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Gaussian power series

{ak}: a deterministic (non-random) sequence of complex numbers

{ζk(ω)}: i.i.d. ∼ NC(0, 1), standard complex normal.

The random power series

X (z) = X (z , ω) =
∞∑
k=0

akζk(ω)z
k

defines a Gaussian analytic function (GAF) in the same circle of
convergence for the deterministic power series X (z) =

∑∞
k=0 akz

k .

Covariance kernel: SX (z ,w) = E [X (z)X (w)] =
∑∞

k=0 |ak |2(zw̄)k

determines GAF.

Important example (hyperbolic GAF): ak ≡ 1 (∀k = 0, 1, . . . )

Xhyp(z) :=
∞∑
k=0

ζkz
k on D =⇒ S(z ,w) =

1

1− zw
(Szegő kernel)

Fact. For each z ∈ D = {|z | < 1}, Xhyp(z) ∼ NC(0, (1− |z |2)−1).



Stationary AR(p) model

Autoregressive model AR(p)

Yt = c + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + ζt (t ∈ Z)

where {ζt}t∈Z are i.i.d. noise.

AR(1): For |z | < 1 and c = 0,

Yt = zYt−1 + ζt (t ∈ Z) (*)
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Figure: AR(1) with z = 0.7: Bernoulli noise (left) and R-Gaussian noise (right)

Xhyp(z) is the stationary solution to (*) with C-Gaussian noise.



Gaussian power series from AR(1)-model

AR(1): For |z | < 1,

Yt = zYt−1 + ζt (t ∈ Z)

By introducing the shift operator (Sx)t = xt−1 (t ∈ Z), we have

Yt = (zSY )t + ζt =⇒ Yt = {(1− zS)−1ζ}t =⇒ Yt =
∞∑
k=0

zk(Skζ)t

By expanding the RHS of the equation, we have

Yt = Yt(z) =
∞∑
k=0

zkζt−k
d
= Xhyp(z) (∀t ∈ Z)

Y = {Yt}t∈Z forms a stationary GAF-valued process.



Peres-Virág’s theorem

Theorem (Peres-Virág (2005))

The zeros of the hyperbolic GAF

Xhyp(z) =
∞∑
k=0

ζkz
k on D

is the determinantal point process associated with Bergman kernel

K (z ,w) =
1

π(1− zw)2
.

Determinantal point process (DPP)

A point process is said to be a determinantal point process if there exists a kernel
K (z ,w) such that the n-th correlation function is given by

ρn(z1, . . . , zn) = det(K (zi , zj))
n
i,j=1,

In particular, the density of points is ρ1(z) = K (z , z).



Several extensions

Krishnapur(2009): {Gk}∞k=0 are i.i.d. p × p Ginibre matrices =⇒ DPP:

Xmatrix (z) = det
( ∞∑

k=0

Gkz
k
)

Forrester(2010), Matsumoto-S.(2013): {ζRk }∞k=0 are i.i.d. real Gaussian
random variables =⇒ Pfaffian:

Xreal (z) =
∞∑
k=0

ζRk z
k

Katori-S.(2022): the i.i.d. Gaussian Laurant series on the annulus Aq:

XAq (z) =
∑
k∈Z

ζk
zk√

1 + qk+1

Noda-S.(2022): {ξk}∞k=0 are finitely dependent, stationary Gaussian process
coefficients. Expected number of points inside the ball:

Xdep(z) =
∞∑
k=0

ξkz
k
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Density of zeros of GAF

Theorem (Edelman-Kostlan)

Let X (z) be a GAF on D with covariance function SX (z ,w). Then, the
1-correlation function of the zero process ZX :=

∑
z∈D:X (z)=0 δz of X (z)

(= the density of zeros) at z with SX (z , z) > 0 is given by

ρ1X (z) =
1

4π
∆ log SX (z , z) =

1

π
∂z∂z log SX (z , z).

