Asymptotic expansion of the hard-to-soft edge transition

Lun Zhang
Fudan University

Introduction

The Wishart-Laguerre ensemble

The Wishart-Laguerre ensemble \boldsymbol{X} is a complex random matrix defined by

$$
\boldsymbol{x}=\left(X_{1}+\mathrm{i} X_{2}\right)\left(X_{1}+\mathrm{i} X_{2}\right)^{*},
$$

where X_{1} and X_{2} are two $n \times(n+\nu), \nu \geq 0$, random matrices, whose element is chosen to be an independent normal random variable.

The Wishart-Laguerre ensemble

The Wishart-Laguerre ensemble \boldsymbol{X} is a complex random matrix defined by

$$
\boldsymbol{X}=\left(X_{1}+\mathrm{i} X_{2}\right)\left(X_{1}+\mathrm{i} X_{2}\right)^{*},
$$

where X_{1} and X_{2} are two $n \times(n+\nu), \nu \geq 0$, random matrices, whose element is chosen to be an independent normal random variable.

Question: Where are the eigenvalues of \boldsymbol{X} ?

Marchenko-Pastur law

As $n \rightarrow \infty$, it is well known that the empirical spectral measure of \boldsymbol{X} converges weakly to the Marchenko-Pastur (MP) distribution μ given by

$$
\mu(\mathrm{d} x)=\frac{\sqrt{\left(x-x_{-}\right)\left(x_{+}-x\right)}}{2 \pi c x} \mathrm{~d} x, \quad x \in\left(x_{-}, x_{+}\right)
$$

where $c=\lim n /(n+\nu) \in(0,1]$ and $x_{ \pm}=(1 \pm \sqrt{c})^{2}$.
[Marchenko-Pastur, '67]

Marchenko-Pastur law

Marchenko-Pastur distribution for different values of c. Source: [Couillet-Liao, '22]

Determinantal point process

Joint probability density function for the eigenvalues of \boldsymbol{X} :

$$
\frac{1}{C_{n, \nu}} \prod_{l=1}^{n} x_{l}^{\nu} e^{-x_{l}} \prod_{1 \leq j<k \leq n}\left(x_{j}-x_{k}\right)^{2}=\operatorname{det}\left[K_{n}^{\nu}\left(x_{j}, x_{k}\right)\right]_{j, k=1, \ldots, n}
$$

Determinantal point process

Joint probability density function for the eigenvalues of \boldsymbol{X} :

$$
\frac{1}{C_{n, \nu}} \prod_{l=1}^{n} x_{l}^{\nu} e^{-x_{l}} \prod_{1 \leq j<k \leq n}\left(x_{j}-x_{k}\right)^{2}=\operatorname{det}\left[K_{n}^{\nu}\left(x_{j}, x_{k}\right)\right]_{j, k=1, \ldots, n}
$$

This is a determinantal point process (DPP) with the correlation kernel $K_{n}^{\nu}(x, y)$ expressed in terms of classical Laguerre polynomials. All the information of DPP is contained in the correlation kernel.

Microscopic limits of the correlation kernel

Microscopic limits \Rightarrow local fluctuation

- Sine process in the bulk (interior of the support): $\frac{\sin \pi(x-y)}{\pi(x-y)}$.

Microscopic limits of the correlation kernel

Microscopic limits \Rightarrow local fluctuation

- Sine process in the bulk (interior of the support): $\frac{\sin \pi(x-y)}{\pi(x-y)}$.
- Airy process at the soft-edge: $\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}$.

