Large deviations for the largest eigenvalue of sub-Gaussian Wigner matrices

Random matrices and related topics Jeju Island 2024/05/09

Nicholas Cook, Duke University

Based on joint work with Raphaël Ducatez and Alice Guionnet

Let $H = \left(\frac{1}{\sqrt{N}}X_{ij}\right)$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Semicircle law: The ESD $\hat{\mu}_H = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ concentrates around the semicircle measure $d\sigma(x) = \frac{1}{2\pi} (4 - x^2)_+^{1/2} dx$.

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Semicircle law: The ESD $\hat{\mu}_H = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ concentrates around the semicircle measure $d\sigma(x) = \frac{1}{2\pi} (4 - x^2)_+^{1/2} dx$.

 <u>Quantitative</u>: P(|µ̂_H(f) - σ(f)| > ε) ≤ exp(-cε²N²) for f convex, 1-Lipschitz if µ has bounded support [Guionnet–Zeitouni '00]. Local law [Erdős–Schlein–Yau '08].

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Semicircle law: The ESD $\hat{\mu}_H = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ concentrates around the semicircle measure $d\sigma(x) = \frac{1}{2\pi} (4 - x^2)_+^{1/2} dx$.

- * <u>Quantitative</u>: $\mathbb{P}(|\hat{\mu}_{H}(f) \sigma(f)| > \varepsilon) \lesssim \exp(-c\varepsilon^{2}N^{2})$ for f convex, 1-Lipschitz if μ has bounded support [Guionnet–Zeitouni '00]. Local law [Erdős–Schlein–Yau '08].
- * <u>Fluctuations</u>: $N\hat{\mu}_H(f)$ converges to a Gaussian for f smooth. (Optimal condition $f \in H^{1/2+\varepsilon}$ [Landon–Sosoe '22].)

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Semicircle law: The ESD $\hat{\mu}_H = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ concentrates around the semicircle measure $d\sigma(x) = \frac{1}{2\pi} (4 - x^2)_+^{1/2} dx$.

- * <u>Quantitative</u>: $\mathbb{P}(|\hat{\mu}_{H}(f) \sigma(f)| > \varepsilon) \lesssim \exp(-c\varepsilon^{2}N^{2})$ for f convex, 1-Lipschitz if μ has bounded support [Guionnet–Zeitouni '00]. Local law [Erdős–Schlein–Yau '08].
- * <u>Fluctuations</u>: $N\hat{\mu}_H(f)$ converges to a Gaussian for f smooth. (Optimal condition $f \in H^{1/2+\varepsilon}$ [Landon–Sosoe '22].)
- * LDP for GOE case [Ben Arous-Guionnet '97]:

$$-rac{1}{N^2}\log \mathbb{P}(\hat{\mu}_H \sim
u) ~\sim~ \mathcal{I}(
u)$$

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Semicircle law: The ESD $\hat{\mu}_H = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ concentrates around the semicircle measure $d\sigma(x) = \frac{1}{2\pi} (4 - x^2)_+^{1/2} dx$.

- * <u>Quantitative</u>: $\mathbb{P}(|\hat{\mu}_{H}(f) \sigma(f)| > \varepsilon) \lesssim \exp(-c\varepsilon^{2}N^{2})$ for f convex, 1-Lipschitz if μ has bounded support [Guionnet–Zeitouni '00]. Local law [Erdős–Schlein–Yau '08].
- * <u>Fluctuations</u>: $N\hat{\mu}_H(f)$ converges to a Gaussian for f smooth. (Optimal condition $f \in H^{1/2+\varepsilon}$ [Landon–Sosoe '22].)
- * LDP for GOE case [Ben Arous-Guionnet '97]:

$$-rac{1}{N^2}\log \mathbb{P}(\hat{\mu}_{H} \sim
u) ~\sim~ \mathcal{I}(
u)$$

 $= -\frac{1}{2} \int \int \log |x - y| d\nu(x) d\nu(y) + \frac{1}{4} \int x^2 d\nu(x) - c \,.$

Let $H = \left(\frac{1}{\sqrt{N}}X_{ij}\right)$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Convergence at the edge: $\lambda_1 \rightarrow 2$ w.h.p. [Füredi–Komlós '81].

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Convergence at the edge: $\lambda_1 \rightarrow 2$ w.h.p. [Füredi–Komlós '81].

* <u>Quantitative</u>: $\mathbb{P}(|\lambda_1 - 2| > \varepsilon) \lesssim \exp(-c\varepsilon^2 N)$ if μ has bounded support.

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Convergence at the edge: $\lambda_1 \rightarrow 2 \text{ w.h.p.}$ [Füredi–Komlós '81].

- * <u>Quantitative</u>: $\mathbb{P}(|\lambda_1 2| > \varepsilon) \lesssim \exp(-c\varepsilon^2 N)$ if μ has bounded support.
- * <u>Fluctuations:</u> $N^{2/3}(\lambda_1 2) \Rightarrow TW_1$. [Forrester, Tracy–Widom '94] (GOE), [Soshnikov '99]

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Convergence at the edge: $\lambda_1 \rightarrow 2 \text{ w.h.p.}$ [Füredi–Komlós '81].

- * <u>Quantitative</u>: $\mathbb{P}(|\lambda_1 2| > \varepsilon) \lesssim \exp(-c\varepsilon^2 N)$ if μ has bounded support.
- * <u>Fluctuations:</u> $N^{2/3}(\lambda_1 2) \Rightarrow TW_1$. [Forrester, Tracy–Widom '94] (GOE), [Soshnikov '99]
- * LDP for GOE case [Ben Arous-Dembo-Guionnet '99]:

$$-\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim \mathcal{I}^{\gamma}(x) := \begin{cases} \frac{1}{2}\int_2^x \sqrt{y^2 - 4} dy & x \ge 2\\ +\infty & x < 2 \end{cases}$$

Let $H = (\frac{1}{\sqrt{N}}X_{ij})$ with $\{X_{ij}\}_{1 \le i \le j \le N}$ iid copies of a standardized real sub-Gaussian distribution μ . Eigenvalues $\lambda_N \le \cdots \le \lambda_1$.

Convergence at the edge: $\lambda_1 \rightarrow 2 \text{ w.h.p.}$ [Füredi–Komlós '81].

- * <u>Quantitative</u>: $\mathbb{P}(|\lambda_1 2| > \varepsilon) \lesssim \exp(-c\varepsilon^2 N)$ if μ has bounded support.
- * <u>Fluctuations:</u> $N^{2/3}(\lambda_1 2) \Rightarrow TW_1$. [Forrester, Tracy–Widom '94] (GOE), [Soshnikov '99]
- * LDP for GOE case [Ben Arous-Dembo-Guionnet '99]:

$$-\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim \mathcal{I}^{\gamma}(x) := \begin{cases} \frac{1}{2}\int_2^x \sqrt{y^2 - 4}dy & x \ge 2\\ +\infty & x < 2 \end{cases}$$

Large deviations for the spectrum: localization phenomena

Entries with stretched exponential tails: Bordenave–Caputo '14 (ESDs), Augeri '16 (λ_1)

• Governed by the appearance of large entries.

