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Gaussian unitary ensemble with external source

A deformed Gaussian unitary ensemble (GUE) [Brézin and Hikami, 1998]

1
Zn

e
−nTr

(
M2
2 −AM

)
dM, (1)

defined on the space of n × n Hermitian matrices, where Zn is a normalization
constant and A is a deterministic matrix which is diagonal with two eigenvalues
a and −a of equal multiplicity.

The limiting mean density of eigenvalues is v(x) = 1
π
| Im ξ(x)|, where ξ(x) satis-

fies the Pastur’s equation [Pastur, 1972]

ξ3 − xξ2 − (a2 − 1)ξ + xa2 = 0.

If 0 ≤ a < 1, the eigenvalues accumulate on a single interval [−x1, x1]; while for
a > 1, they accumulate on two disjoint ones: [−x1,−x2] ∪ [x2, x1].

In the critical case a = 1, the gap between two disjoint interval closes at the
origin and the limiting mean eigenvalue density exhibits a cusp-like singularity,
i.e., the density vanishes like |x|1/3 as x→ 0.
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Non-intersecting Brownian paths

Figure: Non-intersecting Brownian paths that start at one point and end at two points.
[Bleher and Kuijlaars, 2007]
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Limiting kernels

The eigenvalues of the ensemble (1) are distributed according to a determinantal
point process. [Brézin and Hikami, 1998], [Zinn-Justin, 1997]

Inside the bulk: v(x0) > 0

lim
n→∞

1
nv(x0)

Kn

(
x0 +

x
nv(x0)

, x0 +
y

nv(x0)
; a

)
=

sin π(x − y)
π(x − y)

.

At the soft edge: v(x) ∼ c
π
|x − x1|

1/2 as x→ x1

lim
n→∞

1
(cn)2/3 Kn

(
x1 +

x
(cn)2/3 , x1 +

y
(cn)2/3 ; a

)
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

.

Upon letting n→ ∞ and a→ 1, the Pearcey kernel emerges near the origin:
[Brézin and Hikami, 1998], [Tracy and Widom, 2006]

lim
n→∞

1
n3/4 Kn

(
x

n3/4 ,
y

n3/4 ; 1 +
ρ

2
√

n

)
= KPe(x, y; ρ).
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The Pearcey kernel

The Pearcey kernel KPe is defined as [Brézin and Hikami, 1998]

KPe(x, y; ρ) =

∫ ∞

0
p(x + t)q(y + t)dt

=
p(x)q′′(y) − p′(x)q′(y) + p′′(x)q(y) − ρp(x)q(y)

x − y
, (2)

where p(x) =
1

2π

∫ ∞

−∞

e−
1
4 s4−

ρ
2 s2+isxds, q(y) =

1
2π

∫
Σ

e
1
4 s4+

ρ
2 s2+isyds, and ρ ∈ R.

The functions p and q satisfy

p′′′(x) = xp(x) + ρp′(x) and q′′′(y) = −yq(y) + ρq′(y).
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The Pearcey kernel

The Pearcey kernel appears in various models:

large complex correlated Wishart matrices; [Hachem, Hardy and Najim, 2016]

a two-matrix model with special quartic potential; [Geudens and Zhang, 2015]

general complex Hermitian Wigner-type matrices at the cusps;
[Erdős, Krüger and Schröder, 2020]

the non-intersecting Brownian motions at the critical time;
[Bleher and Kuijlaars, 2007], [Adler, Orantin and van Moerbeke, 2010]

a combinatorial model on random partitions. [Okounkov and Reshetikhin, 2007]
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Gap probability: Tracy-Widom distribution as an example

Gap probability: E(A) = Prob(there is no eigenvalues in the interval A).

Let λn be the largest eigenvalue of a GUE matrix Mn. Then, we have

Prob
[
Mn has no eigenvalue in (2

√
n +

s
n1/6 ,+∞)

]
= Prob

[
λn − 2

√
n

n−1/6 ≤ s
]
−→ det[I − KAi

(s,∞)],

where KAi
(s,∞) is the trace-class operator acting on L2(s,∞) with the Airy

kernel KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x−y .

