Zeros of Bergman polynomials for Jordan domains with corners

Based on joint work with Erwin Miña-Díaz

Aron Wennman

KU Leuven

Random Matrices and Related Topics, Jeju, May 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Plan for the talk

Fig. Zeros of Bergman polynomials for the pentagon (from [Saff-Stylianopoulos '08])

- · Bergman polynomials for domains with piecewise analytic boundary
- The Triangle versus the Pentagon: dichotomy for zero distribution
- New asymptotic results for domains with "regular" corner singularities

Bergman orthogonal polynomials

Denote by $\{P_n\}_{n\geq 0}$ the **orthogonal polynomials** for a domain $D\subset\mathbb{C}$, obtained by applying the Gram-Schmidt process to $\{1,z,z^2,...\}$ in the inner product

$$\langle f,g\rangle_D = \int_D f(z)\overline{g(z)}\mathrm{d}\mathcal{A}(z),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $dA(z) = \frac{1}{\pi} dx dy$.

Bergman orthogonal polynomials

Denote by $\{P_n\}_{n\geq 0}$ the **orthogonal polynomials** for a domain $D \subset \mathbb{C}$, obtained by applying the Gram-Schmidt process to $\{1, z, z^2, ...\}$ in the inner product

$$\langle f,g\rangle_D=\int_D f(z)\overline{g(z)}\mathrm{d}\mathbf{A}(z),$$

where $dA(z) = \frac{1}{\pi} dx dy$.

- The polynomial Bergman kernel $K_{n,D}(z,w) = \sum_{k=0}^{n-1} P_n(z)\overline{P_n(w)}$ governs the $\beta = 2$ Coulomb gas confined to D.
- Relevant quantities are leading coefficients (rel. to partition function), strong asymptotics of P_n near $L = \partial D$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Bergman orthogonal polynomials

Denote by $\{P_n\}_{n\geq 0}$ the **orthogonal polynomials** for a domain $D \subset \mathbb{C}$, obtained by applying the Gram-Schmidt process to $\{1, z, z^2, ...\}$ in the inner product

$$\langle f,g\rangle_D=\int_D f(z)\overline{g(z)}\mathrm{d}\mathbf{A}(z),$$

where $dA(z) = \frac{1}{\pi} dx dy$.

- The polynomial Bergman kernel $K_{n,D}(z,w) = \sum_{k=0}^{n-1} P_n(z)\overline{P_n(w)}$ governs the $\beta = 2$ Coulomb gas confined to D.
- Relevant quantities are leading coefficients (rel. to partition function), strong asymptotics of P_n near $L = \partial D$.
- Our focus will be on Jordan domains D with piecewise analytic boundary and no cusps. Interested in strong asymptotics and location of zeros.

Let D be a Jordan domain with *analytic* boundary L, and let Ω be the unbounded component of $\mathbb{C} \setminus L$. Let $\phi : \Omega \to \mathbb{C} \setminus \mathbb{D}$ be the exterior conformal map, $\phi(\infty) = \infty$, $\phi'(\infty) > 0$. Let $\Omega_{\rho} = \{z : |\phi(z)| > \rho\}$.

Theorem (Carleman, 1922). Under the above assymptions, there exists a number $\rho \in (0, 1)$ such that, as $n \to \infty$,

$$P_n(z) = \sqrt{n+1} \phi'(z) \phi(z)^n \Bigl(1 + \mathcal{O}(\rho^{2n}) \Bigr), \qquad z \in \Omega_\rho$$

Let D be a Jordan domain with *analytic* boundary L, and let Ω be the unbounded component of $\mathbb{C} \setminus L$. Let $\phi : \Omega \to \mathbb{C} \setminus \mathbb{D}$ be the exterior conformal map, $\phi(\infty) = \infty$, $\phi'(\infty) > 0$. Let $\Omega_{\rho} = \{z : |\phi(z)| > \rho\}$.