Entries with stretched exponential tails: Bordenave–Caputo '14 (ESDs), Augeri '16 (λ_1)

• Governed by the appearance of large entries.

<u>Bernoulli(p)</u>, $N^{-1} \ll p \ll 1$.

Augeri '18, C.-Dembo '18, Bhattacharya-Ganguly '18, Basak '21, C.-Dembo '22

- Governed by appearance of small dense structures (cliques and hubs) and high-degree vertices.
- LDP given by naïve mean-field optimization problem. Connections with extremal combinatorics (regularity method).
- Augeri-Basak '23: random sub-Gaussian weights
- Augeri '24. LDP for the ESD. Rate function supported on solutions of quadratic vector equations studied by Ajanki–Erdős–Kruger.

Entries with stretched exponential tails: Bordenave–Caputo '14 (ESDs), Augeri '16 (λ_1)

• Governed by the appearance of large entries.

<u>Bernoulli(p)</u>, $N^{-1} \ll p \ll 1$.

Augeri '18, C.-Dembo '18, Bhattacharya-Ganguly '18, Basak '21, C.-Dembo '22

- Governed by appearance of small dense structures (cliques and hubs) and high-degree vertices.
- LDP given by naïve mean-field optimization problem. Connections with extremal combinatorics (regularity method).
- Augeri-Basak '23: random sub-Gaussian weights
- Augeri '24. LDP for the ESD. Rate function supported on solutions of quadratic vector equations studied by Ajanki–Erdős–Kruger.

<u>Bernoulli(d/n</u>, diluted networks.

- ESDs: Bordanave-Caputo '13
- Edge eigenvalues: Bhattacharya–Bhattacharya–Ganguly '20, Ganguly–Nam '21, Ganguly–Hiesmayr–Nam '22, Lee–Nam '23 (d-regular)
- GHN22: Wiebull-type tails exp(−cx^α). Universal Gaussian rate function for λ₁ when α > 2, non-universal for α < 2.

Conditional structure of sparse Bernoulli matrices (C.-Dembo '22)

Joint upper tail events for subgraph counts (e.g. moments $Tr(A^{\ell})$), are dominated by the 2-parameter family of "clique-hub" matrices.

Size of clique (horizontal axis) and hub (vertical axis) are determined by a 2-dimensional relative entropy optimization problem.

Level lines for subgraph counts are green/blue/yellow curves.

Level line for minimal relative entropy is red.

Conditional structure of sparse Bernoulli matrices on tail events

For $a,b\geq 0,\ \delta\in (0,1)$ let $\mathcal{E}_{a,b}(\delta)$ be the event that

$$\sum_{i,j\in I} A_{i,j} \geq (1-\delta)|I|^2, \qquad \sum_{i\in J, j\in J^c} A_{i,j} \geq (1-\delta)|J|(N-|J|)$$

for some $I, J \subset [N]$ with $|I| \sim \sqrt{a}pN$, $|J| \sim bp^2N$.

Theorem (C.-Dembo '22) For $N^{-1/3} \ll p \ll 1$ and fixed $\ell_1, \ldots, \ell_m \ge 3, s_1, \ldots, s_m > 0$, $\mathbb{P}\left(\bigcup_{(a_*,b_*)\in \mathcal{O}(\ell,\underline{s})} \mathcal{E}_{a,b}(\delta) \mid \operatorname{Tr}(A^{\ell_k}) \ge (1+s_k)(Np)^{\ell_k}, \ k = 1, \ldots, m\right) \ge 1 - p^{cN^2p^2}$

for some $c(\underline{\ell}, \underline{s}, \delta) > 0$, where $\mathcal{O}(\underline{\ell}, \underline{s})$ is the set of minimizers for a non-convex linear optimization problem determined by $\underline{\ell}, \underline{s}$.

Special case of a result for any fixed collection of graphs. \Rightarrow Typical structure of Exponential Random Graphs, extending [Chatterjee–Diaconis '12].

Harel–Mousset–Samotij '18: Case m = 1, $\ell_1 = 3$ (and general clique counts). Basak–Basu '19: m = 1, general ℓ .

A universal (!) LDP (Guionnet-Husson '18)

For centered μ and $\Lambda_{\mu}(t) := \log \int_{\mathbb{R}} e^{tx} d\mu(x)$, μ is ...

sub-Gaussian (SG) if $\Lambda_{\mu}(t) \leq Kt^2$ $\forall t \in \mathbb{R}, \text{ constant } K < \infty$

A universal (!) LDP (Guionnet-Husson '18)

For centered μ and $\Lambda_{\mu}(t) := \log \int_{\mathbb{R}} e^{tx} d\mu(x)$, μ is . . .

sub-Gaussian (SG) if $\Lambda_{\mu}(t) \leq Kt^2 \quad \forall t \in \mathbb{R}$, constant $K < \infty$ sharp sub-Gaussian (SSG) if $\Lambda_{\mu}(t) \leq \frac{1}{2}t^2 = \Lambda_{\gamma}(t) \quad \forall t \in \mathbb{R}$

where $\gamma(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. SSG: Gaussian, Rademacher, Unif $[-\sqrt{3}, \sqrt{3}]$.

For centered μ and $\Lambda_{\mu}(t) := \log \int_{\mathbb{R}} e^{tx} d\mu(x)$, μ is . . .

sub-Gaussian (SG) if $\Lambda_{\mu}(t) \leq Kt^2 \quad \forall t \in \mathbb{R}$, constant $K < \infty$ sharp sub-Gaussian (SSG) if $\Lambda_{\mu}(t) \leq \frac{1}{2}t^2 = \Lambda_{\gamma}(t) \quad \forall t \in \mathbb{R}$

where $\gamma(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. SSG: Gaussian, Rademacher, Unif $[-\sqrt{3}, \sqrt{3}]$.

Theorem (Guionnet-Husson '18)

Assume μ is SSG. Then $\lambda_1(H)$ satisfies an LDP with speed N and good rate function \mathcal{I}^{γ} . In particular, for each fixed $x \in \mathbb{R}$,

$$rac{1}{N}\log \mathbb{P}(|\lambda_1(H)-x|\leq \delta)=-\mathcal{I}^\gamma(x)+o(1).$$

(In this talk we write "o(1)" for errors going to zero after $N \to \infty$ then $\delta \downarrow 0$.)

For centered
$$\mu$$
 and $\Lambda_{\mu}(t) := \log \int_{\mathbb{R}} e^{tx} d\mu(x)$, μ is . . .

