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The spectrum of Wigner matrices

Let H = ( 1√
N
Xij) with {Xij}1≤i≤j≤N iid copies of a

standardized real sub-Gaussian distribution µ.

Eigenvalues λN ≤ · · · ≤ λ1.

Semicircle law: The ESD µ̂H = 1
N

∑N
i=1 δλi concentrates around the semicircle

measure dσ(x) = 1
2π
(4− x2)

1/2
+ dx .

∗ Quantitative: P(|µ̂H(f )− σ(f )| > ε) ≲ exp(−cε2N2) for f convex,

1-Lipschitz if µ has bounded support [Guionnet–Zeitouni ’00].

Local law [Erdős–Schlein–Yau ’08].

∗ Fluctuations: Nµ̂H(f ) converges to a Gaussian for f smooth.

(Optimal condition f ∈ H1/2+ε [Landon–Sosoe ’22].)

∗ LDP for GOE case [Ben Arous–Guionnet ’97]:

− 1

N2
log P(µ̂H ∼ ν) ∼ I(ν)

= − 1
2

∫ ∫
log |x − y |dν(x)dν(y) + 1

4

∫
x2dν(x)− c .

1
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The spectrum of Wigner matrices

Let H = ( 1√
N
Xij) with {Xij}1≤i≤j≤N iid copies of a

standardized real sub-Gaussian distribution µ.

Eigenvalues λN ≤ · · · ≤ λ1.

Convergence at the edge: λ1 → 2 w.h.p. [Füredi–Komlós ’81].

∗ Quantitative: P(|λ1 − 2| > ε) ≲ exp(−cε2N) if µ has bounded support.

∗ Fluctuations: N2/3(λ1 − 2) ⇒ TW1. [Forrester, Tracy–Widom ’94] (GOE),

[Soshnikov ’99]

∗ LDP for GOE case [Ben Arous–Dembo–Guionnet ’99]:

− 1

N
log P(λ1 ∼ x) ∼ Iγ(x) :=

 1
2

∫ x

2

√
y 2 − 4dy x ≥ 2

+∞ x < 2.

P(λ1 ≥ 3) ≈ e−0.715N .
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Large deviations for the spectrum: localization phenomena

Entries with stretched exponential tails:
Bordenave–Caputo ’14 (ESDs), Augeri ’16 (λ1)

• Governed by the appearance of large entries.

Bernoulli(p), N−1 ≪ p ≪ 1.

Augeri ’18, C.–Dembo ’18, Bhattacharya–Ganguly ’18, Basak ’21, C.–Dembo ’22

• Governed by appearance of small dense structures (cliques and

hubs) and high-degree vertices.

• LDP given by näıve mean-field optimization problem. Connections

with extremal combinatorics (regularity method).

• Augeri–Basak ’23: random sub-Gaussian weights

• Augeri ’24. LDP for the ESD. Rate function supported on solutions

of quadratic vector equations studied by Ajanki–Erdős–Kruger.

Bernoulli(d/n), diluted networks.

• ESDs: Bordanave–Caputo ’13

• Edge eigenvalues: Bhattacharya–Bhattacharya–Ganguly ’20, Ganguly–Nam ’21,

Ganguly–Hiesmayr–Nam ’22, Lee–Nam ’23 (d-regular)

• GHN22: Wiebull-type tails exp(−cxα). Universal Gaussian rate function for λ1
when α > 2, non-universal for α < 2.

3
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Conditional structure of sparse Bernoulli matrices (C.–Dembo ’22)

Joint upper tail events for subgraph counts (e.g. moments Tr(Aℓ)), are

dominated by the 2-parameter family of “clique-hub” matrices.

Size of clique (horizontal axis) and hub (vertical axis) are determined by a

2-dimensional relative entropy optimization problem.

Level lines for subgraph counts are green/blue/yellow curves.

Level line for minimal relative entropy is red. 4



Conditional structure of sparse Bernoulli matrices on tail events

For a, b ≥ 0, δ ∈ (0, 1) let Ea,b(δ) be the event that∑
i,j∈I

Ai,j ≥ (1− δ)|I |2 ,
∑

i∈J,j∈Jc

Ai,j ≥ (1− δ)|J|(N − |J|)

for some I , J ⊂ [N] with |I | ∼
√
apN, |J| ∼ bp2N.