Ex.(hyperbolic GAF): Xhyp(z) :=
∑∞

k=0 ζkz
k on D ζk i.i.d. ∼ NC(0, 1).

Then,

SXhyp
(z ,w) =

∞∑
k=0

(zw)k =
1

1− zw
(Szegő kernel)

and then

ρ1X (z) =
1

π
∂z∂z log

1

1− |z |2
=

1

π(1− |z |2)2
(hyperbolic volume)



Calabi’s rigidity for GAF

By analyticity of X , the information of the diagonal SX (z , z) recovers the
off-diagonal SX (z ,w). From this fact, we have the following:

Theorem (Sodin)

Let X and Y be GAF on D. If the 1-correlation functions ρ1X (z) and
ρ1Y (z) of the zero processes ZX and ZY coincide, then there exists a
non-vanishing, non-random analytic function h such that

Y
d
= hX .

In particular, ZX
d
= ZY .

Example: This theorem implies that GAF on D whose density of zeros is

the hyperbolic volume 1
π(1−|z|2)2 is essentially unique in law, which is

nothing but Xhyp(z).



Our setting

Ξ = {ξk}k∈Z is a stationary, centered, complex Gaussian process with
the covariance function γ : Z → C, i.e.,

γ(k − ℓ) = E[ξkξℓ]

with γ(0) = 1. In particular, ξk ∼ NC(0, 1) for each k ∈ Z.
We consider the Gaussian power series with the covariance above:

X (z) = XΞ(z) :=
∞∑
k=0

ξkz
k

If {ξk}k∈Z are i.i.d., i.e., γ(k) = δk,0, the GAF is Xhyp(z).

Fact: All such GAFs are on D
The convergence radius of XΞ is almost surely 1. Then, XΞ(z) is defined
on D and its zeros are located inside D if exists.



Covariance function and spectral function

Covariance kernel: There is a special covariance structure:

SX (z ,w) = SXhyp
(z ,w)G2(z ,w) =

1

1− zw︸ ︷︷ ︸
Szegő kernel

× G2(z ,w)︸ ︷︷ ︸
spectral density

where

G2(z ,w) = 1 + G (z) + G (w), G (z) =
∞∑
k=1

γ(k)zk .

Spectral measure dF (θ): Since γ(k) is positive definite,

γ(k) =

∫ π

−π
e ikθdF (θ)

If dF (θ) = F ′(θ)dθ2π , then F ′(θ) is called the spectral density.



Example 1: 1-dependent case

γ(k) =


1 k = 0

a k = ±1

0 otherwise

for |a| ≤ 1/2

G (z) = az , G2(z ,w) = 1 + a(z + w)
It is easy to see that∫ π

−π
e ikθ(1 + ae iθ + ae−iθ)

dθ

2π
= γ(k)

This means that

F ′(θ) = G2(e
iθ, e iθ) = 1 + 2a cos θ.

Spectral density

When G (z) is nice enough, we have

F ′(θ) = G2(e
iθ, e iθ)



Example 2: Gaussian Markov case

For 0 ≤ ρ < 1 and {ζn}n∈Z i.i.d. ∼ NC(0, 1),

ξn :=
√

1− ρ2
∞∑
k=0

ρkζn−k

(
d
=

√
1− ρ2Xhyp(ρ)

)

γ(k) = ρ|k| (0 < ρ < 1)

G (z) =
ρz

1− ρz
, G2(z , z) =

1− ρ2zz

(1− ρz)(1− ρz)
.

G (z) is analytic in |z | < ρ−1,

F ′(θ) =
1− ρ2

(1− ρe iθ)(1− ρe−iθ)
=

1− ρ2

1− 2ρ cos θ + ρ2
> 0



Expected number of zeros of XΞ

NX (D) = #{z ∈ D : X (z) = 0}: the number of zeros inside D.
From the Edelman-Kostlan formula and the Stokes formula,

E[NX (D)] =
1

4π

∫
D

∆ log SX (z , z)dm(z) =
1

2πi

∮
∂D

∂z log SX (z , z)dz

In the present setting, since SX (z , z) = SXhyp
(z , z)G2(z , z)

E[NX (D)] =
1

2πi

∮
∂D

z

1− |z |2
dz︸ ︷︷ ︸

main term

+
1

2πi

∮
∂D

G ′(z)

G2(z , z)
dz︸ ︷︷ ︸

error term

We focus on the case where D = Dr = {z ∈ D : |z | < r}. We write
NX (r) for NX (Dr ).