 $\begin{array}{ll} \textit{sub-Gaussian (SG)} & \text{if} \quad \Lambda_{\mu}(t) \leq Kt^2 \quad \forall t \in \mathbb{R}, \text{ constant } K < \infty \\ \textit{sharp sub-Gaussian (SSG) if} \quad \Lambda_{\mu}(t) \leq \frac{1}{2}t^2 = \Lambda_{\gamma}(t) \quad \forall t \in \mathbb{R} \end{array}$

where $\gamma(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. SSG: Gaussian, Rademacher, Unif $[-\sqrt{3}, \sqrt{3}]$.

Theorem (Guionnet-Husson '18)

Assume μ is SSG. Then $\lambda_1(H)$ satisfies an LDP with speed N and good rate function \mathcal{I}^{γ} . In particular, for each fixed $x \in \mathbb{R}$,

$$rac{1}{N}\log \mathbb{P}(|\lambda_1(H)-x|\leq \delta)=-\mathcal{I}^\gamma(x)+o(1).$$

(In this talk we write "o(1)" for errors going to zero after $N \to \infty$ then $\delta \downarrow 0$.) How does the matrix "typically" achieve $\lambda_1 \sim x$? Proof shows it is a BBP phenomenon: on $\{\lambda_1 \sim x\}$, the mean of H is shifted by a delocalized rank-1 matrix.

For centered
$$\mu$$
 and $\Lambda_{\mu}(t) := \log \int_{\mathbb{R}} e^{tx} d\mu(x)$, μ is . . .

sub-Gaussian (SG) if $\Lambda_{\mu}(t) \leq Kt^2 \quad \forall t \in \mathbb{R}$, constant $K < \infty$ sharp sub-Gaussian (SSG) if $\Lambda_{\mu}(t) \leq \frac{1}{2}t^2 = \Lambda_{\gamma}(t) \quad \forall t \in \mathbb{R}$

where $\gamma(dx) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. SSG: Gaussian, Rademacher, Unif $[-\sqrt{3}, \sqrt{3}]$.

Theorem (Guionnet-Husson '18)

Assume μ is SSG. Then $\lambda_1(H)$ satisfies an LDP with speed N and good rate function \mathcal{I}^{γ} . In particular, for each fixed $x \in \mathbb{R}$,

$$rac{1}{N}\log \mathbb{P}(|\lambda_1(H)-x|\leq \delta)=-\mathcal{I}^\gamma(x)+o(1).$$

(In this talk we write "o(1)" for errors going to zero after $N \to \infty$ then $\delta \downarrow 0$.)

How does the matrix "typically" achieve $\lambda_1 \sim x$?

Proof shows it is a BBP phenomenon: on $\{\lambda_1 \sim x\}$, the mean of H is shifted by a delocalized rank-1 matrix.

Does universal rate \mathcal{I}^{γ} extend to general sub-Gaussian μ ? Partially addressed by Augeri–Guionnet–Husson '19. Plots of $t^{-2}\Lambda_{\mu}(t) = t^{-2}\log \mathbb{E}\exp(tX)$ for various sub-Gaussian μ . $t^{-2}\Lambda_{\gamma}(t) \equiv \frac{1}{2}$ is in red.

Standardized Bernoulli(*p*)

Standardized *p*-sparse Rademacher

Standardized *p*-sparse Gaussian

Assume μ is standardized and sub-Gaussian. Under some further technical assumptions, there exists a good rate function \mathcal{I}^{μ} on \mathbb{R} that is infinite on $(-\infty, 2)$ and continuous and non-decreasing on $[2, \infty)$ such that $\lambda_1(H)$ satisfies an LDP with speed N and rate function \mathcal{I}^{μ} .

Assume μ is standardized and sub-Gaussian. Under some further technical assumptions, there exists a good rate function \mathcal{I}^{μ} on \mathbb{R} that is infinite on $(-\infty, 2)$ and continuous and non-decreasing on $[2, \infty)$ such that $\lambda_1(H)$ satisfies an LDP with speed N and rate function \mathcal{I}^{μ} .

Furthermore:

• $\mathcal{I}^{\mu} \leq \mathcal{I}^{\gamma}$ pointwise on \mathbb{R} (large deviations are at least as likely as for GOE).

Assume μ is standardized and sub-Gaussian. Under some further technical assumptions, there exists a good rate function \mathcal{I}^{μ} on \mathbb{R} that is infinite on $(-\infty, 2)$ and continuous and non-decreasing on $[2, \infty)$ such that $\lambda_1(H)$ satisfies an LDP with speed N and rate function \mathcal{I}^{μ} .

Furthermore:

- $\mathcal{I}^{\mu} \leq \mathcal{I}^{\gamma}$ pointwise on \mathbb{R} (large deviations are at least as likely as for GOE).
- (Universality phase). There exists $x_{\mu} > 2$ such that $\mathcal{I}^{\mu} = \mathcal{I}^{\gamma}$ on $(-\infty, x_{\mu}]$.

Assume μ is standardized and sub-Gaussian. Under some further technical assumptions, there exists a good rate function \mathcal{I}^{μ} on \mathbb{R} that is infinite on $(-\infty, 2)$ and continuous and non-decreasing on $[2, \infty)$ such that $\lambda_1(H)$ satisfies an LDP with speed N and rate function \mathcal{I}^{μ} .

Furthermore:

- $\mathcal{I}^{\mu} \leq \mathcal{I}^{\gamma}$ pointwise on \mathbb{R} (large deviations are at least as likely as for GOE).
- (Universality phase). There exists x_μ > 2 such that *I^μ* = *I^γ* on (-∞, x_μ]. Moreover, conditional on {λ₁ ≈ x} for fixed x ∈ (2, x_μ), with high probability the associated eigenvector v₁ is delocalized.

Assume μ is standardized and sub-Gaussian. Under some further technical assumptions, there exists a good rate function \mathcal{I}^{μ} on \mathbb{R} that is infinite on $(-\infty, 2)$ and continuous and non-decreasing on $[2, \infty)$ such that $\lambda_1(H)$ satisfies an LDP with speed N and rate function \mathcal{I}^{μ} .

Furthermore:

- $\mathcal{I}^{\mu} \leq \mathcal{I}^{\gamma}$ pointwise on \mathbb{R} (large deviations are at least as likely as for GOE).
- (Universality phase). There exists x_μ > 2 such that I^μ = I^γ on (-∞, x_μ]. Moreover, conditional on {λ₁ ≈ x} for fixed x ∈ (2, x_μ), with high probability the associated eigenvector v₁ is delocalized.
- (Non-universality). If μ is not SSG, then there exists x'_μ < ∞ such that *L*^μ < *L*^γ on (x'_μ, ∞). Moreover, conditional on {λ₁ ≈ x} for fixed x > x'_μ, with high probability v₁ has ℓ²-mass ≥ 1 on coordinates of size ≥ N^{-1/4-ε}.