Tracy-Widom distribution: [Tracy and Widom, 1994]

FTW(s) := det[I − KAi
(s,∞)] = exp

(
−

∫ ∞

s
(x − s)y2

HM(x)dx
)
.
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Tracy-Widom distribution

yHM(x) is the Hastings-McLeod solution to the Painlevé II equation

y′′(x) = xy(x) + 2y3(x), with

y(x) ∼ Ai(x), x→ +∞, y(x) ∼

√
−x
2

(
1 +

1
8x3 + O(x−6)

)
, x→ −∞.

We may also rewrite FTW(s) as [Forrester and Witte, 2001]

FTW(s) = exp
(
−

∫ ∞

s
H(x)dx

)
,

where H(x) is related to the Hamiltonian for the Painlevé II equation.
Large gap asymptotics: [Deift, Its and Krasovsky, 2008]

[Baik, Buckingham and DiFranco, 2008]

ln det[I − KAi
(s,∞)] =

s3

12
−

1
8

ln(−s) +
1

24
ln 2 + ζ′(−1) + O(|s|−

3
2 ),

as s→ −∞, where ζ(s) is the Riemann zeta-function.
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Deformed Tracy-Widom distribution

Thinning is a classical operation in the theory of point processes: remove
each particle with probability 1 − γ. If one thins a determinantal point
process, the resulting process is still determinantal.
The deformed Tracy-Widom distribution: [Bohigas et al., 2009]

det[I − γKAi
(s,∞)] = exp

(
−

∫ ∞

s
(x − s)y2

AS(x)dx
)
, γ ∈ (0, 1).

yAS(x) is the Ablowitz-Segur solution to the Painlevé II equation satisfying

yAS(x) ∼
√
γAi(x), 0 < γ < 1, as x→ +∞.

Large gap asymptotics: [Bothner and Buckingham, 2018]

ln det[I−γKAi
(s,∞)] = −

2v
3π

(−s)
3
2 +

v2

4π2 ln(8(−s)
3
2 )+ln

(
G(1 +

iv
2π

)G(1 −
iv
2π

)
)
+O(|s|−1),

as s→ −∞, where v = − ln(1−γ) ≥ 0 and G(z) is the Barnes G-function.
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Gap probabilities

For the classical sine and Bessel kernels, the associated gap probabilities
have been well understood, including the integral representations, large
gap asymptotics, and the corresponding deformed cases.
Baik, Basor, Bothner, Buckingham, Budylin, Buslaev, Charlier, Claeys, Deift, DiFranco, Its, Krasovsky,

Tracy, Widom, Zhou...

Painlevé kernels arise to describe various phase transitions in the criti-
cal situations under a double scaling limit. The corresponding Fredholm
determinants are also studied. [D., Xu and Zhang, 2018], [Xu and D., 2019]

Riemann-Hilbert problems (RHP) is a powerful method to derive the asymp-
totics.
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Our target

In this talk, we consider

F(s; γ, ρ) := ln det
(
I − γKPe

s,ρ

)
, 0 ≤ γ ≤ 1,

where KPe
s,ρ is the trace class operator acting on L2 (−s, s) with the Pearcey

kernel.
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RHP associated with the Pearcey kernel

A 3 × 3 matrix-valued function Ψ(z) = Ψ(z; ρ) satisfies: [Bleher and Kuijlaars, 2007]

(1) Ψ(z) is analytic in C \ {∪5
j=0Σj}, where Σ0,3 = R±,Σ1,4 = e

πi
4 R±,Σ2,5 = e−

πi
4 R±.

