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e Governed by appearance of small dense structures (cliques and
hubs) and high-degree vertices.

e LDP given by naive mean-field optimization problem. Connections
with extremal combinatorics (regularity method).

e Augeri-Basak '23: random sub-Gaussian weights

e Augeri '24. LDP for the ESD. Rate function supported on solutions
of quadratic vector equations studied by Ajanki—Erdés—Kruger.

Bernoulli(d/n), diluted networks.

e ESDs: Bordanave—Caputo '13

e Edge eigenvalues: Bhattacharya—Bhattacharya—Ganguly '20, Ganguly—Nam '21,
Ganguly—Hiesmayr-Nam 22, Lee-Nam '23 (d-regular)

o GHN22: Wiebull-type tails exp(—cx®). Universal Gaussian rate function for A\
when « > 2, non-universal for a < 2. g



Conditional structure of sparse Bernoulli matrices (C.—Dembo '22)

Joint upper tail events for subgraph counts (e.g. moments Tr(A%)), are
dominated by the 2-parameter family of “clique-hub” matrices.

Ki. C/Xj C; &3 C,

R S S

Size of clique (horizontal axis) and hub (vertical axis) are determined by a
2-dimensional relative entropy optimization problem.

Level lines for subgraph counts are green/blue/yellow curves.

Level line for minimal relative entropy is red. 4



Conditional structure of sparse Bernoulli matrices on tail events

For a,b >0, § € (0,1) let &,,5(5) be the event that .]

S A==, > A= (1 =O)JN - 1J])

i,jel ied,jele

J
for some I, J C [N] with |I| ~ \/apN, |J| ~ bp?N. @f

Theorem (C.—Dembo ’22)
For N™'/3 « p < 1 and fixed 1,...,0m >3, s1,...,5m >0,

]P’( U &) ‘ Tr(A%) > (1 + s )(Np)™ , k=1,..., m) >1- pMP
(ax,bx)€EO(L,5)

for some c(¢,s,d) > 0, where O({, s) is the set of minimizers for a
non-convex linear optimization problem determined by £, s.

Special case of a result for any fixed collection of graphs. = Typical structure
of Exponential Random Graphs, extending [Chatterjee—Diaconis '12].

Harel-Mousset—Samotij '18: Case m = 1, ¢1 = 3 (and general clique counts).
Basak—Basu '19: m =1, general /. 5
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How does the matrix “typically” achieve \1 ~ x 7

Proof shows it is a BBP phenomenon: on {A\; ~ x}, the mean of H is shifted
by a delocalized rank-1 matrix.

Does universal rate T7 extend to general sub-Gaussian (17?7
Partially addressed by Augeri—-Guionnet—Husson '19. o



Plots of t~2A,(t) = t~*log E exp(tX) for various sub-Gaussian .
t2Ay(t) = 1 is in red.
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General sub-Gaussian matrices: non-universal LDPs
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Theorem (C.-Ducatez—Guionnet '23, Informal)
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further technical assumptions, there exists a good rate
function " on R that is infinite on (—o0,2) and
continuous and non-decreasing on [2,00) such that A\i(H)
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e (Universality phase). There exists x, > 2 such that T = Z7 on (—o0, x,.].
Moreover, conditional on {\1 ~ x} for fixed x € (2, x,,), with high
probability the associated eigenvector vi is delocalized.

e (Non-universality). If pu is not SSG, then there exists x|, < co such that
I" < I7 on (x,,,00). Moreover, conditional on {\1 ~ x} for fixed x > xj,,
with high probability vi has ¢>-mass > 1 on coordinates of size > N~Y/4~¢



Rate function for the case A,(t)/A,(t) is increasing
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Theorem (C.-Ducatez—Guionnet '23)
Assume i is symmetric, || \)/||oo < 0o and t — A (t)/t? is nondecreasing on RT.

(a) A1 satisfies an LDP with speed N and good rate function TF which is infinite on
(—o0,2) and is otherwise given by
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with px = c./x*. Moreover, for x > 2 the infimum is achieved on a closed
nonempty set A% C [0,1 — px].

(b) If A,(t)/t? is strictly increasing on RT, then for any x > 2 and n,e € (0, %)
conditional on |\1 — x| < § we have that with probability 1 — o(1), v1 is within
distance € of a vector with one entry of magnitude at least /inf A} and all other

1
entries bounded by N=27". .



Joint large deviations for )\, vy

Non-universal rate function comes from emergence of localized large deviation
mechanisms for A;.

Localization will be reflected by large entries of the associated eigenvector v;.
The key idea is to get a joint LDP for A; and the large entries of v;, then
contract to LDP for ;.
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Non-universal rate function comes from emergence of localized large deviation

mechanisms for \i.

Localization will be reflected by large entries of the associated eigenvector v;.
The key idea is to get a joint LDP for A; and the large entries of v;, then
contract to LDP for ;.

Roughly speaking, we get an asymptotic

L

N log P(A1 ~ x) ~ —Zh(x)

where
Zn(x) = inf In(x, z)

with the infimum taken over sparse vectors z, and Jn(x, z) is a joint rate

function for {\1 ~ x, v’ ~ z}.

By analyzing Jn(x, z) around minimizing z, we obtain structure of the
localized part of v; conditional on {A\1 ~ x}.