Rate function for the case $\Lambda_{\mu}(t)/\Lambda_{\gamma}(t)$ is increasing

For
$$\theta \ge 0, \alpha \in [0, 1]$$
 and $x \ge 2$ let $\psi_{\mu}^{\lim} = \lim_{t \to \infty} \Lambda_{\mu}(t)/t^2$,
 $\widehat{\varphi}(\theta, \alpha) := \theta^2 [(1 - \alpha)^2 + 2\psi_{\mu}^{\lim} \alpha^2] + \sup_{\nu \in \mathcal{P}_{1-\alpha}(\mathbb{R})} \left\{ \int \Lambda_{\mu}(2\theta \alpha^{1/2} s) d\nu(s) - H(\nu|\gamma) \right\} - \frac{\alpha}{2},$
 $\widehat{\mathcal{J}}(x, \alpha) := \sup_{\theta \ge 0} \left\{ J(x, \theta) - \widehat{\varphi}(\theta, q_x(\theta)^2 \alpha) \right\}.$

 $\textit{Note: } \widehat{\varphi}(\theta,0) = \theta^2 \textit{ and } \widehat{\mathcal{J}}(x,0) = \sup_{\theta \geq 0} \{J(x,\theta) - \theta^2\} = \mathcal{I}^{\gamma}(x).$

Rate function for the case $\Lambda_{\mu}(t)/\Lambda_{\gamma}(t)$ is increasing

For
$$\theta \ge 0, \alpha \in [0, 1]$$
 and $x \ge 2$ let $\psi_{\mu}^{\lim} = \lim_{t \to \infty} \Lambda_{\mu}(t)/t^2$,
 $\widehat{\varphi}(\theta, \alpha) := \theta^2 [(1 - \alpha)^2 + 2\psi_{\mu}^{\lim} \alpha^2] + \sup_{\nu \in \mathcal{P}_{1-\alpha}(\mathbb{R})} \left\{ \int \Lambda_{\mu}(2\theta \alpha^{1/2}s) d\nu(s) - H(\nu|\gamma) \right\} - \frac{\alpha}{2},$
 $\widehat{\mathcal{J}}(x, \alpha) := \sup_{\theta \ge 0} \left\{ J(x, \theta) - \widehat{\varphi}(\theta, q_x(\theta)^2 \alpha) \right\}.$

Note: $\widehat{\varphi}(\theta, 0) = \theta^2$ and $\widehat{\mathcal{J}}(x, 0) = \sup_{\theta \ge 0} \{J(x, \theta) - \theta^2\} = \mathcal{I}^{\gamma}(x).$

Theorem (C.-Ducatez-Guionnet '23)

Assume μ is symmetric, $\|\Lambda''_{\mu}\|_{\infty} < \infty$ and $t \mapsto \Lambda_{\mu}(t)/t^2$ is nondecreasing on \mathbb{R}^+ .

(a) λ_1 satisfies an LDP with speed N and good rate function \mathcal{I}^{μ} which is infinite on $(-\infty, 2)$ and is otherwise given by

$$\mathcal{I}^{\mu}(x) = \inf_{0 \le \alpha \le 1 - \rho_x} \widehat{\mathcal{J}}(x, \alpha)$$

with $\rho_x = c_\mu/x^4$. Moreover, for x > 2 the infimum is achieved on a closed nonempty set $A_x^* \subset [0, 1 - \rho_x]$.

Rate function for the case $\Lambda_{\mu}(t)/\Lambda_{\gamma}(t)$ is increasing

For
$$\theta \ge 0, \alpha \in [0, 1]$$
 and $x \ge 2$ let $\psi_{\mu}^{\lim} = \lim_{t \to \infty} \Lambda_{\mu}(t)/t^2$,
 $\widehat{\varphi}(\theta, \alpha) := \theta^2 [(1 - \alpha)^2 + 2\psi_{\mu}^{\lim} \alpha^2] + \sup_{\nu \in \mathcal{P}_{1-\alpha}(\mathbb{R})} \left\{ \int \Lambda_{\mu}(2\theta \alpha^{1/2}s) d\nu(s) - H(\nu|\gamma) \right\} - \frac{\alpha}{2},$
 $\widehat{\mathcal{J}}(x, \alpha) := \sup_{\theta \ge 0} \left\{ J(x, \theta) - \widehat{\varphi}(\theta, q_x(\theta)^2 \alpha) \right\}.$

Note: $\widehat{\varphi}(\theta, 0) = \theta^2$ and $\widehat{\mathcal{J}}(x, 0) = \sup_{\theta \ge 0} \{J(x, \theta) - \theta^2\} = \mathcal{I}^{\gamma}(x).$

Theorem (C.-Ducatez-Guionnet '23)

Assume μ is symmetric, $\|\Lambda''_{\mu}\|_{\infty} < \infty$ and $t \mapsto \Lambda_{\mu}(t)/t^2$ is nondecreasing on \mathbb{R}^+ .

(a) λ_1 satisfies an LDP with speed N and good rate function \mathcal{I}^{μ} which is infinite on $(-\infty, 2)$ and is otherwise given by

$$\mathcal{I}^{\mu}(x) = \inf_{0 \le \alpha \le 1 - \rho_x} \widehat{\mathcal{J}}(x, \alpha)$$

with $\rho_x = c_\mu/x^4$. Moreover, for x > 2 the infimum is achieved on a closed nonempty set $A_x^* \subset [0, 1 - \rho_x]$.

(b) If Λ_μ(t)/t² is strictly increasing on ℝ⁺, then for any x > 2 and η, ε ∈ (0, 1/10), conditional on |λ₁ − x| < δ we have that with probability 1 − o(1), v₁ is within distance ε of a vector with one entry of magnitude at least √inf A_x^{*} and all other entries bounded by N^{-1/2+η}.

Joint large deviations for λ_1, v_1

Non-universal rate function comes from emergence of localized large deviation mechanisms for λ_1 .

Localization will be reflected by large entries of the associated eigenvector v_1 . The key idea is to get a joint LDP for λ_1 and the large entries of v_1 , then contract to LDP for λ_1 .

Joint large deviations for λ_1, v_1

Non-universal rate function comes from emergence of localized large deviation mechanisms for λ_1 .

Localization will be reflected by large entries of the associated eigenvector v_1 . The key idea is to get a joint LDP for λ_1 and the large entries of v_1 , then contract to LDP for λ_1 .

Roughly speaking, we get an asymptotic

$$rac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim -\mathcal{I}^{\mu}_N(x)$$

where

$$\mathcal{I}_N^{\mu}(x) = \inf_z \mathcal{J}_N(x, z)$$

with the infimum taken over sparse vectors z, and $\mathcal{J}_N(x, z)$ is a joint rate function for $\{\lambda_1 \sim x, v_1^{large} \sim z\}$.

