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Introduction



The Wishart-Laguerre ensemble

The Wishart-Laguerre ensemble X is a complex random matrix defined by
X = (X1 +1iX)(X1 +iX2)",

where X; and X3 are two n X (n+ v), v > 0, random matrices, whose element is
chosen to be an independent normal random variable.
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The Wishart-Laguerre ensemble X is a complex random matrix defined by
X = (X1 +1iX)(X1 +iX2)",

where X; and X3 are two n X (n+ v), v > 0, random matrices, whose element is

chosen to be an independent normal random variable.

Question: Where are the eigenvalues of X ?



Marchenko-Pastur law

As n — oo, it is well known that the empirical spectral measure of X converges weakly
to the Marchenko-Pastur (MP) distribution p given by

Vo= =)

2mex

N( dX) = X, X € (X—vx-‘r)a

where c = limn/(n+ v) € (0,1] and xx = (1 £ /c)2.
[Marchenko-Pastur, '67]
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Marchenko-Pastur distribution for different values of c. Source: [Couillet-Liao, '22]



Determinantal point process

Joint probability density function for the eigenvalues of X:

1 7,
I H)J,’e / H (x;— Xk)2 = det [K} (xj, Xk)]J;k:L...,n
n,v =il

1<j<k<n
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Joint probability density function for the eigenvalues of X:

1 7,
I H)J,’e / H (x;— Xk)2 = det [K} (xj, Xk)]J;k:L...,n
n,v =il

1<j<k<n

This is a determinantal point process (DPP) with the correlation kernel K%(x,y)
expressed in terms of classical Laguerre polynomials. All the information of DPP is
contained in the correlation kernel.
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Microscopic limits of the correlation kernel

Microscopic limits = local fluctuation

sin (x—y)

= Sine process in the bulk (interior of the support): o)
= Airy process at the soft-edge: Ai(X)Ai,(y))(:fi/(X)Ai(y).

= Bessel process at the hard-edge:
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The local limits and the associated DPPs are universal in RMT and beyond.




Ulam’s problem

Let S, be the set of all permutations on {1,2,...,n}. Given o € S,
Ln(o) := length of longest increasing subsequence in o,

i.e., the maximum of all ksuchthat 1 < i <o <--- < i) < n with
O'(il) < O'(iz) KL ooo K U(ik).



Ulam’s problem

Let S, be the set of all permutations on {1,2,...,n}. Given o € S,
L,(o) := length of longest increasing subsequence in o,

i.e., the maximum of all ksuch that 1 < i3 < i < -+ < i, < n with
O'(il) < O'(iz) L ooo K U(ik).

Example
Let o0 = 4635217. Since both 457 and 357 are the longest increasing subsequences of
length 3, it follows that

L7(0) = 3.
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Ulam’s problem
What is the behavior of the longest increasing subsequence in a uniformly random
permutation?

» E(L,) ~ cy/n
[Hammersley, '72]
» E(L,) ~2y/n
[Vershik-Kerov, '77; Logan-Shepp, '77]
= lim P (Ln;%ﬁ < t) = F(t), where F(t) is the Tracy-Widom distribution.
[Baik-Deift-Johansson, '99]

The connections with other problems such as last passage percolation and RMT can
be found in the book of Romik (2015).



The Tracy-Widom distribution

Definition:
F(t) = det(l — Ka;),

where KCa; is the integral operator acting on L?(t,00) with the Airy kernel

K, y) — MEIAT) — AT(9AI(Y)
) X—y

9

=1+ Z / / det KAI 5175]))1,'/—1 d&y - -+ d&,.

It describes the limiting distributions of extreme eigenvalues for many random matrix
ensembles.



Hammersley's Poissonization of L,

A key role is played by the following Poissonization of Lp:
<l'—P/—_roo L<l’n
P(Ly, < )= P(n)) = e Y B(Ly <)o
n=0

where N, € {0,1,2,...} is a random variable with a Poisson distribution of intensity
r> 0.



Hammersley's Poissonization of L,

A key role is played by the following Poissonization of Lp:
<l'—P/—_roo L<l’n
P(Ly, < )= P(n)) = e Y B(Ly <)o
n=0

where N, € {0,1,2,...} is a random variable with a Poisson distribution of intensity
r> 0.