Microscopic limits of the correlation kernel

Microscopic limits \Rightarrow local fluctuation

- Sine process in the bulk (interior of the support): $\frac{\sin \pi(x-y)}{\pi(x-y)}$.
- Airy process at the soft-edge: $\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}$.
- Bessel process at the hard-edge:

$$
\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)} .
$$

Microscopic limits of the correlation kernel

Microscopic limits \Rightarrow local fluctuation

- Sine process in the bulk (interior of the support): $\frac{\sin \pi(x-y)}{\pi(x-y)}$.
- Airy process at the soft-edge: $\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}$.
- Bessel process at the hard-edge:

$$
\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)} .
$$

Microscopic limits of the correlation kernel

Microscopic limits \Rightarrow local fluctuation

- Sine process in the bulk (interior of the support): $\frac{\sin \pi(x-y)}{\pi(x-y)}$.
- Airy process at the soft-edge: $\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y}$.
- Bessel process at the hard-edge:

$$
\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)}
$$

The local limits and the associated DPPs are universal in RMT and beyond.

Ulam's problem

Let S_{n} be the set of all permutations on $\{1,2, \ldots, n\}$. Given $\sigma \in S_{n}$,

$$
L_{n}(\sigma):=\text { length of longest increasing subsequence in } \sigma,
$$

i.e., the maximum of all k such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ with $\sigma\left(i_{1}\right)<\sigma\left(i_{2}\right)<\cdots<\sigma\left(i_{k}\right)$.

Ulam's problem

Let S_{n} be the set of all permutations on $\{1,2, \ldots, n\}$. Given $\sigma \in S_{n}$,

$$
L_{n}(\sigma):=\text { length of longest increasing subsequence in } \sigma,
$$

i.e., the maximum of all k such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ with $\sigma\left(i_{1}\right)<\sigma\left(i_{2}\right)<\cdots<\sigma\left(i_{k}\right)$.

Example

Let $\sigma=4635217$. Since both 457 and 357 are the longest increasing subsequences of length 3 , it follows that

$$
L_{7}(\sigma)=3 .
$$

Ulam's problem

Ulam's problem

What is the behavior of the longest increasing subsequence in a uniformly random permutation?

Ulam's problem

Ulam's problem

What is the behavior of the longest increasing subsequence in a uniformly random permutation?

- $\mathbb{E}\left(L_{n}\right) \sim c \sqrt{n}$
[Hammersley, '72]
- $\mathbb{E}\left(L_{n}\right) \sim 2 \sqrt{n}$
[Vershik-Kerov, '77; Logan-Shepp, '77]
- $\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{L_{n}-2 \sqrt{n}}{n^{1 / 6}} \leq t\right)=F(t)$, where $F(t)$ is the Tracy-Widom distribution. [Baik-Deift-Johansson, '99]

Ulam's problem

Ulam's problem

What is the behavior of the longest increasing subsequence in a uniformly random permutation?

- $\mathbb{E}\left(L_{n}\right) \sim c \sqrt{n}$
[Hammersley, '72]
- $\mathbb{E}\left(L_{n}\right) \sim 2 \sqrt{n}$
[Vershik-Kerov, '77; Logan-Shepp, '77]
- $\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{L_{n}-2 \sqrt{n}}{n^{1 / 6}} \leq t\right)=F(t)$, where $F(t)$ is the Tracy-Widom distribution.

> [Baik-Deift-Johansson, '99]

The connections with other problems such as last passage percolation and RMT can be found in the book of Romik (2015).

The Tracy-Widom distribution

Definition:

$$
F(t)=\operatorname{det}\left(I-\mathcal{K}_{\mathrm{Ai}}\right),
$$

where $\mathcal{K}_{\mathrm{Ai}}$ is the integral operator acting on $L^{2}(t, \infty)$ with the Airy kernel

$$
K^{\operatorname{Ai}}(x, y)=\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)}{x-y},
$$

i.e.,

$$
F(t)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \int_{t}^{\infty} \cdots \int_{t}^{\infty} \operatorname{det}\left(K^{\mathrm{Ai}}\left(\xi_{i}, \xi_{j}\right)\right)_{i, j=1}^{n} \mathrm{~d} \xi_{1} \cdots \mathrm{~d} \xi_{n}
$$

It describes the limiting distributions of extreme eigenvalues for many random matrix ensembles.