By analyzing $\mathcal{J}_N(x, z)$ around minimizing z, we obtain structure of the localized part of v_1 conditional on $\{\lambda_1 \sim x\}$.

For the sample mean $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ for iid $X_i \sim \mu$, we have

$$rac{1}{N}\log \mathbb{P}(|\overline{X}-x|\leq \delta)=-\Lambda^*_\mu(x)+o(1)$$

where $\Lambda^*_{\mu}(x) = \sup_{\theta \in \mathbb{R}} \{\theta x - \Lambda_{\mu}(\theta)\}.$

For the sample mean $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ for iid $X_i \sim \mu$, we have

$$rac{1}{N}\log \mathbb{P}(|\overline{X}-x|\leq \delta)=-\Lambda^*_\mu(x)+o(1)$$

where $\Lambda_{\mu}^{*}(x) = \sup_{\theta \in \mathbb{R}} \{\theta x - \Lambda_{\mu}(\theta)\}.$

Proof:

For the sample mean $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ for iid $X_i \sim \mu$, we have

$$rac{1}{N}\log \mathbb{P}(|\overline{X}-x|\leq \delta)=-\Lambda^*_\mu(x)+o(1)$$

where $\Lambda^*_{\mu}(x) = \sup_{\theta \in \mathbb{R}} \{\theta x - \Lambda_{\mu}(\theta)\}.$

Proof: Defining a one-parameter family of tilted measures:

$$\mathbb{P}^{(heta)}(\cdot):=e^{-N \Lambda_{\mu}(heta)}\mathbb{E}e^{ heta N \overline{X}}\,\mathbb{1}(\cdot)\,,\qquad heta\in\mathbb{R}$$

we can reexpress

$$\mathbb{P}(|\overline{X} - x| \le \delta) = e^{-N(\theta x + o(1))} \mathbb{E}e^{\theta N\overline{X}} \mathbb{1}(|\overline{X} - x| \le \delta)$$

For the sample mean $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ for iid $X_i \sim \mu$, we have

$$rac{1}{N}\log \mathbb{P}(|\overline{X}-x|\leq \delta)=-\Lambda^*_\mu(x)+o(1)$$

where $\Lambda^*_{\mu}(x) = \sup_{\theta \in \mathbb{R}} \{\theta x - \Lambda_{\mu}(\theta)\}.$

Proof: Defining a one-parameter family of tilted measures:

$$\mathbb{P}^{(heta)}(\cdot):=e^{-N \wedge_{\mu}(heta)}\mathbb{E}e^{ heta N \overline{X}}\,\mathbb{1}(\cdot)\,,\qquad heta\in\mathbb{R}$$

we can reexpress

$$\begin{split} \mathbb{P}(|\overline{X} - x| \le \delta) &= e^{-N(\theta x + o(1))} \mathbb{E}e^{\theta N \overline{X}} \mathbb{1}(|\overline{X} - x| \le \delta) \\ &= e^{N(\Lambda_{\mu}(\theta) - \theta x + o(1))} \mathbb{P}^{(\theta)}(|\overline{X} - x| \le \delta) \end{split}$$

For the sample mean $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ for iid $X_i \sim \mu$, we have

$$rac{1}{N}\log \mathbb{P}(|\overline{X}-x|\leq \delta)=-\Lambda^*_\mu(x)+o(1)$$

where $\Lambda^*_{\mu}(x) = \sup_{\theta \in \mathbb{R}} \{\theta x - \Lambda_{\mu}(\theta)\}.$

Proof: Defining a one-parameter family of tilted measures:

$$\mathbb{P}^{(heta)}(\cdot):=e^{-N \Lambda_{\mu}(heta)}\mathbb{E}e^{ heta N \overline{X}}\,\mathbb{1}(\cdot)\,,\qquad heta\in\mathbb{R}$$

we can reexpress

$$\begin{split} \mathbb{P}(|\overline{X} - x| \le \delta) &= e^{-N(\theta x + o(1))} \mathbb{E} e^{\theta N \overline{X}} \mathbb{1}(|\overline{X} - x| \le \delta) \\ &= e^{N(\Lambda_{\mu}(\theta) - \theta x + o(1))} \mathbb{P}^{(\theta)}(|\overline{X} - x| \le \delta) \end{split}$$

<u>Upper bound</u>: trivially bound $\mathbb{P}^{(\theta)}(|\overline{X} - x| \le \delta) \le 1$ and optimize θ .

For the sample mean $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ for iid $X_i \sim \mu$, we have

$$rac{1}{N}\log \mathbb{P}(|\overline{X}-x|\leq \delta)=-\Lambda^*_\mu(x)+o(1)$$

where $\Lambda^*_{\mu}(x) = \sup_{\theta \in \mathbb{R}} \{\theta x - \Lambda_{\mu}(\theta)\}.$

Proof: Defining a one-parameter family of tilted measures:

$$\mathbb{P}^{(heta)}(\cdot):=e^{-N \Lambda_{\mu}(heta)}\mathbb{E}e^{ heta N \overline{X}}\,\mathbb{1}(\cdot)\,,\qquad heta\in\mathbb{R}$$

we can reexpress

$$\begin{split} \mathbb{P}(|\overline{X} - x| \leq \delta) &= e^{-N(\theta_X + o(1))} \mathbb{E} e^{\theta N \overline{X}} \mathbb{1}(|\overline{X} - x| \leq \delta) \\ &= e^{N(\Lambda_{\mu}(\theta) - \theta_X + o(1))} \mathbb{P}^{(\theta)}(|\overline{X} - x| \leq \delta) \,. \end{split}$$

<u>Upper bound</u>: trivially bound $\mathbb{P}^{(\theta)}(|\overline{X} - x| \leq \delta) \leq 1$ and optimize θ . Lower bound: show that for the optimizer θ_x , $\mathbb{P}^{(\theta_x)}(|\overline{X} - x| \leq \delta) \geq e^{-o(N)}$. \Box

For $N \times N$ symmetric $M, \theta \ge 0$ and P the uniform surface measure on \mathbb{S}^{N-1} ,

$$I(M,\theta) := \int_{\mathbb{S}^{N-1}} e^{\theta N \langle u, Mu \rangle} dP(u)$$

For $N \times N$ symmetric $M, \theta \ge 0$ and P the uniform surface measure on \mathbb{S}^{N-1} ,

$$I(M,\theta) := \int_{\mathbb{S}^{N-1}} e^{\theta N \langle u, Mu \rangle} dP(u)$$

Quenched free energy: (Guionnet–Maida '05). On $\mathcal{E}_x := \{\lambda_1 \sim x, \hat{\mu}_H \sim \sigma\}$,

$$\frac{1}{N}\log I(H,\theta) \sim J(x,\theta) := \begin{cases} \theta^2 & \theta \leq \frac{1}{2}G_{\sigma}(x) \\ \theta x - \frac{1}{2}\int\log(x-\lambda)d\sigma(\lambda) - \frac{1}{2}\log(2e\theta) & \theta \geq \frac{1}{2}G_{\sigma}(x) \end{cases}$$

where $G_{\sigma}(x) = \frac{1}{2}(x - \sqrt{x^2 - 4})$ is the Stieltjes transform of σ at $x \ge 2$.

