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@ The Pearcey kernel
@ Gap probability and Fredholm determinants
@ Relation to the integrable systems: Lax pair, Hamiltonian

o Riemann-Hilbert analysis
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Gaussian unitary ensemble with external source

@ A deformed Gaussian unitary ensemble (GUE) [Brézin and Hikami, 1998]

1 (2 _am

—e" (4 )dM, (1)
n

defined on the space of n X n Hermitian matrices, where Z, is a normalization

constant and A is a deterministic matrix which is diagonal with two eigenvalues

a and —a of equal multiplicity.

@ The limiting mean density of eigenvalues is v(x) = }TI Im &(x)|, where &(x) satis-
fies the Pastur’s equation [Pastur, 1972]

E —x& — (@ - 1)é+xa® = 0.
@ If 0 < a < 1, the eigenvalues accumulate on a single interval [—xj, x;]; while for
a > 1, they accumulate on two disjoint ones: [—xj, —x2] U [x2, x1].

@ In the critical case a = 1, the gap between two disjoint interval closes at the
origin and the limiting mean eigenvalue density exhibits a cusp-like singularity,
i.e., the density vanishes like Ix|'/3 as x — 0.
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Non-intersecting Brownian paths

Figure: Non-intersecting Brownian paths that start at one point and end at two points.
[Bleher and Kuijlaars, 2007]
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Limiting kernels

@ The eigenvalues of the ensemble (1) are distributed according to a determinantal

point process. [Brézin and Hikami, 1998], [Zinn-Justin, 1997]
@ Inside the bulk: v(xg) >0
lim + al , X0 + Y yal = sinz(x - y).
n—>co ”W(xo) 1v(xo) nv(xo) n(x—y)

@ At the soft edge: v(x) ~ ~|x — x| as x — x;

y ) _Ai(0)AT(y) - AT’ (0)AI(y)

1 X
Iim ——K,, | x; + , X1 + sal=
n—co (cn)?/3 ( l (cn)?/3 : (cn)?3 xX—y

@ Upon letting n — oo and a — 1, the Pearcey kernel emerges near the origin:
[Brézin and Hikami, 1998], [Tracy and Widom, 2006]

1 x oy P
lim — ( 3/4’n3/4’1+_)zKPe(x,y;p).

noo 3/4
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The Pearcey kernel

The Pearcey kernel K*° is defined as [Brézin and Hikami, 1998]

K®(x,y;p) = fo ) p(x + gy + t)dt

_ PWG" Q) = p'(0)g'G) + p")g() — pp)g()
x-y ’

@

| Y ; 1 I -
where p(x) = — f g_ZSA_%szﬂsxds’ q(y) - fezs4+%sz+l.¥)ds’ andp cR.
2r J_ 21 Js

00

The functions p and ¢ satisfy
P (x) =xp(x) +pp'(x) and  ¢"'() = -yq(y) + pq’ ()

Dan Dai (CityU of HK) Asymptotics of Pearcey-kernel determinant May 9, 2024 5/31



The Pearcey

The Pearcey kernel appears in various models:

@ large complex correlated Wishart matrices; [Hachem, Hardy and Najim, 2016]
@ a two-matrix model with special quartic potential; [Geudens and Zhang, 2015]

@ general complex Hermitian Wigner-type matrices at the cusps;
[Erd6s, Kriiger and Schroder, 2020]

o the non-intersecting Brownian motions at the critical time;
[Bleher and Kuijlaars, 2007], [Adler, Orantin and van Moerbeke, 2010]

@ a combinatorial model on random partitions.  [Okounkov and Reshetikhin, 2007]
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Gap probability: Tracy-Widom distribution as an example

@ Gap probability: E(A) = Prob(there is no eigenvalues in the interval A).

o Let A, be the largest eigenvalue of a GUE matrix M,. Then, we have

Prob [M has no eigenvalue in (2 Vn + ——, +00)

1/6’

—2+n Ai
=Pr b[ Y < s] —> det[] — 7((&00)],
where ‘7((‘?‘00) is the trace-class operator acting on L(s, o) with the Airy
Ai _ AI@AI'()-AI ®AI()
kernel K*'(x,y) = po= .
@ Tracy-Widom distribution: [Tracy and Widom, 1994]

Frw(s) := det[l — K3\, = exp (— f (x—s)y%m(x)dx).
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Tracy-Widom distribution

@ yuum(x) is the Hastings-McLeod solution to the Painlevé II equation

¥’ (x) = xy(x) + 2y°(x), with

y(x) ~ Ai(x), x = 400, Y(x) ~ 4 /%x (1 + é + O(x_6)), X — —oo,

@ We may also rewrite Frw(s) as [Forrester and Witte, 2001]

Frw(s) = exp (— foo H(x)dx),

where H(x) is related to the Hamiltonian for the Painlevé II equation.
o Large gap asymptotics: [Deift, Its and Krasovsky, 2008]
[Baik, Buckingham and DiFranco, 2008]

§3

Indetll ~ K] = 35 = 5 I0(-9) + 5712+ (1) +OGsl7),

as s — —oo, where £(s) is the Riemann zeta-function.
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Deformed Tracy-Widom distribution

e Thinning is a classical operation in the theory of point processes: remove
each particle with probability 1 — . If one thins a determinantal point
process, the resulting process is still determinantal.

@ The deformed Tracy-Widom distribution: [Bohigas et al., 2009]

detll - yKy,)] = exp (— f (x — s)yf,s(x)dx), y € (0, 1).

@ yas(x) is the Ablowitz-Segur solution to the Painlevé Il equation satisfying

yas(x) ~ VyAi(x), 0<y<l1, asx— +oo.