E[NX (r)] =
r2

1− r2︸ ︷︷ ︸
E[NXhyp

(r)]

+ J (r)︸ ︷︷ ︸
error term



Examples: the error term is O(1)

Example 0. (i.i.d. case, hypberbolic GAF) When γ(k) = δk,0,

E[NXhyp
(r)] =

r2

1− r2
.

Example 1. (1-dependent) When |a| < 1/2,

E[NX (r)] =
r2

1− r2
−1

2

( 1√
1− 4a2

− 1
)
+ O(1− r2) as r → 1

Example 2. (Gaussian Markov) When γ(k) = ρ|k| (ρ ∈ (0, 1)),

E[NX (r)] =
r2

1− r2
− ρ2

1− ρ2
+ O(1− r2) as r → 1

Remark. For all the above cases, the spectral measures are absolutely
continuous and their spectral density are strictly positive.



Examples: the error term is O((1− r 2)−1/2) or more

Example 1. (1-dependent) When |a| = 1/2,

E[NX (r)] =
r2

1− r2
−1

2

1√
1− r2

+ O(1) as r → 1

When |a| = 1/2, the spectral measure has zeros on the unit circle, a.e.

F ′(θ) = 1 + 2a cos θ = 1± cos θ ≥ 0.

For a certain kernel related to fractional BM, S. Mukeru et al. shows that

r2

1− r2
−K1

(
1

2
√
1− r2

− 1

2

)
≤ E[NX (r)] ≤

r2

1− r2
−K2

(
1

2
√
1− r2

− 1

2

)
for 0 < r < 1.



Result A: Comparison of the expected number of zeros

Proposition (Noda-S.)

D ⊂ D: ∂D: a domain with smooth boundary

NX (D) = #{z ∈ D : X (z) = 0}: the number of zeros inside D

E[NX (D)] ≤ E[NXhyp
(D)].

The equality “=” holds for some (also any) domain D if and only if

X (z)
d
= Xhyp(z).

When D = Dr ,

E[NX (r)] =
r2

1− r2︸ ︷︷ ︸
E[NXhyp

(r)]

+ J (r)︸ ︷︷ ︸
error term

,

where

J (r) =
1

π

∫
Dr

∂z∂z logG2(z , z)dm(z) = − 1

π

∫
Dr

|G ′(z)|2

G2(z , z)2
dm(z) ≤ 0.



Error term coming from modified spectral function

The error term can be expressed as

J (r) =
1

2πi

∮
∂Dr

G ′(z)

G2(z , z)
dz =

r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz .

Note that, since z = r2/z on Dr ,

Θr (z) :=
(
G2(z , z)

∣∣
z= r

z

)∣∣∣
z→rz

=
∑
k∈Z

γ(k)r |k|zk , G (z) =
∞∑
k=1

γ(k)zk .

Remark. Θ1(e
iθ) on ∂D is equal to the spectral density F ′(θ) when the

spectral measure is absolutely continuous. Roughly speaking, as r → 1,
the poles of the integrand in I(r) approach to the zeros of F ′(θ) if exist.



Example 2: Gaussian Markov case. O(1)-error

J (r) =
r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz

where

G ′(rz) =
ρ

(1− ρrz)2
, Θr (z) =

(1− ρ2r2)z

(1− ρrz)(z − ρr)
.

Note that F ′(θ) is strictly positive on ∂D.

The zero of Θr (z) is z = 0 indepen-
dent of r .

