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Zeros of Bergman polynomials for
Jordan domains with corners

Based on joint work with Erwin Miña-Díaz

Aron Wennman
KU Leuven

Random Matrices and Related Topics, Jeju, May 2024
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Plan for the talk

Fig. Zeros of Bergman polynomials for the pentagon (from [Saff-Stylianopoulos ’08])

• Bergman polynomials for domains with piecewise analytic boundary

• The Triangle versus the Pentagon: dichotomy for zero distribution

• New asymptotic results for domains with “regular” corner singularities
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Bergman orthogonal polynomials

Denote by {𝑃𝑛}𝑛≥0 the orthogonal polynomials for a domain 𝐷 ⊂ ℂ, obtained
by applying the Gram-Schmidt process to {1, 𝑧, 𝑧2, …} in the inner product

⟨𝑓, 𝑔⟩𝐷 = ∫
𝐷

𝑓(𝑧)𝑔(𝑧)dA(𝑧),

where dA(𝑧) = 1
𝜋 d𝑥d𝑦.

• The polynomial Bergman kernel 𝐾𝑛,𝐷(𝑧, 𝑤) = ∑𝑛−1
𝑘=0 𝑃𝑛(𝑧)𝑃𝑛(𝑤) governs the

𝛽 = 2 Coulomb gas confined to 𝐷.

• Relevant quantities are leading coefficients (rel. to partition function), strong
asymptotics of 𝑃𝑛 near 𝐿 = 𝜕𝐷.

• Our focus will be on Jordan domains 𝐷 with piecewise analytic boundary and
no cusps. Interested in strong asymptotics and location of zeros.
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Carleman’s theorem

Let 𝐷 be a Jordan domain with analytic boundary 𝐿, and let Ω be the
unbounded component of ℂ\𝐿. Let 𝜙 ∶ Ω → ℂ\𝔻 be the exterior conformal
map, 𝜙(∞) = ∞, 𝜙′(∞) > 0. Let Ω𝜌 = {𝑧 ∶ |𝜙(𝑧)| > 𝜌}.

Theorem (Carleman, 1922). Under the above assymptions, there exists a num-
ber 𝜌 ∈ (0, 1) such that, as 𝑛 → ∞,

𝑃𝑛(𝑧) =
√

𝑛 + 1𝜙′(𝑧)𝜙(𝑧)𝑛(1 + O(𝜌2𝑛)), 𝑧 ∈ Ω𝜌.

• Ω𝜌 is an asymptotically zero-free region. The number 𝜌 < 1 and Ω𝜌 depend
on the conformal extension properties of 𝜙 across 𝐿.

• Similar expansions hold in less regular domains and in weighted spaces
𝐿2(𝐷, 𝜔 dA) (see e.g. [Beckermann-Stylianopoulos ’18], [Suetin ’72],
[Hedenmalm-W., ’24]).

• Typically no information on interior of 𝐷 in lower regularity.
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Orthogonal polynomials on regular 𝑁 -gons

Conjecture (Eiermann-Stahl, ’94): (A) For 𝑁 ∈ {3, 4}, the zeros of 𝑃𝑛 lie
exactly on the segments connecting the vertices with the center.
(B) For all 𝑁 ≥ 2, the corners are the only points of 𝐿 that attract zeros.
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Distinsguishing 𝑁 = 3 from 𝑁 = 5
Denote by 𝜈𝑃 the normalized counting measure for the zeros of 𝑃(𝑧), and by
𝜇𝐷 the equilibrium measure for 𝐷.

Theorem (Levin-Saff-Stylianopoulos, ’03, cf. Andrievskii-Blatt, ’99)
Assume that 𝐿 = 𝜕𝐷 is a piecewise analytic Jordan curve. Then the following
are equivalent:

(a) 𝜑 has a singularity on 𝐿
(b) 𝜈𝑃𝑛

→ 𝜇𝐷 along some subsequence
(c) lim sup𝑛→∞ |𝑃𝑛(𝑧)|1/𝑛 = 1 on 𝐷

• The interior map 𝜑 from the 𝑁 -gon has singularity on 𝐿 iff 𝑁 ≥ 5. Explains
difference, and the Eiermann-Stahl conjecture (B) cannot be true.

• “Beware of predictions from plots” (Saff-Stylianopoulos, ’08).

• Part (A) of the conjecture proven by Maymeskul-Saff using symmetry and
reduction to orthogonality conditions on the segments.
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Why does the interior map 𝜑 matter?
The polynomials are dense in 𝐴2(𝐷), so the Bergman kernel is

𝐾𝐷(𝑧, 𝑤) = 𝜑′(𝑧)𝜑′(𝑤)
(1 − 𝜑(𝑧)𝜑(𝑤))2 = ∑

𝑘≥0
𝑃𝑘(𝑤)𝑃𝑘(𝑧).

If 𝜑′ has a singularity on 𝐿, this should be reflected in the polynomials.