10



Classical tilting: Cramér LDP

For the sample mean X = & S°% X; for iid X; ~ s, we have
1 N/ *
- 1og (X — x| < 6) = ~A;(x) + o(1)
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_ eN(/\u(9)*9X+O(1)) PW)(\Y _ X| < 5).

Upper bound: trivially bound P®)(|X — x| < §) < 1 and optimize 6.

Lower bound: show that for the optimizer 8, PO)(|X — x| < §) > e°™). O
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Tilting by spherical integrals (Guionnet—Husson '18)

For N x N symmetric M, & > 0 and P the uniform surface measure on Sk
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Quenched free energy: (Guionnet—Maida '05). On &, := {\1 ~ x, iy ~ o},

2 1
L rog I(H,0) ~ J(x,0) = 1° ) ) o< fG"(X)
N Ox — 5 [log(x — A)da(X\) — 5 log(2e) 0 > 5Go(x)
where G,(x) = 1(x — v/x? — 4) is the Stieltjes transform of o at x > 2.
Annealed free energy:
Fn(0) == El logEI(H,0) = El log exp (Z/\ (20\/Nu,-u-)) dP(u).
N ’ N 1 g !

N7
= i<j

Defining dP¥) o ?N(:H) P and dQ? (u) ox Ee®N(“:H) dP(u),

P(&) = e*N(J(><v9)+0(1))IE/(H7 0)1(&) = eN(FN(9)*J(X»9)+0(1))/ ]P’(O"“)(&)dQ(O)(u).

gN—1

Bounding integral by 1, get 5 log P(£,) < —supy>o{J(x,0) — Fn(6)} + o(1). -



Tilting by spherical integrals: Annealed — Quenched

Lower bound:

Showed P(E) = eNFu(O)=I(0)+e(N) / PO (£,)dQ) (u)

JgN—-1

where

dpt®¥) 0N (u, Hu) dQ¥
x e

ON (u,Hu)
7P , 4P (u) x Ee .

E={M~x,fin~ o},
With 0, the optimizing choice of 6 from the upper bound, only remains to

show {A1 ~ x} is likely under P(*) at least for all u in some D C SV}
such that Q) (D) > e=°M),
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With 0, the optimizing choice of 6 from the upper bound, only remains to
show {\1 ~ x} is likely under P(%¥), at least for all u in some D C SV!
such that Q) (D) > e=°M),

Take D= {u e SV ! |jufw < Nf%ff} set of delocalized unit vectors. Then
(1) Q(D) = e~ (easy).
(2) Forany ue D, H 2 20uu™ + H under PO for a Wigner matrix H.

(Note that B¢ H; = 20/ Nujuj) ~ 20u;u;.)

LA
By the BBP transition we get A\ ~ x w.h.p. under P4 for any u € D. O
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New ideas to capture localization

For 11 SSG, get:  (A) 7 logP(A1 ~ x) ~ supgsof{ Fn(6) — J(x,0)},
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For 11 SSG, get:  (A) 7 logP(A1 ~ x) ~ supgsof{ Fn(6) — J(x,0)},
(B) Fn(0) — 6°.

When p is not SSG, both (A) and (B) are false.

Heavier tails open up non-universal localization strategies that compete with
delocalized tilt. Large deviations of \; result from a combination of the two!

The idea is to get a joint LDP for A1 and the large entries of vi, then contract
to LDP for 1.

For a sparse vector w let
) N—1 . large e
Un = {u € SM U~ w, | ulapp(e)elloe < N7V n}

and denote the restricted annealed free energy

Fn(0; w) = % |0gIE/ N (u,Hu) dP(u).

w

We obtain an explicit (but complicated) asymptotic Fn (6, w) ~ on (6, w).
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New ideas to capture localization

With & = {\1 ~ x, v"® ~ z} and g = g:(0) = (1 — %52)}/? we can show

cgz)— ' dQR¥(uv)
P(E, ) — V(Fu(oiaz) J(x,9)+o(1))/ PO9(y, .
( A,) € e ( 1 X) Q(Q)(qu)

N)

If we can show integral = e°™) at optimizer 6 = 0O, for main term, then

putting everything together,
L

N log P(A1 ~ x) ~ —inf Tn(x,2)  In(x,2):= 2&;3{J(X,9) —on(0,q2)}
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e : dQR¥(uv)
P(E, ) — eNFu(6iaz) J(x,9)+o(1))/ POD .
(€)= . (N1~ %) Q@)

If we can show integral = e°™) at optimizer 6 = 0O, for main term, then
putting everything together,
1 .
N logP(A\1 ~ x) ~ —inf In(x, 2) In(x, z) :=sup{J(x,0) — on(0,qz)}
z 6>0

Problem: As u € U,, are not delocalized, we can’t get E(“ )\, by a BBP
computation.

Solution: Can show \; concentrates under P(°*)| with mean & continuous in
and u (under the £2 metric). E®“\; ~ 2 for small 6, E®“)\; — 0o as § — oc.

Moreover, the measures Q(G)lz,{qZ concentrate on a small ball in the
2-Wasserstein metric, with center vy, € SU~! that varies continuously with 6.

Intermediate Value Theorem yields 6 = 6, , such that E(0.2) \; ~ x. O
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Thanks for your attention!
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