Hammersley's Poissonization of L_{n}

A key role is played by the following Poissonization of L_{n} :

$$
\mathbb{P}\left(L_{N_{r}} \leq I\right):=P(r ; I)=e^{-r} \sum_{n=0}^{\infty} \mathbb{P}\left(L_{n} \leq I\right) \frac{r^{n}}{n!},
$$

where $N_{r} \in\{0,1,2, \ldots\}$ is a random variable with a Poisson distribution of intensity $r>0$.

Hammersley's Poissonization of L_{n}

A key role is played by the following Poissonization of L_{n} :

$$
\mathbb{P}\left(L_{N_{r}} \leq I\right):=P(r ; I)=e^{-r} \sum_{n=0}^{\infty} \mathbb{P}\left(L_{n} \leq l\right) \frac{r^{n}}{n!},
$$

where $N_{r} \in\{0,1,2, \ldots\}$ is a random variable with a Poisson distribution of intensity $r>0$.

Combinatorial interpretation: the cumulative distribution of the length of longest up/right path from $(0,0)$ to $(1,1)$ with nodes chosen randomly according to N_{r}.

Hammersley's Poissonization of L_{n}

To answer Ulam's question, one needs to show

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\frac{L_{N_{r}}-2 \sqrt{r}}{r^{1 / 6}} \leq t\right)=F(t)
$$

Hammersley's Poissonization of L_{n}

To answer Ulam's question, one needs to show

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\frac{L_{N_{r}}-2 \sqrt{r}}{r^{1 / 6}} \leq t\right)=F(t)
$$

This, together with Johansson's de-Poissonization lemma, will lead to the distribution of L_{n}.

[Johansson, '98]

Hammersley's Poissonization of L_{n}

There are several representations of $P(r ; l)$:

- a Toeplitz determinant of modified Bessel functions,
[Gessel, '90]
- Fredholm determinats of various (discrete) integral operators, [Baik-Deift-Johansson, '00; Borodin-Okounkov-Olshanski, '00; Johansson, '01; ...]
- a unitary group integral.
[Rains, '98]

Asymptotics of $P(r, l)$

The fluctuation of $P(r ; I)$ around $2 \sqrt{r}$ can be proved by

- the Toeplitz determinant representation + Riemann-Hilbert approach,
[Baik-Deift-Johansson, '99]

Asymptotics of $P(r, l)$

The fluctuation of $P(r ; I)$ around $2 \sqrt{r}$ can be proved by

- the Toeplitz determinant representation + Riemann-Hilbert approach,
[Baik-Deift-Johansson, '99]
- the Fredholm determinat representation

$$
P(r, l)=E_{2}^{\text {hard }}(4 r, l),
$$

where

$$
E_{2}^{\text {hard }}(s ; \nu):=\left.\operatorname{det}\left(I-K_{\nu}^{\text {Bes }}\right)\right|_{L^{2}(0, s)}
$$

with

$$
K_{\nu}^{\mathrm{Bes}}(x, y):=\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)}
$$

being the Bessel kernel.
[Borodin-Forrester, '03; Forrester-Hughes, '94]

Asymptotics of $P(r, l)$

- The Fredholm determinat representation

$$
P(r, l)=E_{2}^{\text {hard }}(4 r, l),
$$

where

$$
E_{2}^{\mathrm{hard}}(s ; \nu):=\left.\operatorname{det}\left(I-K_{\nu}^{\mathrm{Bes}}\right)\right|_{L^{2}(0, s)}
$$

with

$$
K_{\nu}^{\mathrm{Bes}}:=\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)}
$$

being the Bessel kernel.

- The distribution of $P(r ; l)$ for large r is equivalent to the hard-to-soft edge transition

$$
\lim _{\nu \rightarrow \infty} E_{2}^{\text {hard }}\left(\left(\nu-t(\nu / 2)^{1 / 3}\right)^{2} ; \nu\right)=F(t)
$$

[Borodin-Forrester, '03]

Today's topic

Can we improve the distribution formula of L_{n} by establishing the first few finite-size correction terms or the asymptotic expansion? This is also known as edgeworth expansions in the literature.

