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Plan for the talk

Fig. Zeros of Bergman polynomials for the pentagon (from [Saff-Stylianopoulos '08])
e Bergman polynomials for domains with piecewise analytic boundary
e The Triangle versus the Pentagon: dichotomy for zero distribution

e New asymptotic results for domains with “regular” corner singularities



Bergman orthogonal polynomials

Denote by {P, },, the orthogonal polynomials for a domain D C C, obtained
by applying the Gram-Schmidt process to {1, z, 22, ...} in the inner product

(foahp = /D (2)g(2)dA(2),

where dA(2) = Ldzdy.
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e The polynomial Bergman kernel K,, (2, w) = Z:;; P,(z)P,(w) governs the
B = 2 Coulomb gas confined to D.

e Relevant quantities are leading coefficients (rel. to partition function), strong
asymptotics of P, near L = 9D.
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e The polynomial Bergman kernel K,, (2, w) = Z:;; P,(z)P,(w) governs the
B = 2 Coulomb gas confined to D.

e Relevant quantities are leading coefficients (rel. to partition function), strong
asymptotics of P, near L = 9D.

e Our focus will be on Jordan domains D with piecewise analytic boundary and
no cusps. Interested in strong asymptotics and location of zeros.



Carleman’s theorem

Let D be a Jordan domain with analytic boundary L, and let €2 be the
unbounded component of C\L. Let ¢ : Q — C\D be the exterior conformal
map, ¢(c0) = oo, ¢'(c0) > 0. Let Q, = {2 : [¢(2)| > p}.

Theorem (Carleman, 1922). Under the above assymptions, there exists a num-
ber p € (0,1) such that, as n — oo,

P.(2)=+vn+ 1¢>’(z)¢(z)”(1 + O(pzn))7 z €9,
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L?(D,wdA) (see e.g. [Beckermann-Stylianopoulos '18], [Suetin '72],
[Hedenmalm-W., '24]).
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e Similar expansions hold in less regular domains and in weighted spaces
L?(D,wdA) (see e.g. [Beckermann-Stylianopoulos '18], [Suetin '72],
[Hedenmalm-W., '24]).

e Typically no information on interior of D in lower regularity.



Orthogonal polynomials on regular N-gons
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zeros of orthogonal poly nomials up to degree 50. zeros of orthogonal polynomuals up to degree 50.

Conjecture (Eiermann-Stahl, '94): (A) For N € {3,4}, the zeros of P, lie
exactly on the segments connecting the vertices with the center.
(B) For all N > 2, the corners are the only points of L that attract zeros.
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Denote by vp the normalized counting measure for the zeros of P(z), and by
1p the equilibrium measure for D.
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are equivalent:
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Theorem (Levin-Saff-Stylianopoulos, '03, cf. Andrievskii-Blatt, '99)

Assume that L = 0D is a piecewise analytic Jordan curve. Then the following
are equivalent:

(a)  has a singularity on L
(b) vp — up along some subsequence

|P,(2)]"/* =1o0n D

(c) limsup,,_,

e The interior map ¢ from the N-gon has singularity on L iff N > 5. Explains
difference, and the Eiermann-Stahl conjecture (B) cannot be true.

e "Beware of predictions from plots” (Saff-Stylianopoulos, '08).

e Part (A) of the conjecture proven by Maymeskul-Saff using symmetry and
reduction to orthogonality conditions on the segments.
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e Akin to radius of convergence, but requires only modest a priori knowledge of
the polynomials P, (z).
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Lemma (Walsh, '69). Let F(z) be an analytic function on D with a Fourier

series expansion
F(z) =) a,Py(2).
n>0
Then, if p is maximal the maximal number such that F(z) is analytic on the

domain D, interior to |¢(z)| = p then limsup |a,, |/ = %.

e Akin to radius of convergence, but requires only modest a priori knowledge of
the polynomials P, (z).

o If ¢ has a singularity on L, then limsup, . |P,(w)|*/™ =1 on D, restricting
the domain of validity of P,(z) ~ vn+ 1¢'(2)p(2)".