(2) Ψ+(z) = Ψ−(z)JΨ(z), z ∈ ∪5
j=0Σj, where the jump matrices are 0 1 0

−1 0 0
0 0 1

 , z ∈ Σ0;

1 0 0
1 1 1
0 0 1

 , z ∈ Σ1;

1 0 0
0 1 0
1 1 1

 , z ∈ Σ2;

 0 0 1
0 1 0
−1 0 0

 , z ∈ Σ3;

1 0 0
0 1 0
1 −1 1

 , z ∈ Σ4;

1 0 0
1 1 −1
0 0 1

 , z ∈ Σ5.
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RHP associated with the Pearcey kernel

(3) As z→ ∞ and ± Im z > 0, we have

Ψ(z) =

√
2π
3

e
ρ2

6 iΨ0

(
I +

Ψ−1

z
+ O(z−2)

)
diag

(
z−

1
3 , 1, z

1
3

)
L±eΘ(z),

where L± are the constant matrices

L+ =

 −ω ω2 1
−1 1 1
−ω2 ω 1

 , L− =

ω
2 ω 1

1 1 1
ω ω2 1

 , ω = e
2πi
3 ,

and
Θ(z) = Θ(z; ρ) =

diag(θ1(z; ρ), θ2(z; ρ), θ3(z; ρ)), Im z > 0,
diag(θ2(z; ρ), θ1(z; ρ), θ3(z; ρ)), Im z < 0,

with θk(z; ρ) =
3
4
ω2kz

4
3 +

ρ

2
ωkz

2
3 , k = 1, 2, 3.

(4) Ψ(z) is bounded near the origin.
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The Pearcey kernel

The above RH problem has a unique solution. For z ∈ Θ1, we have
[Bleher and Kuijlaars, 2007]

Ψ(z) =

P0(z) P1(z) P4(z)
P′0(z) P′1(z) P′4(z)
P′′0 (z) P′′1 (z) P′′4 (z)


with Pj(z) = Pj(z; ρ) =

∫
Γj

e−
1
4 t4−

ρ
2 t2+itzdt, j = 0, 1, . . . , 5, where

Γ0 = (−∞,+∞), Γ1 = (i∞, 0] ∪ [0,∞), Γ2 = (i∞, 0] ∪ [0,−∞),
Γ3 = (−i∞, 0] ∪ [0,−∞),Γ4 = (−i∞, 0] ∪ [0,∞), Γ5 = (−i∞, i∞).

Let Ψ̃ be the analytic extension of the restriction of Ψ on the region Θ1 to the
whole complex plane. The Pearcey kernel then admits the following equivalent
representation:

γKPe(x, y; ρ) =
f(x)th(y)

x − y
,

where f(x) =

f1f2f3
 := Ψ̃(x)

100
 , h(y) =

h1
h2
h3

 :=
γ

2πi
Ψ̃(y)−t

011
 .
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Integrable kernel

If K is integrable and (I − K)−1 exists, then the kernel R(x, y) for the resolvent
operator R = (I − K)−1 − I is also integrable:

[Its, Izergin, Korepin and Slavnov 1990]

R(x, y) =
Ft(x)H(y)

x − y

with F(x) =

(
(I − K)−1f

)
(x) and H(x) =

(
(I − K t)−1h

)
(x).

Riemann-Hilbert problem associated with integrable kernels:

(a) Y(z) is analytic for z ∈ C\Γ, where Γ is an interval in R;

(b) For x ∈ Γ, Y+(x) = Y−(x)
(
I − 2πi f(x)ht(x)

)
;

(c) As z→ ∞, Y(z) = I + Y−1
z + O(z−2);

(d) Y(z) satisfies certain conditions at the endpoints of Γ.

Lemma (Deift, Its and Zhou, 1997)

The unique solution of the above RH problem is: Y(z) = I −
∫

Γ

F(x)ht(x)
x − z

dx.
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RHP associated with the Fredholm determinant

Define Φ(z) = Φ(z; s) as follows:

Φ(z) =
Ψ−1

0√
2π
3 e

ρ2
6 i



Y(z)Ψ(z), z ∈ I ∪ III ∪ IV ∪ VI,
Y(z)Ψ̃(z), z ∈ II,

Y(z)Ψ̃(z)


1 −1 −1
0 1 0
0 0 1

 , z ∈ V,
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RHP associated with the Fredholm determinant

The function Φ(z) = Φ(z; s) has the following properties:

(1) Φ(z) is analytic in C \ {∪5
j=0Σ

(s)
j ∪ [−s, s]}

(2) Φ+(z) = Φ−(z)JΦ(z), z ∈ ∪5
j=0Σ

(s)
j ∪ (−s, s), where the jump matrices are 0 1 0

−1 0 0
0 0 1

 , z ∈ Σ
(s)
0 ;

1 0 0
1 1 1
0 0 1

 , z ∈ Σ
(s)
1 ;

1 0 0
0 1 0
1 1 1

 , z ∈ Σ
(s)
2 ;

 0 0 1
0 1 0
−1 0 0

 , z ∈ Σ
(s)
3 ;

1 0 0
0 1 0
1 −1 1

 , z ∈ Σ
(s)
4 ;

1 0 0
1 1 −1
0 0 1

 , z ∈ Σ
(s)
5 ;

1 1 − γ 1 − γ
0 1 0
0 0 1

 , z ∈ (−s, s).
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RHP associated with the Fredholm determinant

(3) As z→ ∞ and ± Im z > 0, we have

Φ(z) =

(
I +

Φ−1

z
+ O(z−2)

)
diag

(
z−

1
3 , 1, z

1
3

)
L±eΘ(z),

where Φ−1 = Ψ−1 + Ψ−1
0 Y−1Ψ0.

(4) As z→ s, we have

Φ(z) = Φ̂1(z)

1 −
γ

2πi ln(z − s) −
γ

2πi ln(z − s)
0 1 0
0 0 1




I, z ∈ II,
1 −1 −1
0 1 0
0 0 1

 , z ∈ V,

where Φ̂1(z) is analytic at z = s satisfying the following expansion

Φ̂1(z) = Φ
(0)
0 (s)

(
I + Φ

(0)
1 (s)(z − s) + O((z − s)2)

)
, z→ s.

(5) As z → −s, the behavior of Φ(z) is determined by the following symmetric
relation

Φ(z) = − diag(1,−1, 1)Φ(−z)

−1 0 0
0 0 1
0 1 0

 .
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Differential identity

Proposition

We have d
ds

F(s; γ, ρ) =
d
ds

ln det
(
I − γKPe

s,ρ

)
= −

γ

πi

[(
Φ

(0)
1 (s)

)
21

+
(
Φ

(0)
1 (s)

)
31

]
. (3)

Proof.
First,

d
ds

ln det(I − γKPe
s,ρ) = −tr

(
(I − γKPe

s,ρ)
−1γ

d
ds
KPe

s,ρ

)
= −R(s, s) − R(−s,−s).

From the lemma of Deift et al., we also get

F(x) = Y+(x)f(x), H(x) = Y+(x)−th(x), x ∈ (−s, s).

Then, a straightforward computation yields (3). �
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Lax Pair

Proposition
From the RHP for Φ, we have

∂

∂z
Φ(z; s) = L(z; s)Φ(z; s),

∂

∂s
Φ(z; s) = U(z; s)Φ(z; s), (4)

where
L(z; s) =

0 0 0
0 0 0
z 0 0

 + A0(s) +
A1(s)
z − s

+
A2(s)
z + s

,

U(z; s) = −
A1(s)
z − s

+
A2(s)
z + s

with A0(s) =


0 1 0

√
2p0(s) 0 1

0
√

2q0(s) 0

 , A1(s) =

q1(s)
q2(s)
q3(s)

 (p1(s) p2(s) p3(s)
)
, and

A2(s) being related to A1(s) through the following relation

A2(s) = diag(1,−1, 1)A1(s) diag(1,−1, 1). (5)
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Lax Pair

Proof.
All jumps in the RH problem for Φ are independent of z and s. This implies

L(z; s) :=
∂

∂z
Φ(z; s) · Φ(z; s)−1, U(z; s) :=

∂

∂s
Φ(z; s) · Φ(z; s)−1

are analytic in the complex z plane except for possible isolated singularities at z = ±s
and z = ∞.