Today's topic

Can we improve the distribution formula of L_{n} by establishing the first few finite-size correction terms or the asymptotic expansion? This is also known as edgeworth expansions in the literature.

Relevant works:

- finite size corrections relating to distributions of the length of longest increasing subsequences,
[Forrester-Mays, '23; Bornemann, '23]
- finite size corrections relating to the Laguerre ensemble,
[Perret-Schehr, '16; Forrester-Trinh, '19]
- finite size corrections relating to the elliptic Ginibre matrices, [Byun-Lee, '23]
- ...

Main results

An expansion from the Bessel kernel to the Airy kernel

Theorem [Yao-Z., arXiv:2309.06733]

Let

$$
\hat{K}_{\nu}^{\mathrm{Bes}}(x, y):=\sqrt{\phi_{\nu}^{\prime}(x) \phi_{\nu}^{\prime}(y)} K_{\nu}^{\mathrm{Bes}}\left(\phi_{\nu}(x), \phi_{\nu}(y)\right)
$$

with $\phi_{\nu}(t)=\nu^{2}\left(1-h_{\nu} t\right)^{2}$ and $h_{\nu}=2^{-\frac{1}{3}} \nu^{-\frac{2}{3}}$ be the symmetrically transformed Bessel kernel. For any $\mathfrak{m} \in \mathbb{N}$, we have, as $h_{\nu} \rightarrow 0^{+}$,

$$
\hat{K}_{\nu}^{\mathrm{Bes}}(x, y)=K^{\mathrm{Ai}}(x, y)+\sum_{j=1}^{\mathfrak{m}} K_{j}(x, y) h_{\nu}^{j}+h_{\nu}^{\mathfrak{m}+1} \cdot \mathcal{O}\left(e^{-(x+y)}\right)
$$

uniformly valid for $t_{0} \leq x, y<h_{\nu}^{-1}$ with t_{0} being any fixed real number. Preserving uniformity, the expansion can be repeatedly differentiated w.r.t. the variable x and y.

An expansion from the Bessel kernel to the Airy kernel

Theorem [Yao-Z., arXiv:2309.06733]

Here, K^{Ai} is the Airy kernel and

$$
K_{j}(x, y)=\sum_{\kappa, \lambda \in\{0,1\}} p_{j, \kappa \lambda}(x, y) \operatorname{Ai}^{(\kappa)}(x) \operatorname{Ai}^{(\lambda)}(y)
$$

with $p_{j, \kappa \lambda}(x, y)$ being polynomials in x and y. Moreover, we have

$$
\begin{aligned}
K_{1}(x, y)= & \frac{1}{10}\left(-3\left(x^{2}+x y+y^{2}\right) \operatorname{Ai}(x) \operatorname{Ai}(y)+2\left(\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)+\operatorname{Ai}^{\prime}(x) \operatorname{Ai}(y)\right)\right. \\
& \left.+3(x+y) \operatorname{Ai}^{\prime}(x) \operatorname{Ai}^{\prime}(y)\right)
\end{aligned}
$$

Remarks

The above theorem was stated by Bornemann (arXiv:2301.02022) under the condition that $0 \leq \mathfrak{m} \leq \mathfrak{m}_{*}=100$, and it was conjectured therein to be true without such a restriction.

Remarks

The above theorem was stated by Bornemann (arXiv:2301.02022) under the condition that $0 \leq \mathfrak{m} \leq \mathfrak{m}_{*}=100$, and it was conjectured therein to be true without such a restriction.

One can lift the expansion of the kernel to the associated Fredholm determinants, as rigorously shown by Bornemann.