J (r) =
r

2πi

∮
∂D

ρ(z − ρr)

1− ρrz

1

(1− ρ2r2)z
dz

=
−ρ2r2

1− ρ2r2

= − ρ2

1− ρ2
+ O(1− r2)
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Figure: Zero of Θr (z) = Pole



Example 1: 1-dependent case. O(1) or O((1− r 2)−1/2)
error.

1 When |a| < 1/2, F ′(θ) > 0.
As r → 1,

νr →
−1 +

√
1− 4a2

2a
∈ (−1, 1).

J (r) = −1

2

( 1√
1− 4a2

−1
)
+O(1).

2 |a| = 1/2. When a = 1/2,
F ′(π) = 0.
As r → 1, νr , ν

−1
r → e iπ = −1.

νr−ν−1
r =

√
1− 4a2r2

ar
=

2
√
1− r2

r

J (r) = −1

2

1

(1− r2)1/2
+O(

√
1− r2).

J (r) =
rνr

νr − ν−1
r
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Figure: Zeros of Θr (z) = Poles



Example 3. 2-dependent case

We consider the coefficient Gaussian process {ξk}k∈Z with the following
2-dependent covariance matrix of the form:

γa,b(k) =


1 (k = 0)

a (k = ±1)

b (k = ±2)

0 (otherwise).

{γa,b(k)}k∈Z is positive definite iff (a, b) ∈ P , where P is drawn below.

(I)

(III)(III)

(II)(II)

(IV)
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Result B: 2-dependent case

Theorem (Noda-S.)

The asymptotic behavior of the expected number of zeros E[NXa,b
(r)] is

given by the following: as r → 1,

1 (a, b) ∈ P(I )

E[NXa,b
(r)] = r2

1−r2
−

√
2b

6b−1
1

(1−r2)1/2
+ O(1)

2 (a, b) ∈ P(II )

E[NXa,b
(r)] = r2

1−r2
− 1

2

√
1−2b
1−6b

1
(1−r2)1/2

+ O(1)

3 (a, b) = (±2/3, 1/6) = P(III )

E[NXa,b
(r)] = r2

1−r2
− 1

25/4
1

(1−r2)3/4
+ O

(
1

(1−r2)1/4

)
4 (a, b) ∈ P(IV )

∃C (a, b) ≥ 0 s.t. E[NXa,b
(r)] = r2

1−r2
− C (a, b) + O

(
1− r2

)
Remark. X0,0(z) = Xhyp(z) is in the case P(IV ).



Zeros of Θr(z) as r → 1

The error term can be expressed as

J (r) =
r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz .
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Figure: case(i) and (ii) F ′(θ) has two zeros of multiplicity 2. case(iii) F ′(θ) has a
zero of multiplicity 4.



n-dependent case

We consider the n-dependent, stationary complex Gaussian process.

γn(k) =

(
2n

n + k

)(
2n

n

)−1

for |k | = 0, 1, 2, ..., n; 0 otherwise.
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Figure: i.i.d. case
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Figure: {γ30(k)}k∈Z
case
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Figure: {γ60(k)}k∈Z
case

F ′(θ) =

(
2n

n

)−1(
2 cos

θ

2

)2n

θ ∈ [0, 2π),

where θ = π is the zeros of multiplicity 2n.



Zeros of Θr(z) as r → 1

The error term can be expressed as

J (r) =
r

2πi

∮
∂D

G ′(rz)

Θr (z)
dz .

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

degenerated case n=4

Figure: The degenerated case for n = 4. Red points are the zeros of Θr (z)



Result C: n-dependent case

Theorem (Noda-S.)

Let Ξ = {ξk}k∈Z be the Gaussian process with covariance function

γn(k) =

{( 2n
n+k

)(2n
n

)−1 |k | = 0, 1, 2, ..., n

0 otherwise,

and X (z) be GAF with coefficients Ξ. Then,

E[NX (r)] =
r2

1− r2
− Dn(1− r2)−

2n−1
2n + O

(
(1− r2)−

2n−3
2n

)
as r → 1,

where

Dn =
1

2n sin π
2n

{(
2(n − 1)

n − 1

)} 1
2n

.