Lemma (Walsh, ’69). Let 𝐹(𝑧) be an analytic function on 𝐷 with a Fourier
series expansion

𝐹(𝑧) = ∑
𝑛≥0

𝛼𝑛𝑃𝑛(𝑧).

Then, if 𝜌 is maximal the maximal number such that 𝐹(𝑧) is analytic on the
domain 𝐷𝜌 interior to |𝜙(𝑧)| = 𝜌 then lim sup |𝛼𝑛|1/𝑛 = 1

𝜌 .

• Akin to radius of convergence, but requires only modest a priori knowledge of
the polynomials 𝑃𝑛(𝑧).

• If 𝜑 has a singularity on 𝐿, then lim sup𝑛≥0 |𝑃𝑛(𝑤)|1/𝑛 = 1 on 𝐷, restricting
the domain of validity of 𝑃𝑛(𝑧) ∼ √𝑛 + 1𝜙′(𝑧)𝜙(𝑧)𝑛.
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Domains with analytic corner singularities
Q. What about domains 𝐷 for which 𝜑 lacks singularities on 𝐿?

Definition. We let 𝒜1 be the class of Jordan domains for which any interior
conformal map 𝜑 extends analytically through 𝐿, and has zeros 𝑧1, … , 𝑧𝑞 on 𝐿.

• If 𝐷 ∈ 𝒜1, then any corner has aperture 𝜋/𝑚, 𝑚 ∈ {2, 3, 4, …} (the order of
𝜑 at the corner). This condition is not sufficient.

• Membership in 𝒜1 can equivalently be characterized by invariance of
2𝑛𝑗 − 1-fold Schwarz reflection around the corner of angle 𝜋/𝑛𝑗.

Illustration of a domain with non-analytic
corner singularity of aperture 𝜋/2.
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The main result

Theorem (Miña-Díaz-W., ’24). Let 𝐷 ∈ 𝒜1. There exists an open set Ω∗

containing 𝐿\{𝑧1, … , 𝑧𝑞}, and a univalent function Φ on Ω∗ with Φ|Ω = 𝜙, such
that the strong asymptotics

𝑃𝑛(𝑧) =
√

𝑛 + 1Φ′(𝑧)Φ(𝑧)𝑛(1 + O( log 𝑛
𝑛 ))

holds locally uniformly on Ω∗. In particular, 𝐿\{𝑧1, … , 𝑧𝑞} does not attract zeros.

Asymptotics in the interior of 𝐷 is the most challenging part. Comes from an
approximate integral representation: for 𝐷 ∈ 𝒜1, we have

𝑃𝑛(𝑧) ∼
√𝑛 + 1𝜑′(𝑧)

2𝜋𝑖 ∫
|𝑤|=1

𝑤𝑛

ℎ(𝑤) − 𝜑(𝑧)d𝑤, 𝑧 ∈ 𝐷,

where ℎ = 𝜑 ∘ 𝜙−1.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The main result

Theorem (Miña-Díaz-W., ’24). Let 𝐷 ∈ 𝒜1. There exists an open set Ω∗

containing 𝐿\{𝑧1, … , 𝑧𝑞}, and a univalent function Φ on Ω∗ with Φ|Ω = 𝜙, such
that the strong asymptotics

𝑃𝑛(𝑧) =
√

𝑛 + 1Φ′(𝑧)Φ(𝑧)𝑛(1 + O( log 𝑛
𝑛 ))

holds locally uniformly on Ω∗. In particular, 𝐿\{𝑧1, … , 𝑧𝑞} does not attract zeros.

Asymptotics in the interior of 𝐷 is the most challenging part. Comes from an
approximate integral representation: for 𝐷 ∈ 𝒜1, we have

𝑃𝑛(𝑧) ∼
√𝑛 + 1𝜑′(𝑧)

2𝜋𝑖 ∫
|𝑤|=1

𝑤𝑛

ℎ(𝑤) − 𝜑(𝑧)d𝑤, 𝑧 ∈ 𝐷,

where ℎ = 𝜑 ∘ 𝜙−1.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The domain 𝐷 and the maximal set Ω∗

𝑧1

𝑧2

𝑧3

Ω

𝐿

𝐷

𝑧1

𝑧2

𝑧3

Ω∗

𝜕Ω∗

Figure: Illustration of the curve 𝐿 = 𝜕𝐷 and sets Ω and Ω∗, for an admissible domain
𝐷 with three corners 𝑧1, 𝑧2, and 𝑧3.
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The domain 𝐷1

The function ℎ(𝑤) is a homeomorphism of 𝕋, and is analytic in a maximal
annulus {𝜇 < |𝑤| < 1

𝜇 }, 𝜇 < 1. For 𝑧 ∈ 𝐷, consider the solutions {𝑤1, … , 𝑤𝑘}
in {𝜇 < |𝑧| < 1} to ℎ(𝑤) = 𝜑(𝑧).

Definition. We say that 𝑧 ∈ 𝐷1 if there is a unique solution 𝑤𝑗 = 𝑤𝑗(𝑧) of
largest modulus. We then set 𝜙1(𝑧) = 𝑤𝑗(𝑧).