As z→ ∞, L(z; s) =

0 0 0
0 0 0
1 0 0

 z +

0 1 0
ρ
3 0 1
0 ρ

3 0

 +

Φ−1,

0 0 0
0 0 0
1 0 0


 + O(z−1).

As z→ s, L(z; s) ∼ −
1

z − s
γ

2πi
Φ

(0)
0 (s)

0 1 1
0 0 0
0 0 0

 Φ
(0)
0 (s)−1.

By setting

q1(s)
q2(s)
q3(s)

 = Φ
(0)
0 (s)

100
 and

p1(s)
p2(s)
p3(s)

 = −
γ

2πi
Φ

(0)
0 (s)−t

011
 , we obtain the

expression of A1(s). �
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The Hamiltonian system

From the general theory of Jimbo-Miwa-Ueno, the Hamiltonian H(s) =

H(p0, p1, p2, p3, q0, q1, q2, q3; s) is given by

H(s) = −
γ

2πi
Tr

Φ(0)
1 (s)

0 1 1
0 0 0
0 0 0


 = −

γ

2πi

[(
Φ

(0)
1 (s)

)
21

+
(
Φ

(0)
1 (s)

)
31

]
.

We have

H(s) =
√

2p0(s)p2(s)q1(s) +
√

2p3(s)q0(s)q2(s) + p1(s)q2(s) + p2(s)q3(s)

+ sp3(s)q1(s) +
1
2s

(p1(s)q1(s) − p2(s)q2(s) + p3(s)q3(s))2 , (6)

and
q′k(s) =

∂H
∂pk

, p′k(s) = −
∂H
∂qk

, k = 0, 1, 2, 3.

The above Hamiltonian is equivalent to that used in Brézin and Hikami
(PRE, 1998) under a simple rescalling.
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Integral representation

Theorem

With the Hamiltonian H(s) given in (6), we have

F(s; γ, ρ) = 2
∫ s

0
H(τ)dτ, γ ∈ [0, 1], s ∈ (0,+∞). (7)

H(s) satisfies the following asymptotic behaviors: as s→ 0+,

H(s) = O(1),

and, as s→ +∞,

H(s) =


−

3s5/3

211/3 +
ρs
4
−
ρ2s1/3

3 · 27/3 −
1
9s

+ O(s−5/3), γ = 1,

√
3βis1/3 −

βiρ
√

3 s1/3
−

4β2

3s
−

2
√

3βi
9s

cos(2ϑ(s)) + O(s−5/3), γ ∈ [0, 1),

where β := 1
2πi ln(1 − γ) ∈ iR+, γ ∈ [0, 1),

and ϑ(s) := ϑ(s; β) = − 3
√

3
8 s

4
3 +

√
3ρ
4 s

2
3 + arg Γ(1 − β) − βi

(
4
3 ln s + ln

(
9
2

))
.
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Large gap asymptotics

Theorem

F(s; 1, ρ) = −
9s

8
3

2
17
3

+
ρs2

4
−
ρ2s

4
3

2
10
3

−
2
9

ln s +
ρ4

216
+ C + O(s−

2
3 ), s→ +∞,

uniformly for ρ in any compact subset of R, where C is an undetermined constant
independent of ρ and s.

Theorem

F(s; γ, ρ) =
3
√

3βi
2

s
4
3 −
√

3ρβis
2
3 −

8β2

3
ln s

− 2β2 ln
(

9
2

)
+ 2 ln (G(1 + β)G(1 − β)) + O(s−

2
3 ), s→ +∞,

uniformly for γ and ρ in any compact subset of [0, 1) and R, respectively,
where β = 1

2πi ln(1 − γ) and G(z) is the Barnes G-function.
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Steepest descent analysis for the RHP for Φ

Figure: Contour in the RH analysis: γ = 1 (left); 0 < γ < 1 (right)
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Global parametrix: γ = 1

(1) N(z) is analytic in C \ {(−∞,−1] ∪ [1,+∞)}.

(2) N satisfies the jump condition

N+(x) = N−(x)



 0 1 0
−1 0 0
0 0 1

 , x > 1, 0 0 1
0 1 0
−1 0 0

 , x < −1.