Asymptotic expansion of the hard-to-soft edge transition

Corollary [Yao-Z., arXiv:2309.06733]

With $E_{2}^{\text {hard }}$ defined as before, we have, for any $\mathfrak{m} \in \mathbb{N}$, as $h_{\nu} \rightarrow 0^{+}$,

$$
E_{2}^{\operatorname{hard}}\left(\phi_{\nu}(t) ; \nu\right)=F(t)+\sum_{j=1}^{\mathfrak{m}} F_{j}(t) h_{\nu}^{j}+h_{\nu}^{\mathfrak{m}+1} \cdot \mathcal{O}\left(e^{-3 t / 2}\right)
$$

uniformly valid for $t_{0} \leq t<h_{\nu}^{-1}$ with t_{0} being any fixed real number. Preserving uniformity, the expansion can be repeatedly differentiated w.r.t. the variable t. Here, F denotes the Tracy-Widom distribution and F_{j} are certain smooth functions.

Remarks

It can be shown that

$$
\begin{aligned}
& F_{1}(t)=\frac{3 t^{2}}{10} F^{\prime}(t)-\frac{1}{5} F^{\prime \prime}(t) \\
& F_{2}(t)=\left(\frac{2}{175}+\frac{32 t^{2}}{175}\right) F^{\prime}(t)+\left(-\frac{16 t}{175}+\frac{9 t^{4}}{200}\right) F^{\prime \prime}(t)-\frac{3 t^{2}}{50} F^{\prime \prime \prime}(t)+\frac{1}{50} F^{(4)}(t)
\end{aligned}
$$

[Bornemann, '23]

Remarks

It can be shown that

$$
\begin{aligned}
& F_{1}(t)=\frac{3 t^{2}}{10} F^{\prime}(t)-\frac{1}{5} F^{\prime \prime}(t) \\
& F_{2}(t)=\left(\frac{2}{175}+\frac{32 t^{2}}{175}\right) F^{\prime}(t)+\left(-\frac{16 t}{175}+\frac{9 t^{4}}{200}\right) F^{\prime \prime}(t)-\frac{3 t^{2}}{50} F^{\prime \prime \prime}(t)+\frac{1}{50} F^{(4)}(t)
\end{aligned}
$$

[Bornemann, '23]
The above expansion serves as a preparatory step in establishing the expansion of L_{n}.

About the proofs

The proof of Bornemann

Recall that

$$
K_{\nu}^{\mathrm{Bes}}(x, y)=\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)}
$$

The proof of Bornemann

Recall that

$$
K_{\nu}^{\mathrm{Bes}}(x, y)=\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)} .
$$

It is natural to use Olver's expansion of Bessel functions of large order in the transition region:

$$
J_{\nu}\left(\nu+\tau \nu^{1 / 3}\right) \sim \frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}\left(-2^{1 / 3} \tau\right) \sum_{k=0}^{\infty} \frac{A_{k}(\tau)}{\nu^{2 k / 3}}+\frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}^{\prime}\left(-2^{1 / 3} \tau\right) \sum_{k=0}^{\infty} \frac{B_{k}(\tau)}{\nu^{2 k / 3}}
$$

for $|\arg \nu| \leq \pi / 2-\delta$ and fixed τ. Here, $A_{k}(\tau)$ and $B_{k}(\tau)$ are are certain rational polynomials of increasing degree.
[Olver, '52]

The proof of Bornemann

Recall that

$$
K_{\nu}^{\mathrm{Bes}}(x, y)=\frac{J_{\nu}(\sqrt{x}) \sqrt{y} J_{\nu}^{\prime}(\sqrt{y})-\sqrt{x} J_{\nu}^{\prime}(\sqrt{x}) J_{\nu}(\sqrt{y})}{2(x-y)}
$$

It is natural to use Olver's expansion of Bessel functions of large order in the transition region:

$$
J_{\nu}\left(\nu+\tau \nu^{1 / 3}\right) \sim \frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}\left(-2^{1 / 3} \tau\right) \sum_{k=0}^{\infty} \frac{A_{k}(\tau)}{\nu^{2 k / 3}}+\frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}^{\prime}\left(-2^{1 / 3} \tau\right) \sum_{k=0}^{\infty} \frac{B_{k}(\tau)}{\nu^{2 k / 3}}
$$

for $|\arg \nu| \leq \pi / 2-\delta$ and fixed τ. Here, $A_{k}(\tau)$ and $B_{k}(\tau)$ are are certain rational polynomials of increasing degree.
[Olver, '52]
It is difficult to check the divisibility by $x-y$ for all the coefficients.