Theorem (C.–Dembo ’22)

For N−1/3 ≪ p ≪ 1 and fixed ℓ1, . . . , ℓm ≥ 3, s1, . . . , sm > 0,

P
( ⋃

(a∗,b∗)∈O(ℓ,s)

Ea,b(δ)

∣∣∣∣ Tr(Aℓk ) ≥ (1 + sk)(Np)
ℓk , k = 1, . . . ,m

)
≥ 1− pcN2p2

for some c(ℓ, s, δ) > 0, where O(ℓ, s) is the set of minimizers for a

non-convex linear optimization problem determined by ℓ, s.

Special case of a result for any fixed collection of graphs. ⇒ Typical structure

of Exponential Random Graphs, extending [Chatterjee–Diaconis ’12].

Harel–Mousset–Samotij ’18: Case m = 1, ℓ1 = 3 (and general clique counts).

Basak–Basu ’19: m = 1, general ℓ. 5



A universal (!) LDP (Guionnet–Husson ’18)

For centered µ and Λµ(t) := log
∫
R etxdµ(x), µ is . . .

sub-Gaussian (SG) if Λµ(t) ≤ Kt2 ∀t ∈ R, constant K < ∞

sharp sub-Gaussian (SSG) if Λµ(t) ≤ 1
2
t2 = Λγ(t) ∀t ∈ R

where γ(dx) = 1√
2π
e−x2/2dx . SSG: Gaussian, Rademacher, Unif[−

√
3,
√
3].

Theorem (Guionnet–Husson ’18)

Assume µ is SSG. Then λ1(H) satisfies an LDP with speed N and good rate

function Iγ . In particular, for each fixed x ∈ R,

1

N
log P(|λ1(H)− x | ≤ δ) = −Iγ(x) + o(1).

(In this talk we write “o(1)” for errors going to zero after N → ∞ then δ ↓ 0.)

How does the matrix “typically” achieve λ1 ∼ x ?

Proof shows it is a BBP phenomenon: on {λ1 ∼ x}, the mean of H is shifted

by a delocalized rank-1 matrix.

Does universal rate Iγ extend to general sub-Gaussian µ?

Partially addressed by Augeri–Guionnet–Husson ’19.

6
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Plots of t−2Λµ(t) = t−2 logE exp(tX ) for various sub-Gaussian µ.

t−2Λγ(t) ≡ 1
2
is in red.

Standardized Bernoulli(p) Standardized p-sparse Rademacher

Standardized p-sparse Gaussian 7



General sub-Gaussian matrices: non-universal LDPs

Theorem (C.–Ducatez–Guionnet ’23, Informal)

Assume µ is standardized and sub-Gaussian. Under some

further technical assumptions, there exists a good rate

function Iµ on R that is infinite on (−∞, 2) and

continuous and non-decreasing on [2,∞) such that λ1(H)

satisfies an LDP with speed N and rate function Iµ.

Furthermore:

• Iµ ≤ Iγ pointwise on R (large deviations are at least as likely as for GOE).

• (Universality phase). There exists xµ > 2 such that Iµ = Iγ on (−∞, xµ].

Moreover, conditional on {λ1 ≈ x} for fixed x ∈ (2, xµ), with high

probability the associated eigenvector v1 is delocalized.

• (Non-universality). If µ is not SSG, then there exists x ′
µ < ∞ such that

Iµ < Iγ on (x ′
µ,∞). Moreover, conditional on {λ1 ≈ x} for fixed x > x ′

µ,

with high probability v1 has ℓ2-mass ≳ 1 on coordinates of size ≥ N−1/4−ε.

8
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Rate function for the case Λµ(t)/Λγ(t) is increasing

For θ ≥ 0, α ∈ [0, 1] and x ≥ 2 let ψlim
µ = limt→∞ Λµ(t)/t2,

φ̂(θ, α) := θ2
[
(1− α)2 + 2ψlim

µ α2
]
+ sup

ν∈P1−α(R)

{∫
Λµ(2θα

1/2s)dν(s)− H(ν|γ)
}

−
α

2
,

Ĵ (x , α) := sup
θ≥0

{
J(x , θ)− φ̂

(
θ, qx (θ)

2α
)}
.