Result D: Finitely dependent case

In general, if F ′(θ) has a zero with multiplicity 2k on (−π, π], the term

(1− r2)−
2k−1
2k appears as r → 1 in the asymptotics of E[NX (r)]. Hence we

have the following:

Corollary (Noda-S.)

Ξ = {ξk}k∈Z: finitely dependent, stationary, complex Gaussian
process with mean 0 and variance 1.

The spectral density F ′(θ) of Ξ has zeros θj of multipicity 2kj for
j = 1, 2, ..., p.

Set N = max1≤j≤p kj .

Then, ∃CΞ > 0 s.t.

E[NX (r)] =
r2

1− r2
−CΞ(1− r2)−

2N−1
2N + o

(
(1− r2)−

2N−1
2N

)
as r → 1.



Discussions so far

The spectral measure of the coefficient Gaussian process plays an
important role for zeros of GAF.
So far we have seen finitely dependent cases, where the spectral
function is a trigonometric polynomial.
We should study the number of zeros on the sectorial domain
{z ∈ D : a < arg z < b} or its directional density.
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Figure: {γ30(k)}k∈Z case
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Figure: {γ60(k)}k∈Z case



Spectral measure point of view

The spectral (probability) measure of Ξ = {ξk}k∈Z is dF (s), i.e.,

γ(k) =

∫ π

−π
e−iksdF (s)

In this case, Ξ, and thus, XΞ(z) has a spectral representation

XΞ(z) = XΞ(z) =

∫ π

−π

1

1− ze−is
dZ (s)

where Z is a Gaussian random measure on (−π, π] with independent
increment and

E[Z (A)Z (B)] =
∫
A∩B

dF (t).

The covariance kernel of X (z) is given by

SX (z ,w) =

∫ π

−π

1

1− ze−is
· 1

1− we−is
dF (s)



Spectral representation of 1-intensity

When z = re iφ,

SX (z , z) =

∫ π

−π

1

|1− ze−it |2
dF (t) =

1

1− r2

∫ π

−π
Pr (φ− t)dF (t),

where Pr (θ) is the Poisson kernel

Pr (θ) =
1− r2

1− 2r cos θ + r2

When dF (t) = f (t)dt, [O

SX (z , z) =
1

1− |z |2
Ez [f (Bτ )],

where Bt is the complex Brownian motion and τ is the first hitting
time to ∂D.
The variance of X (z) grows according to the value of Ez [f (Bτ )].



The i.i.d. case and the case f (s) = 1−[π/2,π/2](s)
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Figure: Zeros of finite approximations of degree 400. Left: i.i.d. case Xhyp(z),
whose spectral measure is Lebesgue measure and Right: XΞ(z) for the spectral
measure f (s) = 1−[π/2,π/2](s). Zeros inside the disc is in blue and those outside
the disc is in red.



The case f (s) = 1−[π/2,π/2](s)

ρ1(re
iφ) =

1

π(1− r 2)2
×



1−
(1−r2)2

1+2r2 cos(2φ)+r4(
π − arctan

(
(1−r2) secφ

2r

))2 φ ∈ (−π
2
, π

2
)

1− (
2

π
)2 φ = ±π

2

1−
(1−r2)2

1+2r2 cos(2φ)+r4

arctan2
(
(1−r2) secφ

2r

) φ ∈ (−π, π) \ (−π
2
, π

2
)

=



1

π(1− r 2)2
− 1

4π2 cos2 φ
+ O(1− r 2) φ ∈ (−π

2
, π

2
)

(
1− (

2

π
)2
)

1

π(1− r 2)2
φ = ±π

2

1

12π cos2 φ
+ O(1− r 2) φ ∈ (−π, π) \ (−π

2
, π

2
)



Spectral representation of 1-intensity of zeros

Proposition (S.)