• For 𝑧 ∈ 𝐷1, we can thus apply the residue theorem,

𝑃𝑛(𝑧) ∼
√𝑛 + 1𝜑′(𝑧)

2𝜋𝑖 ∫
|𝑤|=1

𝑤𝑛

ℎ(𝑤) − 𝜑(𝑧)d𝑤

= (𝑛 + 1)𝜙′
1(𝑧)𝜙𝑛

1 (𝑧)(1 + O(𝜌𝑛))

for some 𝜌 < 1.

• Any point sufficiently close to 𝐿 but away from the corners is in 𝐷1, and we
have 𝜙1 = 𝜙 there.
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Broad proof outlines

• Sharp exterior asymptotics due to Beckermann-Stylinaopoulos. A small
improvement near 𝜕𝐿 gives

𝑃𝑛(𝑧) =
√

𝑛 + 1𝜙′(𝑧)𝜙(𝑧)𝑛(1 + O( |𝜙(𝑧)|2
𝑛(|𝜙(𝑧)| − 1)2 )), 𝑧 ∈ Ω

• The integral expansion on 𝐷1 gives the interior asymptotics

𝑃𝑛(𝑧) =
√

𝑛 + 1𝜙′(𝑧)𝜙(𝑧)𝑛(1 + O( 1
𝑛(|1 − 𝜙(𝑧)|)𝐵 ))

valid for 𝑧 ∈ 𝐷 near 𝐿 but bounded away from the corners.

Q. How to bridge the gap in the asymptotic formulas across 𝐿?
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Inspiration from the Phragmén-Lindelöf principle

Suppose that 𝑓 is holomorphic on the strip 𝑆 = {𝑧 ∈ ℂ ∶ |Im(𝑧)| < 1}, with
|𝑓(𝑧)| ≤ 1 on 𝜕𝑆. If moreover |𝑓(𝑧)| ≤ exp(𝑒 𝜋𝛼

2 |𝑧|) for some 𝛼 < 1, then we
have |𝑓(𝑧)| ≤ 1 throughout 𝑆.

Recall the proof: Introduce the auxiliary function

ℎ𝑛(𝑧) = exp ( − 𝜀𝑛(𝑒 𝜋𝛽𝑧
2 + 𝑒− 𝜋𝛽𝑧

2 )),

where 𝜀𝑛 decays to 0 (e.g., 1
𝑛 ), and 𝛽 ∈ (𝛼, 1). We have |ℎ(𝑧)| ≤ 1 on 𝑆.

• By the a priori bound,

|𝑔(𝑧)ℎ𝑛(𝑧)| ≤ exp (𝑒𝜋𝛼|𝑧|/2 − cos ( 𝜋𝛽
2 ) 𝜀𝑛𝑒𝜋𝛽|𝑥|/2) .

• For large 𝑅 > 0, the right-hand side is ≤ 1 on 𝑆 ∩ {|Re(𝑧)| = 𝑅}. By the
maximum principle |𝑔(𝑧)ℎ𝑛(𝑧)| ≤ 1 on the strip 𝑆.

• When 𝑛 → ∞, ℎ𝑛(𝑧) → 1 locally uniformly, so |𝑔(𝑧)| ≤ 1 on 𝑆.
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Gluing interior and exterior asymptotics

Let
𝐴𝑛(𝑧) = 𝑃𝑛(𝑧)√𝑛 + 1𝜙′(𝑧)𝜙(𝑧)𝑛 − 1.

We want to show that 𝐴𝑛(𝑧) = O( (log 𝑛)𝑐

𝑛 ).

• Interior/exterior asymptotics: The upper bound holds when d(𝑧, 𝐿) ≥ 1
log 𝑛

and 𝑧 is away from the corners.

• A priori bound of the form |𝐴𝑛(𝑧)| ≤ 𝐶𝑛 is relatively easy.
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Gluing interior and exterior asymptotics

𝑇𝑛 rectangle around 𝑧 as above, of “width” 𝛿 and shrinking “height” 1
log 𝑛 .

Conformal map 𝑓𝑛 ∶ 𝑇𝑛 → 𝑆𝑛, where 𝑆𝑛 = {|Re 𝑤| ≤ 𝛿 log 𝑛, |Im 𝑤| < 1}.
We put

𝑔𝑛(𝑧) = 𝐴𝑛 ∘ 𝑓−1
𝑛 (𝑧).

• Phragmén-Lindelöf argument: |𝑔𝑛(𝑧)ℎ𝑛(𝑧)| ≤ 𝐶 (log 𝑛)𝑐

𝑛 on 𝑆𝑛.

• We conclude that |𝑔𝑛(𝑖𝑡)| ≤ 𝐶 (log 𝑛)𝑐

𝑛 for |𝑡| ≤ 1, which proves that 𝐴𝑛
satisfies the desired bound on a normal line through 𝑧 of length 2/ log 𝑛.
This proves the claim.
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Thank you for your attention!