Note: φ̂(θ, 0) = θ2 and Ĵ (x , 0) = supθ≥0{J(x , θ)− θ2} = Iγ(x).

Theorem (C.–Ducatez–Guionnet ’23)

Assume µ is symmetric, ∥Λ′′
µ∥∞ <∞ and t 7→ Λµ(t)/t2 is nondecreasing on R+.

(a) λ1 satisfies an LDP with speed N and good rate function Iµ which is infinite on

(−∞, 2) and is otherwise given by

Iµ(x) = inf
0≤α≤1−ρx

Ĵ (x , α)

with ρx = cµ/x4. Moreover, for x > 2 the infimum is achieved on a closed

nonempty set A∗
x ⊂ [0, 1− ρx ].

(b) If Λµ(t)/t2 is strictly increasing on R+, then for any x > 2 and η, ε ∈ (0, 1
10
),

conditional on |λ1 − x | < δ we have that with probability 1− o(1), v1 is within

distance ε of a vector with one entry of magnitude at least
√

inf A∗
x and all other

entries bounded by N− 1
2
+η .
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Ĵ (x , α) := sup
θ≥0

{
J(x , θ)− φ̂

(
θ, qx (θ)

2α
)}
.
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Joint large deviations for λ1, v1

Non-universal rate function comes from emergence of localized large deviation

mechanisms for λ1.

Localization will be reflected by large entries of the associated eigenvector v1.

The key idea is to get a joint LDP for λ1 and the large entries of v1, then

contract to LDP for λ1.

Roughly speaking, we get an asymptotic

1

N
log P(λ1 ∼ x) ∼ −Iµ

N (x)

where

Iµ
N (x) = inf

z
JN(x , z)

with the infimum taken over sparse vectors z , and JN(x , z) is a joint rate

function for {λ1 ∼ x , v large
1 ∼ z}.

By analyzing JN(x , z) around minimizing z , we obtain structure of the

localized part of v1 conditional on {λ1 ∼ x}.
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Classical tilting: Cramér LDP

For the sample mean X = 1
N

∑N
i=1 Xi for iid Xi ∼ µ, we have

1

N
log P(|X − x | ≤ δ) = −Λ∗

µ(x) + o(1)

where Λ∗
µ(x) = supθ∈R{θx − Λµ(θ)}.

Proof: Defining a one-parameter family of tilted measures:

P(θ)(·) := e−NΛµ(θ)EeθNX
1(·) , θ ∈ R

we can reexpress

P(|X − x | ≤ δ) = e−N(θx+o(1)) EeθNX
1(|X − x | ≤ δ)

= eN(Λµ(θ)−θx+o(1)) P(θ)(|X − x | ≤ δ) .

Upper bound: trivially bound P(θ)(|X − x | ≤ δ) ≤ 1 and optimize θ.

Lower bound: show that for the optimizer θx , P(θx )(|X − x | ≤ δ) ≥ e−o(N).
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Tilting by spherical integrals (Guionnet–Husson ’18)

For N × N symmetric M, θ ≥ 0 and P the uniform surface measure on SN−1,

I (M, θ) :=

∫
SN−1

eθN⟨u,Mu⟩dP(u)

Quenched free energy: (Guionnet–Maida ’05). On Ex := {λ1 ∼ x , µ̂H ∼ σ},

1

N
log I (H, θ) ∼ J(x , θ) :=

{
θ2 θ ≤ 1

2
Gσ(x)

θx − 1
2

∫
log(x − λ)dσ(λ)− 1

2
log(2eθ) θ ≥ 1

2
Gσ(x)

where Gσ(x) =
1
2
(x −

√
x2 − 4) is the Stieltjes transform of σ at x ≥ 2.

Annealed free energy:

FN(θ) :=
1

N
logEI (H, θ) =

1

N
log

∫
SN−1

exp
(∑

i≤j

Λµ(2θ
√
Nuiuj)

)
dP(u) .

Defining dP(θ,u) ∝ eθN⟨u,Hu⟩dP and dQ(θ)(u) ∝ EeθN⟨u,Hu⟩dP(u),

P(Ex) = e−N(J(x,θ)+o(1))EI (H, θ)1(Ex) = eN(FN (θ)−J(x,θ)+o(1))

∫
SN−1

P(θ,u)(Ex)dQ
(θ)(u).