Let dF (s) be the spectral measure of the coefficient Gaussian process
Ξ = {ξk}k∈Z and Pr (s) be the Poisson kernel. Then,

ρ1(re
iφ) =

1

π(1− r2)2

∫ π
−π

∫ π
−π

(
1− cos(t − s)

)
Pr (s)

2Pr (t)
2dFφ(s)dFφ(t)( ∫ π

−π Pr (s)dFφ(s)
)2

where dFφ is the shifted spectral measure defined as

dFφ(s) = dF (s + φ).

We need the asymptotics of the Poisson(-type) integrals

Pr (µ) =

∫ π

−π
Pr (s)dµ(s), Qr (µ) =

∫ π

−π
Pr (s)

2dµ(s).



Boundary behavior of Poisson integrals

Lemma
When h is symmetric and smooth around s = 0, as r → 1,

Pr (h) = h(0) +
I(Th)

2
y +

1

4

{
I(Th)− h′′(0)

2

}
y2

+
1

8

{
3

2
I(Th)− h′′(0)− 1

2
I(T 2h)

}
y3 + O(y4)

Qr (h) = 2h(0)y−1 − h(0) +
1

4
h′′(0)y +

(
1

4
I(T 2h) +

1

8
h′′(0)

)
y2

+

(
1

4
I(T 2h) +

1

16
h′′(0)− 1

64
h(4)(0)

)
y3

+

(
1

4
I(T 2h)− 1

16
I(T 3h) +

1

32
h′′(0)− 3

128
h(4)(0)

)
y4

+ O(y5),

where y = 1− r2 and I(h) = 1
2π

∫ π

−π
h(s)ds, Th(s) = h(s)−h(0)

1−cos s .



Boundary behavior of the 1-intensity

Using the asymptotics before, we obtain the following asymptotic behavior
of the directional density.

Theorem (S.)

Let Fφ = F (·+φ). Suppose dFφ(s) = fφ(s)ds and fφ(s) is smooth around s = 0.

(i) When fφ(0) > 0,

ρ1(re
iφ) =

1

π(1− r2)2
− 1

4fφ(0)2

{
f ′φ(0)

2 + I(T f̂φ)
2
}
+ O((1− r2)).

(ii) When fφ(0) = 0,

ρ1(re
iφ) =

1

π(1− r2)

f ′′φ (0)

2I(T f̂φ)
+ O(1).

Here

T f̂φ(s) =
fφ(s) + fφ(−s)− 2fφ(0)

2(1− cos s)
, I(h) = 1

2π

∫ π

−π

h(s)ds.



Boundary behavior of the 1-intensity
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(iii) When fφ(0) = f ′′φ (0) = 0,

ρ1(re
iφ) =

1

π

I(T 2 f̂φ)
2 − I(T 2 f̂φ cos s)2 − I(T 2 f̌φ sin s)2

4I(T f̂φ)2
+ O(1− r2).
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Analytic continuation

From the previous theorem (iii), if the spectral density f (s) = 0 on a
closed arc I , then the number of zeros of XΞ near I is of O(1).

This suggests that XΞ(z) could be analytically continued across I .

Theorem (S.)

Suppose F is absolutely continuous with dF (t) = f (t)dt. Then
I := (supp f )c is the regular set of XΞ a.s., i.e., XΞ(z) can be analytically
continued across I a.s. In particular, if Ξ is purely non-deterministic, then
the circle of convergence is the natural boundary for XΞ.

Remark. The Gaussian process Ξ = {ξk}k∈Z is purely non-deterministic
iff the spectral measure dF (s) is absolutely continuous and its density f (s)
satisfies

∫ π
−π log f (s)ds > −∞.



Summary and future works

Summary:

We considered the zeros of Gaussian power series with dependent
Gaussian coefficients.

More dependence on the coefficients, less zeros there are.

Spectral measures play a crucial role for the asymptotic behavior of
the density of zeros as r → 1.

Future directions:

Analyze the case where the spectral measure is singular.

What is the variance behavior? CLT?

Thank you for your attention!
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