Domains with analytic corner singularities

Q. What about domains D for which ¢ lacks singularities on L?

Definition. We let A, be the class of Jordan domains for which any interior
conformal map ¢ extends analytically through L, and has zeros zy,..., 2, on L.

e If D € A, then any corner has aperture 7/m, m € {2, 3,4, ...} (the order of
 at the corner). This condition is not sufficient.

e Membership in A, can equivalently be characterized by invariance of
2n; — 1-fold Schwarz reflection around the corner of angle 7/n;.

lllustration of a domain with non-analytic
corner singularity of aperture /2.




The main result

Theorem (Mifia-Diaz-W., '24). Let D € A,. There exists an open set Q*
containing L\{21, ..., 2,}, and a univalent function ® on Q* with ®|, = ¢, such
that the strong asymptotics

)= T8 Contr (1 0(52))

holds locally uniformly on ©*. In particular, L\{zy, ..., z,} does not attract zeros.
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Asymptotics in the interior of D is the most challenging part. Comes from an
approximate integral representation: for D € A, we have

o Vn+t 1?9’(,2)

P,(2) 2 /\w\:l h(w) — ¢(z)

dw, zeD,

where h = @ o ¢ L.



The domain D and the maximal set Q*

21

t~

22

Figure: lllustration of the curve L = 9D and sets () and Q*, for an admissible domain
D with three corners zy, z9, and z3.



The domain D,

The function h(w) is a homeomorphism of T, and is analytic in a maximal
annulus {p < |w| < i} pu < 1. For z € D, consider the solutions {wy, ..., w;}

in {p < |z| <1} to h(w) = ¢(z).

Definition. We say that 2z € D, if there is a unique solution w; = w;(2) of
largest modulus. We then set ¢,(z) = wj(z).
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The function h(w) is a homeomorphism of T, and is analytic in a maximal
annulus {p < |w| < i} pu < 1. For z € D, consider the solutions {wy, ..., w;}

in {px < |z| <1} to h(w) = ¢(z).

Definition. We say that 2z € D, if there is a unique solution w; = w;(2) of
largest modulus. We then set ¢,(z) = wj(z).

e For z € D, we can thus apply the residue theorem,

Vnt1¢'(2) wr
2mi A‘Zl hw) —p(z) "

= (n+1)$1(2)¢7 (2)(1 4+ O(p"))

P, (z) ~

for some p < 1.

e Any point sufficiently close to L but away from the corners is in Dy, and we
have ¢, = ¢ there.
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Q. How to bridge the gap in the asymptotic formulas across L? ‘




Inspiration from the Phragmén-Lindel6f principle

Suppose that f is holomorphic on the strip S = {z € C : |Im(z)| < 1}, with
[f(2)] <1 on dS. If moreover |f(z)] < exp(e™s ) for some a < 1, then we
have |f(z)| < 1 throughout S.
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e For large R > 0, the right-hand side is < 1 on SN {|Re(z)| = R}. By the
maximum principle |g(z)h, (z)| <1 on the strip S.

e When n — oo, h,(z) — 1 locally uniformly, so |g(z)] <1 on S.



Gluing interior and exterior asymptotics

Let
P, (2)

) = T et

We want to show that A,,(2) = O(@).

-1

e Interior/exterior asymptotics: The upper bound holds when d(z, L) > 1011;71,

and z is away from the corners.

e A priori bound of the form |A,,(z)| < C™ is relatively easy.

0 0logn
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T, rectangle around z as above, of “width” ¢ and shrinking “height”

Conformal map f, : T,, — S,,, where S, = {|Rew| < dlogn, |[Imw| < 1}.
We put
gn(2) = Ay 0 [ (2).

e Phragmén-Lindelof argument: |g, (2)h,,(2)| < CW on S,,.
e We conclude that |g,,(it)| < CW for [t| < 1, which proves that A,

satisfies the desired bound on a normal line through z of length 2/logn.
This proves the claim.



Thank you for your attention!



