernel

P(G)* 1—r2
1 — 2rcos + r2

e When dF(t) = f(t)dt, [O

1

x(22) =1 e

E[f(B/)],

where B; is the complex Brownian motion and 7 is the first hitting
time to OD.

@ The variance of X(z) grows according to the value of E,[f(B;)].



The i.i.d. case and the case f(s) = 1_[;/2.:/2(5)
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The case f(s) = 1_z/2.7/2(5)

17,2)2
1_ 1+2r2 cos(2)+r% pe(-2,7)
2 272
7 — arctan [ @=r)sece
2r
. 1 2,5
ey . & 1—(— = :I:1
pi(re™) m(1 — r?)? 8 (7r) v 2
(=)’
14+2r2 cos(2) +r%
1— 142r2 cos(2¢)+ pe (—71',71') \ (_%7 %)
> (lfrz)secga
arctan® | ~————

1 _ 1
m(1—r?)2  4n2cos? o
2. 1
= (1-(%)?) —" ==+3
(1-2) sty o =+3

1
127 cos?

+0(1-r) ve(-3.3)

+0(1-7r) pe(-mm\ (=% 3)



Spectral representation of 1-intensity of zeros

Proposition (S.)
Let dF(s) be the spectral measure of the coefficient Gaussian process
= = {&}kez and P,(s) be the Poisson kernel. Then,

iy _ 1 S5 7 (1= cos(t — s)) Pr(s)? Pr(t)>dF,(s)dFy(t)
pl(re ) - 1 _ 2)\2 2
il = ) ( I P,(s)dF@(s))

where dF, is the shifted spectral measure defined as

dF,(s) = dF(s + ).

We need the asymptotics of the Poisson(-type) integrals

P = [ " Ps)du(s).  Q(n) = / " P(s)2duls).

—T —T



Boundary behavior of Poisson integrals

When h is symmetric and smooth around s =0, as r — 1,

Pr(h) = h(0) + @ +3 {I(Th) - @}ﬁ

+3 {32 - (@) = FLTH) |y + 0

0, (1) = 240y~ = HO) + 71Oy + (FT(TH) + ')
4 (%I( T2h) + %h”(O) - 6l4h<4>(0)) )3
+ GI(T%) - %I( T3h) + 3i2h”(0) - %h(“)(o)) y*
+0(y°),

where y =1 —r? and Z(h) = 5= ["_h(s)ds, Th(s) = h(li)_h(o).

2w cos s




Boundary behavior of the 1-intensity

Using the asymptotics before, we obtain the following asymptotic behavior
of the directional density.

Theorem (S.)

Let F, = F(- + ¢). Suppose dF,(s) = f,(s)ds and f,(s) is smooth around s = 0.
(i) When £,(0) > 0,

r(re) = s — e { FOF + ZTR P} + 0= )

(i) When £,(0) = 0,

1

pl(reiw) = 7T(1 — rz) (0)

7(0)
27(TF,)

Here

TR - g =g [ o




Boundary behavior of the 1-intensity

Theorem (S.)

Let F, = F(- + ¢). Suppose dF,(s) = f,(s)ds and f,(s) is smooth around s = 0.
(i) When £,(0) > 0,

(re) = s = e 0P + IR} + 0 = 1),

(ii) When £,(0) =0,

1 £,/ (0)

plre) = S ) 21(TF,)

+0(1).




Boundary behavior of the 1-intensity

Theorem (S.)

Let F, = F(- + ¢). Suppose dF,(s) = f,(s)ds and f,(s) is smooth around s = 0.
(i) When fW(O) >0,

pi(re’?) = =) E E 4&0)2 {@’,(0)2 +I(T@)2} +0(1-r?).

(ii) When £,(0) =0,

1 f(0)
m(1—r?) 22(TF,)

pi(re’?) = +0(1).

(iif) When £,(0) = £/(0) = 0,

EI(T2@)2 - I T2?¢ coss)? — Z(T?f,sins)?

re'?) = i
et =2 47(TT,)?

+0(1 - r?).




Analytic continuation

e From the previous theorem (iii), if the spectral density f(s) =0 on a
closed arc /, then the number of zeros of Xz near [ is of O(1).

@ This suggests that X=(z) could be analytically continued across /.

Suppose F is absolutely continuous with dF(t) = f(t)dt. Then

I := (supp )€ is the regular set of Xz a.s., i.e., X=(z) can be analytically
continued across / a.s. In particular, if = is purely non-deterministic, then
the circle of convergence is the natural boundary for X=.

Remark. The Gaussian process = = {{x }kez is purely non-deterministic
iff the spectral measure dF (s) is absolutely continuous and its density f(s)
satisfies [" log f(s)ds > —oo0.



Summary and future works

Summary:
@ We considered the zeros of Gaussian power series with dependent
Gaussian coefficients.
@ More dependence on the coefficients, less zeros there are.
@ Spectral measures play a crucial role for the asymptotic behavior of
the density of zeros as r — 1.
Future directions:
@ Analyze the case where the spectral measure is singular.

@ What is the variance behavior? CLT?
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Thank you for your attention!
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