A Riemann-Hilbert characterization of the Bessel kernel

The Bessel kernel admits the following representation:

$$
K_{\nu}^{\mathrm{Bes}}(x, y)=\frac{1}{2 \pi \mathrm{i}(x-y)}\left(-e^{-\frac{\pi \mathrm{i} \nu}{2}} \quad e^{\frac{\pi \mathrm{i} \nu}{2}}\right) \Psi_{+}(y)^{-1} \Psi_{+}(x)\binom{e^{\frac{\pi \mathrm{i} \nu}{2}}}{e^{-\frac{\mathrm{\pi} \nu}{2}}} .
$$

where

$$
\Psi(z)=\sqrt{\pi} e^{-\frac{\pi i}{4}}\left(\begin{array}{cc}
I_{\nu}\left((-z)^{\frac{1}{2}}\right) & -\frac{i}{\pi} K_{\nu}\left((-z)^{\frac{1}{2}}\right) \\
(-z)^{\frac{1}{2}} l_{\nu}^{\prime}\left((-z)^{\frac{1}{2}}\right) & -\frac{i}{\pi}(-z)^{\frac{1}{2}} K_{\nu}^{\prime}\left((-z)^{\frac{1}{2}}\right)
\end{array}\right)\left\{\begin{array}{cl}
\left(\begin{array}{cc}
1 & 0 \\
-e^{-\pi \mathrm{i} \nu} & 1
\end{array}\right), & \arg z \in\left(0, \frac{\pi}{3}\right), \\
I, & \arg z \in\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right), \\
\left(\begin{array}{cc}
1 & 0 \\
e^{\pi \mathrm{i} \nu} & 1
\end{array}\right), & \arg z \in\left(\frac{5 \pi}{3}, 2 \pi\right),
\end{array}\right.
$$

with I_{ν} and K_{ν} being the modified Bessel functions of order ν.

Ideas of the proof

The matrix-valued function Ψ is solves a Riemann-Hilbert problem uniquely.

- Asymptotic analysis of Ψ for large $\nu \longrightarrow$ kernel expansion.
- This direct approach provides a better understanding of the coefficients in the expansion.

Ideas of the proof

Let $\operatorname{Ai}(x)$ be the classical Airy function. It is readily seen from the differential equation

$$
\frac{\mathrm{d}^{2} \operatorname{Ai}(z)}{\mathrm{d} z^{2}}=z \operatorname{Ai}(z)
$$

that

$$
\operatorname{Ai}^{(m)}(x)=P_{m}(x) \operatorname{Ai}(x)+Q_{m}(x) \operatorname{Ai}^{\prime}(x)
$$

where $P_{m}(x)$ and $Q_{m}(x)$ are polynomials with $P_{0}(x)=1$ and $Q_{0}(x)=0$. They satisfy the recurrence relations

$$
P_{n+1}(x)=P_{n}^{\prime}(x)+x Q_{n}(x), \quad Q_{n+1}(x)=Q_{n}^{\prime}(x)+P_{n}(x)
$$

Ideas of the proof

Lemma

With polynomials P_{m} and Q_{m} defined through the m-the derivative of $\operatorname{Ai}(x)$, we have

$$
\sum_{j=0}^{N} \frac{1}{j!(N-j)!}\left(P_{j}(x) Q_{N+1-j}(x)-Q_{j}(x) P_{N+1-j}(x)\right)=0, \quad N \geq 1 .
$$

Thanks for your attention!

Thanks for your attention!
\&

Questions?