Combinatorial interpretation: the cumulative distribution of the length of longest
up/right path from (0,0) to (1,1) with nodes chosen randomly according to N,.



Hammersley's Poissonization of L,

To answer Ulam's question, one needs to show

lim P (L’V_M < t> = F(t).

r—00 /6 -

10



Hammersley's Poissonization of L,

To answer Ulam's question, one needs to show

: Ly, —2yr

This, together with Johansson's de-Poissonization lemma, will lead to the distribution
of L,.
[Johansson, 98]
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Hammersley's Poissonization of L,

There are several representations of P(r; /):
= a Toeplitz determinant of modified Bessel functions,
[Gessel, '90]

= Fredholm determinats of various (discrete) integral operators,
[Baik-Deift-Johansson, '00; Borodin-Okounkov-Olshanski, '00; Johansson, '01; ...]

= 2 unitary group integral.
[Rains, '98]
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Asymptotics of P(r; /)

The fluctuation of P(r; /) around 24/r can be proved by

= the Toeplitz determinant representation + Riemann-Hilbert approach,
[Baik-Deift-Johansson, '99]
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Asymptotics of P(r; /)

The fluctuation of P(r; /) around 24/r can be proved by

= the Toeplitz determinant representation + Riemann-Hilbert approach,
[Baik-Deift-Johansson, '99]
= the Fredholm determinat representation

P(r; ) = B5*(4r, ),

where

Egard(S; I/) — det(/ — ngs)}f(o,s)

with
' L (VRVILT) = VEL (R Dly/5)

K (%, y) = 2 y)

being the Bessel kernel.

[Borodin-Forrester, '03; Forrester-Hughes, '94]
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Asymptotics of P(r; /)

= The Fredholm determinat representation
P(r ) = E5*(4r, ),
where

Egard(s; V) = det(/ = KIEBS)‘LZ(Oﬁ)

I (VX)L (VY) = VX (VX) D (V)
2(x—y)

with

Bes .__
KBes .—

being the Bessel kernel.
= The distribution of P(r; /) for large ris equivalent to the hard-to-soft edge
transition

lim Ehard <<1/ - t(y/2)1/3>2;y> = F(t).

vV—00

[Borodin-Forrester, 0133]



Today'’s topic

Can we improve the distribution formula of L, by establishing the first few finite-size
correction terms or the asymptotic expansion? This is also known as edgeworth
expansions in the literature.
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Today'’s topic

Can we improve the distribution formula of L, by establishing the first few finite-size
correction terms or the asymptotic expansion? This is also known as edgeworth

expansions in the literature.
Relevant works:

= finite size corrections relating to distributions of the length of longest
increasing subsequences,
[Forrester-Mays, '23; Bornemann, '23]
= finite size corrections relating to the Laguerre ensemble,
[Perret-Schehr, '16; Forrester-Trinh, '19]

= finite size corrections relating to the elliptic Ginibre matrices,
[Byun-Lee, '23]
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Main results



An expansion from the Bessel kernel to the Airy kernel

Theorem [Yao-Z., arXiv:2309.06733]
Let

KD (x,y) = V&, ()8, () K= (60(x), 6 (y))
with ¢, (t) = v2(1 — h,t)2 and h, = 273073 be the symmetrically transformed
Bessel kernel. For any m € N, we have, as h, — 07,

m
KB*=(x,y) = KYM(x,y) + Z Ki(x, y)h, + ho L. O (e—(X+y)> 7
=1

uniformly valid for to < x,y < h;;! with ty being any fixed real number. Preserving
uniformity, the expansion can be repeatedly differentiated w.r.t. the variable x and y.
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An expansion from the Bessel kernel to the Airy kernel

Theorem [Yao-Z., arXiv:2309.06733]
Here, KAl is the Airy kernel and

Kixy) = D P y) A (AN (y)
k,A€{0,1}

with p; .\(x; y) being polynomials in x and y. Moreover, we have

Ki(xy) = % (=302 + xy+ Y)AI()AI(y) + 2(Ai(x) AT (y) + AT ()AI(y)
+3(x+ y)Ai/(X)Ai’(y)) .