Bounding integral by 1, get 1
N
log P(Ex) ≤ − supθ≥0{J(x , θ)− FN(θ)}+ o(1).
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Tilting by spherical integrals: Annealed − Quenched

Lower bound:

Showed P(Ex) = eN(FN (θ)−J(x,θ))+o(N)

∫
SN−1

P(θ,u)(Ex)dQ
(θ)(u)

where

Ex = {λ1 ∼ x , µ̂H ∼ σ} , dP(θ,u)

dP
∝ eθN⟨u,Hu⟩ ,

dQ(θ)

dP
(u) ∝ EeθN⟨u,Hu⟩.

With θx the optimizing choice of θ from the upper bound, only remains to

show {λ1 ∼ x} is likely under P(θx ,u), at least for all u in some D ⊂ SN−1

such that Q(θx )(D) ≥ e−o(N).

Take D = {u ∈ SN−1 : ∥u∥∞ ≤ N− 1
4
−ε} set of delocalized unit vectors. Then

(1) Q(θ)(D) ≥ e−o(N) (easy).

(2) For any u ∈ D, H
d
≈ 2θuuT + H̃ under P(θ,u) for a Wigner matrix H̃.

(Note that E(θ,u)Hij =
1√
N
Λ′
µ(2θ

√
Nuiuj) ∼ 2θuiuj .)

By the BBP transition we get λ1 ∼ x w.h.p. under P(θx ,u) for any u ∈ D.
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≈ 2θuuT + H̃ under P(θ,u) for a Wigner matrix H̃.

(Note that E(θ,u)Hij =
1√
N
Λ′
µ(2θ

√
Nuiuj) ∼ 2θuiuj .)

By the BBP transition we get λ1 ∼ x w.h.p. under P(θx ,u) for any u ∈ D.
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New ideas to capture localization

For µ SSG, get: (A) 1
N
log P(λ1 ∼ x) ∼ supθ≥0{FN(θ)− J(x , θ)},

(B) FN(θ) → θ2.

When µ is not SSG, both (A) and (B) are false.

Heavier tails open up non-universal localization strategies that compete with

delocalized tilt. Large deviations of λ1 result from a combination of the two!

The idea is to get a joint LDP for λ1 and the large entries of v1, then contract

to LDP for λ1.

For a sparse vector w let

Uw :=
{
u ∈ SN−1 : ularge ≈ w , ∥u|supp(z)c ∥∞ ≤ N−1/2+η

}
and denote the restricted annealed free energy

FN(θ;w) :=
1

N
logE

∫
Uw

eθN⟨u,Hu⟩dP(u).

We obtain an explicit (but complicated) asymptotic FN(θ,w) ∼ φN(θ,w).
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New ideas to capture localization

With Ex,z = {λ1 ∼ x , v large
1 ∼ z} and q = qx(θ) = (1− Gσ(x)

2θ
)
1/2
+ , we can show

P(Ex,z) = eN(FN (θ;qz)−J(x,θ)+o(1))

∫
Uqz

P(θ,u)(λ1 ∼ x)
dQ(θ)(u)

Q(θ)(Uqz)
.

If we can show integral = eo(N) at optimizer θ = θx,z for main term, then

putting everything together,

1

N
log P(λ1 ∼ x) ∼ − inf

z
JN(x , z) JN(x , z) := sup

θ≥0
{J(x , θ)− φN(θ, qz)}

Problem: As u ∈ Uqz are not delocalized, we can’t get E(θ,u)λ1 by a BBP

computation.

Solution: Can show λ1 concentrates under P(θ,u), with mean ≈ continuous in θ

and u (under the ℓ2 metric). E(θ,u)λ1 ∼ 2 for small θ, E(θ,u)λ1 → ∞ as θ → ∞.

Moreover, the measures Q(θ)1Uqz concentrate on a small ball in the

2-Wasserstein metric, with center vθ,z ∈ SN−1 that varies continuously with θ.

Intermediate Value Theorem yields θ = θx,z such that E(θ,vθ,z )λ1 ∼ x .
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Thanks for your attention!
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