Theorem (Carleman, 1922). Under the above assymptions, there exists a number $\rho \in (0, 1)$ such that, as $n \to \infty$,

$$P_n(z) = \sqrt{n+1} \phi'(z) \phi(z)^n \Bigl(1 + \mathcal{O}(\rho^{2n}) \Bigr), \qquad z \in \Omega_\rho$$

• Ω_{ρ} is an asymptotically zero-free region. The number $\rho < 1$ and Ω_{ρ} depend on the conformal extension properties of ϕ across L.

Let D be a Jordan domain with *analytic* boundary L, and let Ω be the unbounded component of $\mathbb{C} \setminus L$. Let $\phi : \Omega \to \mathbb{C} \setminus \mathbb{D}$ be the exterior conformal map, $\phi(\infty) = \infty$, $\phi'(\infty) > 0$. Let $\Omega_{\rho} = \{z : |\phi(z)| > \rho\}$.

Theorem (Carleman, 1922). Under the above assymptions, there exists a number $\rho \in (0, 1)$ such that, as $n \to \infty$,

$$P_n(z) = \sqrt{n+1} \phi'(z) \phi(z)^n \Big(1 + \mathcal{O}\big(\rho^{2n}\big) \Big), \qquad z \in \Omega_\rho$$

- Ω_{ρ} is an asymptotically zero-free region. The number $\rho < 1$ and Ω_{ρ} depend on the conformal extension properties of ϕ across L.
- Similar expansions hold in less regular domains and in weighted spaces $L^2(D, \omega \,\mathrm{dA})$ (see e.g. [Beckermann-Stylianopoulos '18], [Suetin '72], [Hedenmalm-W., '24]).

Let D be a Jordan domain with *analytic* boundary L, and let Ω be the unbounded component of $\mathbb{C} \setminus L$. Let $\phi : \Omega \to \mathbb{C} \setminus \mathbb{D}$ be the exterior conformal map, $\phi(\infty) = \infty$, $\phi'(\infty) > 0$. Let $\Omega_{\rho} = \{z : |\phi(z)| > \rho\}$.

Theorem (Carleman, 1922). Under the above assymptions, there exists a number $\rho \in (0, 1)$ such that, as $n \to \infty$,

$$P_n(z) = \sqrt{n+1} \phi'(z) \phi(z)^n \Big(1 + \mathcal{O}\big(\rho^{2n}\big) \Big), \qquad z \in \Omega_\rho$$

- Ω_{ρ} is an asymptotically zero-free region. The number $\rho < 1$ and Ω_{ρ} depend on the conformal extension properties of ϕ across L.
- Similar expansions hold in less regular domains and in weighted spaces $L^2(D, \omega \,\mathrm{dA})$ (see e.g. [Beckermann-Stylianopoulos '18], [Suetin '72], [Hedenmalm-W., '24]).
- Typically **no information on interior** of *D* in lower regularity.

Orthogonal polynomials on regular N-gons

Conjecture (Eiermann-Stahl, '94): (A) For $N \in \{3,4\}$, the zeros of P_n lie exactly on the segments connecting the vertices with the center. (B) For all $N \ge 2$, the corners are the only points of L that attract zeros.

・ロト・西ト・ヨト・ヨー シック

Distinguishing N = 3 from N = 5

Denote by ν_P the normalized counting measure for the zeros of P(z), and by μ_D the equilibrium measure for D.

Distinguishing N = 3 from N = 5

Denote by ν_P the normalized counting measure for the zeros of P(z), and by μ_D the equilibrium measure for D.

Theorem (Levin-Saff-Stylianopoulos, '03, cf. Andrievskii-Blatt, '99) Assume that $L = \partial D$ is a piecewise analytic Jordan curve. Then the following are equivalent:

- (a) φ has a singularity on L
- (b) $\nu_{P_n} \rightarrow \mu_D$ along some subsequence
- (c) $\limsup_{n\to\infty}|P_n(z)|^{1/n}=1$ on D

Distinguishing N = 3 from N = 5

Denote by ν_P the normalized counting measure for the zeros of P(z), and by μ_D the equilibrium measure for D.