For $N \times N$ symmetric $M, \theta \ge 0$ and P the uniform surface measure on \mathbb{S}^{N-1} ,

$$I(M,\theta) := \int_{\mathbb{S}^{N-1}} e^{\theta N \langle u, Mu \rangle} dP(u)$$

Quenched free energy: (Guionnet–Maida '05). On $\mathcal{E}_x := \{\lambda_1 \sim x, \hat{\mu}_H \sim \sigma\}$,

$$\frac{1}{N}\log I(H,\theta) \sim J(x,\theta) := \begin{cases} \theta^2 & \theta \leq \frac{1}{2}G_{\sigma}(x) \\ \theta x - \frac{1}{2}\int\log(x-\lambda)d\sigma(\lambda) - \frac{1}{2}\log(2e\theta) & \theta \geq \frac{1}{2}G_{\sigma}(x) \end{cases}$$

where $G_{\sigma}(x) = \frac{1}{2}(x - \sqrt{x^2 - 4})$ is the Stieltjes transform of σ at $x \ge 2$.

Annealed free energy:

$$F_N(\theta) := \frac{1}{N} \log \mathbb{E}I(H, \theta) = \frac{1}{N} \log \int_{\mathbb{S}^{N-1}} \exp \Big(\sum_{i \leq j} \Lambda_{\mu}(2\theta \sqrt{N}u_i u_j) \Big) dP(u) \,.$$

Defining $d\mathbb{P}^{(\theta,u)} \propto e^{\theta N \langle u,Hu \rangle} d\mathbb{P}$ and $dQ^{(\theta)}(u) \propto \mathbb{E} e^{\theta N \langle u,Hu \rangle} dP(u)$,

$$\mathbb{P}(\mathcal{E}_{x}) = e^{-N(J(x,\theta)+o(1))} \mathbb{E}I(H,\theta) \,\mathbb{1}(\mathcal{E}_{x}) = e^{N(F_{N}(\theta)-J(x,\theta)+o(1))} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_{x}) dQ^{(\theta)}(u).$$

For $N \times N$ symmetric $M, \theta \ge 0$ and P the uniform surface measure on \mathbb{S}^{N-1} ,

$$I(M,\theta) := \int_{\mathbb{S}^{N-1}} e^{\theta N \langle u, Mu \rangle} dP(u)$$

Quenched free energy: (Guionnet–Maida '05). On $\mathcal{E}_x := \{\lambda_1 \sim x, \hat{\mu}_H \sim \sigma\}$,

$$\frac{1}{N}\log I(H,\theta) \sim J(x,\theta) := \begin{cases} \theta^2 & \theta \leq \frac{1}{2}G_{\sigma}(x) \\ \theta x - \frac{1}{2}\int\log(x-\lambda)d\sigma(\lambda) - \frac{1}{2}\log(2e\theta) & \theta \geq \frac{1}{2}G_{\sigma}(x) \end{cases}$$

where $G_{\sigma}(x) = \frac{1}{2}(x - \sqrt{x^2 - 4})$ is the Stieltjes transform of σ at $x \ge 2$.

Annealed free energy:

$$F_N(\theta) := \frac{1}{N} \log \mathbb{E}I(H, \theta) = \frac{1}{N} \log \int_{\mathbb{S}^{N-1}} \exp \Big(\sum_{i \leq j} \Lambda_{\mu}(2\theta \sqrt{N}u_i u_j) \Big) dP(u) \,.$$

Defining $d\mathbb{P}^{(\theta,u)} \propto e^{\theta N \langle u,Hu \rangle} d\mathbb{P}$ and $dQ^{(\theta)}(u) \propto \mathbb{E} e^{\theta N \langle u,Hu \rangle} dP(u)$,

$$\mathbb{P}(\mathcal{E}_{x}) = e^{-N(J(x,\theta)+o(1))} \mathbb{E}I(H,\theta) \mathbb{1}(\mathcal{E}_{x}) = e^{N(F_{N}(\theta)-J(x,\theta)+o(1))} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_{x}) dQ^{(\theta)}(u)$$

Bounding integral by 1, get $\frac{1}{N} \log \mathbb{P}(\mathcal{E}_x) \leq -\sup_{\theta \geq 0} \{J(x,\theta) - F_N(\theta)\} + o(1).$

Tilting by spherical integrals: Annealed – Quenched

Lower bound:

Showed
$$\mathbb{P}(\mathcal{E}_x) = e^{N(F_N(\theta) - J(x,\theta)) + o(N)} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_x) dQ^{(\theta)}(u)$$

where

$$\mathcal{E}_{\mathsf{x}} = \{\lambda_1 \sim \mathsf{x}, \hat{\mu}_H \sim \sigma\}, \qquad rac{d\mathbb{P}^{(heta, u)}}{d\mathbb{P}} \propto e^{ heta N \langle u, Hu
angle}, \qquad rac{dQ^{(heta)}}{dP}(u) \propto \mathbb{E} e^{ heta N \langle u, Hu
angle}.$$

With θ_x the optimizing choice of θ from the upper bound, only remains to show $\{\lambda_1 \sim x\}$ is likely under $\mathbb{P}^{(\theta_x, u)}$, at least for all u in some $\mathcal{D} \subset \mathbb{S}^{N-1}$ such that $Q^{(\theta_x)}(\mathcal{D}) \geq e^{-o(N)}$.

Lower bound:

Showed
$$\mathbb{P}(\mathcal{E}_x) = e^{N(F_N(\theta) - J(x,\theta)) + o(N)} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_x) dQ^{(\theta)}(u)$$

where

$$\mathcal{E}_{x} = \{\lambda_{1} \sim x, \hat{\mu}_{H} \sim \sigma\}, \qquad \frac{d\mathbb{P}^{(\theta, u)}}{d\mathbb{P}} \propto e^{\theta N \langle u, Hu \rangle}, \qquad \frac{dQ^{(\theta)}}{dP}(u) \propto \mathbb{E}e^{\theta N \langle u, Hu \rangle}.$$

With θ_x the optimizing choice of θ from the upper bound, only remains to show $\{\lambda_1 \sim x\}$ is likely under $\mathbb{P}^{(\theta_x, u)}$, at least for all u in some $\mathcal{D} \subset \mathbb{S}^{N-1}$ such that $Q^{(\theta_x)}(\mathcal{D}) \geq e^{-o(N)}$.