16



The above theorem was stated by Bornemann (arXiv:2301.02022) under the condition
that 0 < m < m, = 100, and it was conjectured therein to be true without such a
restriction.
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The above theorem was stated by Bornemann (arXiv:2301.02022) under the condition
that 0 < m < m, = 100, and it was conjectured therein to be true without such a
restriction.

One can lift the expansion of the kernel to the associated Fredholm determinants, as
rigorously shown by Bornemann.
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Asymptotic expansion of the hard-to-soft edge transition

Corollary [Yao-Z., arXiv:2309.06733]
With E52*d defined as before, we have, for any m € N, as h, — 0T,

By (g, () v) = F(t) + i Fi(O)H, + h3 - 0 (e7372),

Jj=1

uniformly valid for to < t < h;! with ty being any fixed real number. Preserving
uniformity, the expansion can be repeatedly differentiated w.r.t. the variable t. Here,
F denotes the Tracy-Widom distribution and F; are certain smooth functions.
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It can be shown that

A= 2P0 - tP().

(2 327 16t 9t*\ _, 32, 1
Fa(t) = (175+175> P(t)+ <—175+200> F/(t)—%F/ (t)—i-%F( (2).

[Bornemann, '23]

19



It can be shown that

At =3P~ LP(),

(2 327 16t 9t*\ _, 32, 1
Fa(t) = (175+175> P(t)+ <—175+200>F/(t)—501’j (t)—i-%F( (2).
[Bornemann, '23]

The above expansion serves as a preparatory step in establishing the expansion of L,,.
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About the proofs



The proof of Bornemann

Recall that

Bes X _
Ku ( ,_V) 2(X—y)
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The proof of Bornemann

Recall tha
e WAVTLT) = VELRIT)
2(x—y)

It is natural to use Olver's expansion of Bessel functions of large order in the transition

K5 (x,y) =

region:

21/3 0 A(r) 23 > B(7)

1/3 : 1/3 k -/ 1/3 k

Jy(v+ 3 ~ A2 By i3 T o Al(=2 By Tk
k=0 k=0

for |argr| < w/2 — ¢ and fixed 7. Here, Ai(7) and Bk(7) are are certain rational
polynomials of increasing degree.
[Olver, '52]
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It is natural to use Olver's expansion of Bessel functions of large order in the transition

K5 (x,y) =

region:

21/3 0 A(r) 23 > B(7)

1/3 : 1/3 k -/ 1/3 k

Jy(v+ 3 ~ A2 By i3 T o Al(=2 By Tk
k=0 k=0

for |argr| < w/2 — ¢ and fixed 7. Here, Ai(7) and Bk(7) are are certain rational
polynomials of increasing degree.

[Olver, '52]
It is difficult to check the divisibility by x — y for all the coefficients.
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A Riemann-Hilbert characterization of the Bessel kernel

The Bessel kernel admits the following representation:

1 iy e =P
KE’es(X, Y) = m (—e_T eT) W+(y)—llli+(x) (:_7,2“,> .
where
Y [ i
= L (—Z)% —-iK, (—Z)% €
V(z) = /me 4 . 1 T \ 1 ; - 37547
7 ((_Z)ZI; <(_Z)5) ——(—2)2K, ((—2)2)) L agze (3, %)
(eﬂ'il/ 1> J argze (5%727()3

with I, and K, being the modified Bessel functions of order v.
21



Ideas of the proof

The

matrix-valued function W is solves a Riemann-Hilbert problem uniquely.

Asymptotic analysis of W for large v — kernel expansion.

This direct approach provides a better understanding of the coefficients in the

expansion.
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Ideas of the proof

Let Ai(x) be the classical Airy function. It is readily seen from the differential equation

d?Ai(z)

2 - zAi(z)

that
AilM(x) = Pp(x)Ai(x) + Qm(x)Ai'(x),

where Pp(x) and Qn(x) are polynomials with Py(x) =1 and Qp(x) = 0. They satisfy
the recurrence relations

Pri1(x) = Po(x) +xQn(x),  Qui1(x) = Qu(x) + Pa(x).
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Ideas of the proof

Lemma

With polynomials P, and Q, defined through the m-the derivative of Ai(x), we have

N
- (P9Qu 09— QPN 0)) =0, N21.
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Thanks for your attention!
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