Theorem (Levin-Saff-Stylianopoulos, '03, cf. Andrievskii-Blatt, '99) Assume that $L = \partial D$ is a piecewise analytic Jordan curve. Then the following are equivalent:

(a) φ has a singularity on L
(b) ν_{P_n} → μ_D along some subsequence
(c) lim sup_{n→∞} |P_n(z)|^{1/n} = 1 on D

- The interior map φ from the *N*-gon has singularity on *L* iff $N \ge 5$. Explains difference, and the Eiermann-Stahl conjecture (B) cannot be true.
- "Beware of predictions from plots" (Saff-Stylianopoulos, '08).
- $\bullet\,$ Part (A) of the conjecture proven by Maymeskul-Saff using symmetry and reduction to orthogonality conditions on the segments.

The polynomials are dense in $A^2(D)$, so the Bergman kernel is

$$K_D(z,w) = \frac{\varphi'(z)\overline{\varphi'(w)}}{(1-\varphi(z)\overline{\varphi(w)})^2} = \sum_{k\geq 0} \overline{P_k(w)} P_k(z).$$

If φ' has a singularity on L, this should be reflected in the polynomials.

The polynomials are dense in $A^2(D)$, so the Bergman kernel is

$$K_D(z,w) = \frac{\varphi'(z)\overline{\varphi'(w)}}{(1-\varphi(z)\overline{\varphi(w)})^2} = \sum_{k\geq 0} \overline{P_k(w)} P_k(z).$$

If φ' has a singularity on L, this should be reflected in the polynomials.

Lemma (Walsh, '69). Let F(z) be an analytic function on D with a Fourier series expansion

$$F(z)=\sum_{n\geq 0}\alpha_nP_n(z).$$

Then, if ρ is maximal the maximal number such that F(z) is analytic on the domain D_{ρ} interior to $|\phi(z)| = \rho$ then $\limsup |\alpha_n|^{1/n} = \frac{1}{\rho}$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

The polynomials are dense in $A^2(D)$, so the Bergman kernel is

$$K_D(z,w) = \frac{\varphi'(z)\overline{\varphi'(w)}}{(1-\varphi(z)\overline{\varphi(w)})^2} = \sum_{k\geq 0} \overline{P_k(w)} P_k(z).$$

If φ' has a singularity on L, this should be reflected in the polynomials.

Lemma (Walsh, '69). Let F(z) be an analytic function on D with a Fourier series expansion

$$F(z)=\sum_{n\geq 0}\alpha_nP_n(z).$$

Then, if ρ is maximal the maximal number such that F(z) is analytic on the domain D_{ρ} interior to $|\phi(z)| = \rho$ then $\limsup |\alpha_n|^{1/n} = \frac{1}{\rho}$.

- Akin to radius of convergence, but requires only modest a priori knowledge of the polynomials ${\cal P}_n(z).$

The polynomials are dense in $A^2(D)$, so the Bergman kernel is

$$K_D(z,w) = \frac{\varphi'(z)\overline{\varphi'(w)}}{(1-\varphi(z)\overline{\varphi(w)})^2} = \sum_{k\geq 0} \overline{P_k(w)} P_k(z).$$

If φ' has a singularity on L, this should be reflected in the polynomials.

Lemma (Walsh, '69). Let F(z) be an analytic function on D with a Fourier series expansion

$$F(z) = \sum_{n \geq 0} \alpha_n P_n(z).$$

Then, if ρ is maximal the maximal number such that F(z) is analytic on the domain D_{ρ} interior to $|\phi(z)| = \rho$ then $\limsup |\alpha_n|^{1/n} = \frac{1}{\rho}$.