Take $\mathcal{D} = \{ u \in \mathbb{S}^{N-1} : ||u||_{\infty} \leq N^{-\frac{1}{4}-\varepsilon} \}$ set of delocalized unit vectors. Then (1) $Q^{(\theta)}(\mathcal{D}) \geq e^{-o(N)}$ (easy).

Lower bound:

Showed
$$\mathbb{P}(\mathcal{E}_x) = e^{N(F_N(\theta) - J(x,\theta)) + o(N)} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_x) dQ^{(\theta)}(u)$$

where

$$\mathcal{E}_{\mathsf{x}} = \{\lambda_1 \sim \mathsf{x}, \hat{\mu}_H \sim \sigma\}, \qquad \frac{d\mathbb{P}^{(heta, u)}}{d\mathbb{P}} \propto e^{ heta N \langle u, Hu
angle}, \qquad \frac{dQ^{(heta)}}{dP}(u) \propto \mathbb{E} e^{ heta N \langle u, Hu
angle}.$$

With θ_x the optimizing choice of θ from the upper bound, only remains to show $\{\lambda_1 \sim x\}$ is likely under $\mathbb{P}^{(\theta_x, u)}$, at least for all u in some $\mathcal{D} \subset \mathbb{S}^{N-1}$ such that $Q^{(\theta_x)}(\mathcal{D}) \geq e^{-o(N)}$.

Take $\mathcal{D} = \{ u \in \mathbb{S}^{N-1} : ||u||_{\infty} \leq N^{-\frac{1}{4}-\varepsilon} \}$ set of delocalized unit vectors. Then (1) $Q^{(\theta)}(\mathcal{D}) \geq e^{-o(N)}$ (easy). (2) For any $u \in \mathcal{D}$, $H \stackrel{d}{\approx} 2\theta u u^{\mathsf{T}} + \widetilde{H}$ under $\mathbb{P}^{(\theta, u)}$ for a Wigner matrix \widetilde{H} . (Note that $\mathbb{E}^{(\theta, u)} H_{ij} = \frac{1}{\sqrt{N}} \Lambda'_{\mu} (2\theta \sqrt{N} u_i u_j) \sim 2\theta u_i u_j.$)

Lower bound:

Showed
$$\mathbb{P}(\mathcal{E}_x) = e^{N(F_N(\theta) - J(x,\theta)) + o(N)} \int_{\mathbb{S}^{N-1}} \mathbb{P}^{(\theta,u)}(\mathcal{E}_x) dQ^{(\theta)}(u)$$

where

$$\mathcal{E}_{\mathsf{x}} = \{\lambda_1 \sim \mathsf{x}, \hat{\mu}_H \sim \sigma\}, \qquad \frac{d\mathbb{P}^{(\theta, u)}}{d\mathbb{P}} \propto e^{\theta N \langle u, Hu \rangle}, \qquad \frac{dQ^{(\theta)}}{dP}(u) \propto \mathbb{E}e^{\theta N \langle u, Hu \rangle}.$$

With θ_x the optimizing choice of θ from the upper bound, only remains to show $\{\lambda_1 \sim x\}$ is likely under $\mathbb{P}^{(\theta_x, u)}$, at least for all u in some $\mathcal{D} \subset \mathbb{S}^{N-1}$ such that $Q^{(\theta_x)}(\mathcal{D}) \geq e^{-o(N)}$.

Take $\mathcal{D} = \{ u \in \mathbb{S}^{N-1} : ||u||_{\infty} \leq N^{-\frac{1}{4}-\varepsilon} \}$ set of delocalized unit vectors. Then (1) $Q^{(\theta)}(\mathcal{D}) \geq e^{-o(N)}$ (easy). (2) For any $u \in \mathcal{D}$, $H \stackrel{d}{\approx} 2\theta u u^{\mathsf{T}} + \widetilde{H}$ under $\mathbb{P}^{(\theta,u)}$ for a Wigner matrix \widetilde{H} . (Note that $\mathbb{E}^{(\theta,u)}H_{ij} = \frac{1}{\sqrt{N}}\Lambda'_{\mu}(2\theta\sqrt{N}u_iu_j) \sim 2\theta u_iu_j$.)

By the BBP transition we get $\lambda_1 \sim x$ w.h.p. under $\mathbb{P}^{(\theta_x,u)}$ for any $u \in \mathcal{D}$.

New ideas to capture localization

For
$$\mu$$
 SSG, get: **(A)** $\frac{1}{N} \log \mathbb{P}(\lambda_1 \sim x) \sim \sup_{\theta \ge 0} \{F_N(\theta) - J(x, \theta)\},$
(B) $F_N(\theta) \to \theta^2$.

For
$$\mu$$
 SSG, get: **(A)** $\frac{1}{N} \log \mathbb{P}(\lambda_1 \sim x) \sim \sup_{\theta \geq 0} \{F_N(\theta) - J(x, \theta)\},$
(B) $F_N(\theta) \rightarrow \theta^2.$

When μ is not SSG, both (A) and (B) are false.

Heavier tails open up non-universal localization strategies that compete with delocalized tilt. Large deviations of λ_1 result from a combination of the two!

For
$$\mu$$
 SSG, get: **(A)** $\frac{1}{N} \log \mathbb{P}(\lambda_1 \sim x) \sim \sup_{\theta \geq 0} \{F_N(\theta) - J(x, \theta)\},$
(B) $F_N(\theta) \rightarrow \theta^2.$

When μ is not SSG, both (A) and (B) are false.

Heavier tails open up non-universal localization strategies that compete with delocalized tilt. Large deviations of λ_1 result from a combination of the two!

The idea is to get a joint LDP for λ_1 and the large entries of v_1 , then contract to LDP for λ_1 .

For a sparse vector w let

$$\mathcal{U}_{\mathsf{w}} := \left\{ u \in \mathbb{S}^{N-1} : u^{\textit{large}} \approx \mathsf{w}, \ \|u|_{\mathsf{supp}(z)^c}\|_{\infty} \leq N^{-1/2+\eta} \right\}$$

and denote the restricted annealed free energy

$$F_N(heta; w) := rac{1}{N} \log \mathbb{E} \int_{\mathcal{U}_w} e^{ heta N \langle u, Hu
angle} dP(u).$$

We obtain an explicit (but complicated) asymptotic $F_N(\theta, w) \sim \varphi_N(\theta, w)$.