(3) As z→ ∞, we have

N(z) =
(
I + O(z−1)

)
diag

(
z−

1
3 , 1, z

1
3

)
L±.
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Global parametrix: 0 < γ < 1

(1) N(z) is analytic in C \ R.

(2) N+(z) = N−(z)JN(z), z ∈ R, where

JN(z) =



 0 0 1
0 1 0
−1 0 0

 , z ∈ (−∞,−1),

 0 1 0
−1 0 0
0 0 1

 , z ∈ (1,+∞),

JN(z) =




0 0 1 − γ
0 1 0
1
γ−1 0 0

 , z ∈ (−1, 0),


0 1 − γ 0
1
γ−1 0 0
0 0 1

 , z ∈ (0, 1).

(3) As z→ ∞, we have

N(z) =
(
I + O(z−1)

)
diag

(
z−

1
3 , 1, z

1
3

)
L±.
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Local parametrix

When γ = 1, local parametrices near z = ±1 are given in terms of the
Bessel parametrix.

When 0 ≤ γ < 1,

local parametrices near z = ±1 are given in terms of the confluent hyperge-
ometric parametrix.

local parametrix near z = 0 is given in terms of the Pearcey parametrix.
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Another differential identity

Proposition

We have the following differential identities with respect to the parameter γ:

∂

∂γ

 3∑
k=0

pk(s)q′k(s) − H(s)

 =
d
ds

 3∑
k=0

pk(s)
∂

∂γ
qk(s)

 . (8)

Moreover, H is related to the action differential
∑3

k=0 pkq′k − H by
3∑

k=0

pk(s)q′k(s) − H(s) = H(s) +
1
4

d
ds

(2p0(s)q0(s) + p2(s)q2(s) + 2p3(s)q3(s) − 3sH(s)) .

(9)

Proof.
Differentiating H(p0, p1, p2, p3, q0, q1, q2, q3; s) about γ, we get

∂

∂γ
H(s) =

3∑
k=0

(
∂H
∂pk

∂

∂γ
pk(s) +

∂H
∂qk

∂

∂γ
qk(s)

)
=

3∑
k=0

(
q′k(s)

∂

∂γ
pk(s) − p′k(s)

∂

∂γ
qk(s)

)
.

�
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Large gap asymptotics: constant determination for γ < 1

First, we obtain from (9) that∫ s

0
H(τ)dτ =

∫ s

0

 3∑
k=0

pk(τ)q′k(τ) − H(τ)

 dτ

−
1
4

[
2p0(τ)q0(τ) + p2(τ)q2(τ) + 2p3(τ)q3(τ) − 3τH(τ)

]s

τ=0
.

By integrating both sides of (8) with respect to s, it follows that

∂

∂γ

∫ s

0

 3∑
k=0

pk(τ)q′k(τ) − H(τ)

 dτ =

3∑
k=0

pk(s)
∂

∂β
qk(s)−

3∑
k=0

pk(0)
∂

∂β
qk(0). (10)

Note that
3∑

k=0

pk(s)q′k(s) − H(s) ≡ 0, when γ = 0. Integrating both sides of (10) with

respect to γ, we obtain∫ s

0

 3∑
k=0

pk(τ)q′k(τ) − H(τ)

 dτ =

∫ γ

0

 3∑
k=0

pk(s)
∂

∂β′
qk(s)

 dγ′. (11)
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Summary

We obtained an integral formula for the Fredholm determinant associated
with the Pearcey kernel, which involves the associated Hamiltonian and
holds for all γ ∈ [0, 1].

The large gap asymptotics for the Fredholm determinant are derived as
s → +∞, which is not uniformly valid for γ ∈ [0, 1]. The exponent of
the leading term drops by half, that is, s

8
3 in the unthinned (γ = 1) case

reduces to s
4
3 in the thinned (0 < γ < 1) case.

The constant term is given explicitly in terms of the Barnes G-function
when γ ∈ [0, 1).However, the constant terms is still unknown when γ = 1.

Thank You!
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