- Akin to radius of convergence, but requires only modest a priori knowledge of the polynomials ${\cal P}_n(z).$
- If φ has a singularity on L, then $\limsup_{n\geq 0} |P_n(w)|^{1/n} = 1$ on D, restricting the domain of validity of $P_n(z) \sim \sqrt{n+1}\phi'(z)\phi(z)^n$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Domains with analytic corner singularities

Q. What about domains D for which φ lacks singularities on L?

Definition. We let \mathcal{A}_1 be the class of Jordan domains for which any interior conformal map φ extends analytically through L, and has zeros z_1, \ldots, z_q on L.

- If $D \in \mathcal{A}_1$, then any corner has aperture π/m , $m \in \{2, 3, 4, ...\}$ (the order of φ at the corner). This condition is *not sufficient*.
- Membership in \mathcal{A}_1 can equivalently be characterized by invariance of $2n_i 1$ -fold Schwarz reflection around the corner of angle π/n_i .

Illustration of a domain with non-analytic corner singularity of aperture $\pi/2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The main result

Theorem (Miña-Díaz-W., '24). Let $D \in \mathcal{A}_1$. There exists an open set Ω^* containing $L \setminus \{z_1, \ldots, z_q\}$, and a univalent function Φ on Ω^* with $\Phi|_{\Omega} = \phi$, such that the strong asymptotics

$$P_n(z) = \sqrt{n+1} \Phi'(z) \Phi(z)^n \Bigl(1 + \mathcal{O}\Bigl(\frac{\log n}{n}\Bigr) \Bigr)$$

holds locally uniformly on Ω^* . In particular, $L \setminus \{z_1, \dots, z_q\}$ does not attract zeros.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The main result

Theorem (Miña-Díaz-W., '24). Let $D \in \mathcal{A}_1$. There exists an open set Ω^* containing $L \setminus \{z_1, \ldots, z_q\}$, and a univalent function Φ on Ω^* with $\Phi|_{\Omega} = \phi$, such that the strong asymptotics

$$P_n(z) = \sqrt{n+1} \Phi'(z) \Phi(z)^n \Bigl(1 + \mathcal{O}\Bigl(\frac{\log n}{n}\Bigr) \Bigr)$$

holds locally uniformly on Ω^* . In particular, $L \setminus \{z_1, \ldots, z_q\}$ does not attract zeros.

Asymptotics in the **interior of** D is the most challenging part. Comes from an approximate *integral representation*: for $D \in \mathcal{A}_1$, we have

$$P_n(z)\sim \frac{\sqrt{n+1}\varphi'(z)}{2\pi i}\int_{|w|=1}\frac{w^n}{h(w)-\varphi(z)}\mathrm{d} w,\qquad z\in D$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $h = \varphi \circ \phi^{-1}$.

The domain D and the maximal set Ω^*

Figure: Illustration of the curve $L=\partial D$ and sets Ω and Ω^* , for an admissible domain D with three corners $z_1,\,z_2,$ and $z_3.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The domain D_1

The function h(w) is a homeomorphism of \mathbb{T} , and is analytic in a maximal annulus $\{\mu < |w| < \frac{1}{\mu}\}$, $\mu < 1$. For $z \in D$, consider the solutions $\{w_1, \ldots, w_k\}$ in $\{\mu < |z| < 1\}$ to $h(w) = \varphi(z)$.

Definition. We say that $z \in D_1$ if there is a unique solution $w_j = w_j(z)$ of *largest modulus*. We then set $\phi_1(z) = w_j(z)$.

The domain D_1

The function h(w) is a homeomorphism of \mathbb{T} , and is *analytic* in a maximal annulus $\{\mu < |w| < \frac{1}{\mu}\}$, $\mu < 1$. For $z \in D$, consider the solutions $\{w_1, \ldots, w_k\}$ in $\{\mu < |z| < 1\}$ to $h(w) = \varphi(z)$.

Definition. We say that $z \in D_1$ if there is a unique solution $w_j = w_j(z)$ of *largest modulus*. We then set $\phi_1(z) = w_j(z)$.