New ideas to capture localization

With
$$\mathcal{E}_{x,z} = \{\lambda_1 \sim x, v_1^{large} \sim z\}$$
 and $q = q_x(\theta) = (1 - \frac{G_\sigma(x)}{2\theta})_+^{1/2}$, we can show
 $\mathbb{P}(\mathcal{E}_{x,z}) = e^{N(F_N(\theta;qz) - J(x,\theta) + o(1))} \int_{\mathcal{U}_{qz}} \mathbb{P}^{(\theta,u)}(\lambda_1 \sim x) \frac{dQ^{(\theta)}(u)}{Q^{(\theta)}(\mathcal{U}_{qz})}.$

If we can show integral $= e^{o(N)}$ at optimizer $\theta = \theta_{x,z}$ for main term, then putting everything together,

$$\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim -\inf_z \mathcal{J}_N(x,z) \qquad \mathcal{J}_N(x,z) := \sup_{\theta \geq 0} \{J(x,\theta) - \varphi_N(\theta,qz)\}$$

With
$$\mathcal{E}_{x,z} = \{\lambda_1 \sim x, v_1^{large} \sim z\}$$
 and $q = q_x(\theta) = (1 - \frac{G_\sigma(x)}{2\theta})_+^{1/2}$, we can show

$$\mathbb{P}(\mathcal{E}_{x,z}) = e^{N(F_N(\theta;qz) - J(x,\theta) + o(1))} \int_{\mathcal{U}_{qz}} \mathbb{P}^{(\theta,u)}(\lambda_1 \sim x) \frac{dQ^{(\theta)}(u)}{Q^{(\theta)}(\mathcal{U}_{qz})}.$$

$$\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim -\inf_z \mathcal{J}_N(x,z) \qquad \mathcal{J}_N(x,z) := \sup_{\theta \geq 0} \{J(x,\theta) - \varphi_N(\theta,qz)\}$$

Problem: As $u \in U_{qz}$ are not delocalized, we can't get $\mathbb{E}^{(\theta,u)}\lambda_1$ by a BBP computation.

With
$$\mathcal{E}_{x,z} = \{\lambda_1 \sim x, v_1^{large} \sim z\}$$
 and $q = q_x(\theta) = (1 - \frac{G_\sigma(x)}{2\theta})_+^{1/2}$, we can show
 $\mathbb{P}(\mathcal{E}_{x,z}) = e^{N(F_N(\theta;qz) - J(x,\theta) + o(1))} \int_{\mathcal{U}_{qz}} \mathbb{P}^{(\theta,u)}(\lambda_1 \sim x) \frac{dQ^{(\theta)}(u)}{Q^{(\theta)}(\mathcal{U}_{qz})}.$

$$\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim -\inf_z \mathcal{J}_N(x,z) \qquad \mathcal{J}_N(x,z) := \sup_{\theta \geq 0} \{J(x,\theta) - \varphi_N(\theta,qz)\}$$

Problem: As $u \in U_{qz}$ are not delocalized, we can't get $\mathbb{E}^{(\theta,u)}\lambda_1$ by a BBP computation.

Solution: Can show λ_1 concentrates under $\mathbb{P}^{(\theta,u)}$, with mean \approx continuous in θ and u (under the ℓ^2 metric). $\mathbb{E}^{(\theta,u)}\lambda_1 \sim 2$ for small θ , $\mathbb{E}^{(\theta,u)}\lambda_1 \to \infty$ as $\theta \to \infty$.

With
$$\mathcal{E}_{x,z} = \{\lambda_1 \sim x, v_1^{\text{large}} \sim z\}$$
 and $q = q_x(\theta) = (1 - \frac{G_\sigma(x)}{2\theta})_+^{1/2}$, we can show
 $\mathbb{P}(\mathcal{E}_{x,z}) = e^{N(F_N(\theta;qz) - J(x,\theta) + o(1))} \int_{\mathcal{U}_{qz}} \mathbb{P}^{(\theta,u)}(\lambda_1 \sim x) \frac{dQ^{(\theta)}(u)}{Q^{(\theta)}(\mathcal{U}_{qz})}.$

$$\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim -\inf_z \mathcal{J}_N(x,z) \qquad \mathcal{J}_N(x,z) := \sup_{\theta \geq 0} \{J(x,\theta) - \varphi_N(\theta,qz)\}$$

Problem: As $u \in U_{qz}$ are not delocalized, we can't get $\mathbb{E}^{(\theta,u)}\lambda_1$ by a BBP computation.

Solution: Can show λ_1 concentrates under $\mathbb{P}^{(\theta,u)}$, with mean \approx continuous in θ and u (under the ℓ^2 metric). $\mathbb{E}^{(\theta,u)}\lambda_1 \sim 2$ for small θ , $\mathbb{E}^{(\theta,u)}\lambda_1 \to \infty$ as $\theta \to \infty$. Moreover, the measures $Q^{(\theta)}\mathbf{1}_{\mathcal{U}_{qz}}$ concentrate on a small ball in the 2-Wasserstein metric, with center $v_{\theta,z} \in \mathbb{S}^{N-1}$ that varies continuously with θ .

With
$$\mathcal{E}_{x,z} = \{\lambda_1 \sim x, v_1^{large} \sim z\}$$
 and $q = q_x(\theta) = (1 - \frac{G_\sigma(x)}{2\theta})_+^{1/2}$, we can show
 $\mathbb{P}(\mathcal{E}_{x,z}) = e^{N(F_N(\theta;qz) - J(x,\theta) + o(1))} \int_{\mathcal{U}_{qz}} \mathbb{P}^{(\theta,u)}(\lambda_1 \sim x) \frac{dQ^{(\theta)}(u)}{Q^{(\theta)}(\mathcal{U}_{qz})}.$

$$\frac{1}{N}\log \mathbb{P}(\lambda_1 \sim x) \sim -\inf_z \mathcal{J}_N(x,z) \qquad \mathcal{J}_N(x,z) := \sup_{\theta \geq 0} \{J(x,\theta) - \varphi_N(\theta,qz)\}$$

Problem: As $u \in U_{qz}$ are not delocalized, we can't get $\mathbb{E}^{(\theta,u)}\lambda_1$ by a BBP computation.

Solution: Can show λ_1 concentrates under $\mathbb{P}^{(\theta,u)}$, with mean \approx continuous in θ and u (under the ℓ^2 metric). $\mathbb{E}^{(\theta,u)}\lambda_1 \sim 2$ for small θ , $\mathbb{E}^{(\theta,u)}\lambda_1 \to \infty$ as $\theta \to \infty$. Moreover, the measures $Q^{(\theta)}\mathbf{1}_{\mathcal{U}_{qz}}$ concentrate on a small ball in the 2-Wasserstein metric, with center $v_{\theta,z} \in \mathbb{S}^{N-1}$ that varies continuously with θ . Intermediate Value Theorem yields $\theta = \theta_{x,z}$ such that $\mathbb{E}^{(\theta,v_{\theta,z})}\lambda_1 \sim x$. Thanks for your attention!