• For $z \in D_1$, we can thus apply the residue theorem,

$$\begin{split} P_n(z) &\sim \frac{\sqrt{n+1}\varphi'(z)}{2\pi i} \int_{|w|=1} \frac{w^n}{h(w) - \varphi(z)} \mathrm{d}w \\ &= (n+1)\phi_1'(z)\phi_1^n(z) \big(1 + \mathcal{O}(\rho^n)\big) \end{split}$$

for some $\rho < 1$.

• Any point sufficiently close to L but away from the corners is in $D_1,$ and we have $\phi_1=\phi$ there.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Broad proof outlines

 Sharp exterior asymptotics due to Beckermann-Stylinaopoulos. A small improvement near
 ∂L gives

$$P_n(z)=\sqrt{n+1}\phi'(z)\phi(z)^n\Big(1+\mathcal{O}\Big(\frac{|\phi(z)|^2}{n(|\phi(z)|-1)^2}\Big)\Big),\quad z\in\Omega$$

Broad proof outlines

 Sharp exterior asymptotics due to Beckermann-Stylinaopoulos. A small improvement near
 ∂L gives

$$P_n(z) = \sqrt{n+1} \phi'(z) \phi(z)^n \Big(1 + \mathcal{O}\Big(\frac{|\phi(z)|^2}{n(|\phi(z)| - 1)^2} \Big) \Big), \quad z \in \Omega$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• The integral expansion on D_1 gives the interior asymptotics

$$P_n(z) = \sqrt{n+1} \phi'(z) \phi(z)^n \Big(1 + \mathcal{O}\Big(\frac{1}{n(|1-\phi(z)|)^B}\Big)\Big)$$

valid for $z \in D$ near L but bounded away from the corners.

Broad proof outlines

 Sharp exterior asymptotics due to Beckermann-Stylinaopoulos. A small improvement near
 ∂L gives

$$P_n(z)=\sqrt{n+1}\phi'(z)\phi(z)^n\Big(1+\mathcal{O}\Big(\frac{|\phi(z)|^2}{n(|\phi(z)|-1)^2}\Big)\Big),\quad z\in\Omega$$

• The integral expansion on D_1 gives the interior asymptotics

$$P_n(z) = \sqrt{n+1} \phi'(z) \phi(z)^n \Bigl(1 + \mathcal{O}\Bigl(\frac{1}{n(|1-\phi(z)|)^B}\Bigr) \Bigr)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

valid for $z \in D$ near L but bounded away from the corners.

Q. How to bridge the gap in the asymptotic formulas across *L*?

Suppose that f is holomorphic on the strip $S=\{z\in\mathbb{C}:|\mathrm{Im}(z)|<1\}$, with $|f(z)|\leq 1$ on $\partial S.$ If moreover $|f(z)|\leq \exp(e^{\frac{\pi\alpha}{2}|z|})$ for some $\alpha<1$, then we have $|f(z)|\leq 1$ throughout S.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Suppose that f is holomorphic on the strip $S = \{z \in \mathbb{C} : |\text{Im}(z)| < 1\}$, with $|f(z)| \leq 1$ on ∂S . If moreover $|f(z)| \leq \exp(e^{\frac{\pi \alpha}{2}|z|})$ for some $\alpha < 1$, then we have $|f(z)| \leq 1$ throughout S.

Recall the proof: Introduce the auxiliary function

$$h_n(z) = \exp\big(-\varepsilon_n\big(e^{\frac{\pi\beta z}{2}} + e^{-\frac{\pi\beta z}{2}}\big)\big),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where ε_n decays to 0 (e.g., $\frac{1}{n}$), and $\beta \in (\alpha, 1)$. We have $|h(z)| \leq 1$ on S.

Suppose that f is holomorphic on the strip $S = \{z \in \mathbb{C} : |\text{Im}(z)| < 1\}$, with $|f(z)| \leq 1$ on ∂S . If moreover $|f(z)| \leq \exp(e^{\frac{\pi \alpha}{2}|z|})$ for some $\alpha < 1$, then we have $|f(z)| \leq 1$ throughout S.

Recall the proof: Introduce the auxiliary function

$$h_n(z) = \exp\big(-\varepsilon_n\big(e^{\frac{\pi\beta z}{2}} + e^{-\frac{\pi\beta z}{2}}\big)\big),$$

where ε_n decays to 0 (e.g., $\frac{1}{n}$), and $\beta \in (\alpha, 1)$. We have $|h(z)| \leq 1$ on S.

By the a priori bound,

$$|g(z)h_n(z)| \leq \exp\left(e^{\pi\alpha|z|/2} - \cos\left(\tfrac{\pi\beta}{2}\right)\varepsilon_n e^{\pi\beta|x|/2}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose that f is holomorphic on the strip $S = \{z \in \mathbb{C} : |\text{Im}(z)| < 1\}$, with $|f(z)| \leq 1$ on ∂S . If moreover $|f(z)| \leq \exp(e^{\frac{\pi \alpha}{2}|z|})$ for some $\alpha < 1$, then we have $|f(z)| \leq 1$ throughout S.

Recall the proof: Introduce the auxiliary function

$$h_n(z) = \exp\big(-\varepsilon_n\big(e^{\frac{\pi\beta z}{2}} + e^{-\frac{\pi\beta z}{2}}\big)\big),$$

where ε_n decays to 0 (e.g., $\frac{1}{n}$), and $\beta \in (\alpha, 1)$. We have $|h(z)| \leq 1$ on S.

By the a priori bound,

$$|g(z)h_n(z)| \leq \exp\left(e^{\pi\alpha|z|/2} - \cos\left(\tfrac{\pi\beta}{2}\right)\varepsilon_n e^{\pi\beta|x|/2}\right).$$

- For large R > 0, the right-hand side is ≤ 1 on $S \cap \{|\operatorname{Re}(z)| = R\}$. By the maximum principle $|g(z)h_n(z)| \leq 1$ on the strip S.
- When $n \to \infty$, $h_n(z) \to 1$ locally uniformly, so $|g(z)| \le 1$ on S.

Gluing interior and exterior asymptotics

Let

$$A_n(z)=\frac{P_n(z)}{\sqrt{n+1}\phi'(z)\phi(z)^n}-1.$$

We want to show that $A_n(z) = O(\frac{(\log n)^c}{n})$.

- Interior/exterior asymptotics: The upper bound holds when $d(z,L) \ge \frac{1}{\log n}$ and z is away from the corners.
- A priori bound of the form $|A_n(z)| \leq C^n$ is relatively easy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Gluing interior and exterior asymptotics

$$\begin{split} T_n \text{ rectangle around } z \text{ as above, of "width" } \delta \text{ and shrinking "height" } \frac{1}{\log n}.\\ \text{Conformal map } f_n: T_n \to S_n \text{, where } S_n = \big\{|\text{Re}\,w| \leq \delta \log n, \; |\text{Im}\,w| < 1\big\}.\\ \text{We put} \end{split}$$

$$g_n(z) = A_n \circ f_n^{-1}(z).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Gluing interior and exterior asymptotics

$$\begin{split} T_n \text{ rectangle around } z \text{ as above, of "width" } \delta \text{ and shrinking "height" } \frac{1}{\log n}.\\ \text{Conformal map } f_n: T_n \to S_n \text{, where } S_n = \big\{|\text{Re}\,w| \leq \delta \log n, \; |\text{Im}\,w| < 1\big\}.\\ \text{We put} \end{split}$$

$$g_n(z) = A_n \circ f_n^{-1}(z).$$

- Phragmén-Lindelöf argument: $|g_n(z)h_n(z)| \leq C \frac{(\log n)^c}{n}$ on $S_n.$

• We conclude that $|g_n(it)| \leq C \frac{(\log n)^c}{n}$ for $|t| \leq 1$, which proves that A_n satisfies the desired bound on a normal line through z of length $2/\log n$. This proves the claim.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you for your attention!

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>