(] Large gap asymptotics: [Bothner and Buckingham, 2018]

V2 3

WG Lo
7 In(8(—s) )+ln(G(1 + 2ﬁ)G(l 27r))+0(|s| )

. 2 3
In det[l—y‘K(A1 = —%(—s)% + 0z
s

5,00)

as s — —oo, where v = —In(1 —7) > 0 and G(z) is the Barnes G-function.
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Gap probabilities

@ For the classical sine and Bessel kernels, the associated gap probabilities
have been well understood, including the integral representations, large
gap asymptotics, and the corresponding deformed cases.

Baik, Basor, Bothner, Buckingham, Budylin, Buslaev, Charlier, Claeys, Deift, DiFranco, Its, Krasovsky,
Tracy, Widom, Zhou...

@ Painlevé kernels arise to describe various phase transitions in the criti-
cal situations under a double scaling limit. The corresponding Fredholm
determinants are also studied. [D., Xu and Zhang, 2018], [Xu and D., 2019]

@ Riemann-Hilbert problems (RHP) is a powerful method to derive the asymp-
totics.
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Our target

In this talk, we consider

F(s;y,p) := lndet(l— sf;e)), 0<y<l,

where 7(5; is the trace class operator acting on L? (—s, s) with the Pearcey
kernel.
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RHP associated with the Pearcey kernel

A 3 X 3 matrix-valued function ¥(z) = W¥(z; p) satisfies: [Bleher and Kuijlaars, 2007]

(1) W(z) is analytic in C \ {UL(%;}, where Zo3 = Ry, Z14 = e¥R,,%,5 = e ¥R,.

S %1
O
@2 e0
X3 Yo
@3 0 @5
Oy
P 25

2) Y:(2) =¥Y_(2)Jy(z), z€ Ufzon, where the jump matrices are

0 1 0 1 0 0 1 0 0
[—1 0 0],2&20; [1 1 1],z621; [0 1 O],zeZz;

0 0 1 0 0 1 1 1 1

0 0 1 1 0 O 1 0 0
[O 1 0],Z€23; [O 1 O],Z€24; [1 1 —1],2625.
-1 0 O 1 -1 1 0 0 1
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RHP associated with the Pearcey kernel

(3) Asz — ooand +Imz > 0, we have

2 2 Y
@) = ?ﬂeii‘}’o (1 +—14 O(ZZ)) diag (zfé, l,z%)Lie%)’
z

where L, are the constant matrices

w0 W 1 W w1
L,=]-1 1 11, L_.=|1 1 1], w
—? w1 w 1

and
d. 0 3P)s 0 5 5 0 ) , I > O,
0(2) = Oz p) = %ag( 1(z:p), 02(z; p), B3(z; 0)), Imz
diag(6»(z; p), 61(z; p), 03(z;0)), Imz <O,

Il
Q
S

P

3
with 6x(z; p) = Za)zkz% + Ewkz%, k=1,23.

(4) ¥(z) is bounded near the origin.
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The Pearcey kernel

@ The above RH problem has a unique solution. For z € ®;, we have
[Bleher and Kuijlaars, 2007]

Po(z) P12 Pa2)

Po@) P P2
Pi@) Pl PR

Y(2) =

with Pj(z) = Pj(z;p) = f et =gt gy j=0,1,...,5, where
l—"

[y = (=00, +09), Ty = (ic0,0] U [0, 00), T = (ie0, 0] U [0, =c0),
I'3 = (=i00,0] U [0, —00), T’y = (—ic0,0] U [0, ), T's = (—ico, ico).
@ Let ¥ be the analytic extension of the restriction of ¥ on the region @, to the
whole complex plane. The Pearcey kernel then admits the following equivalent

representation: VKPS (x,y: p) = f(x)lh(y)’
x—y
A _ 1 hy _ 0
where f(x) = {];2 = P(x) OJ, hO) = |l | = %) 1].
0 h 2mi 1
3 3
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Integrable kernel

@ If K is integrable and (I — ¥)~! exists, then the kernel R(x, y) for the resolvent

operator R = (I — %)~ — I is also integrable:
[Its, Izergin, Korepin and Slavnov 1990]

F'(x)H
Rexy) = o)

with F(x) = ((1 - W)‘lf)(x) and H(x) = ((1 - W’)‘lh)(x).

@ Riemann-Hilbert problem associated with integrable kernels:

(a) Y(z)is analytic for z € C\I', where I is an interval in R;
(b) ForxeT, Y, (x) = Y_(x)(l — 2ni f(x)h’(x));

() Asz—> o0, Y(z) =1+ % +0(2):
(d) Y(z) satisfies certain conditions at the endpoints of T.

Lemma (Deift, Its and Zhou, 1997)
F(x)h!(x) I

The unique solution of the above RH problem is:  Y(z) =1 — f
Ir X—2Z
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RHP associated with the Fredholm determinant

Define ®(z) = O(z; s) as follows:

Y(2)¥(2), Z€IUIITUIVUVI,
g1 Y(2)¥(2), z€ 11,
_ 0
D(z) = S0 1 -1 -1
o 2. —
Fesilyo¥i@lo 1 o, zev,
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RHP associated with the Fredholm determinant

The function ®(z) = D(z; s) has the following properties:
(1) ®(z) is analytic in C \ {Uf:OE}“’ U [-s, s}

2) ©,(2) =D_(2)Jo(2), z € U5:OZJ® U (—s, s), where the jump matrices are

J
0 10 100 10 0
-1 0 0f,zex® |1 1 1],ze3¥; |0 1 0], zex¥;
0 1 00 1 111
0 0 1 1 0 0 10 0
0 1 0[.zexy; [0 1 0f,zexd: [1 1 -1f, zex:
1.0 0 1 -1 1 00 1
1 1-y 1-y
0 1 0 > ZE(—S,S).
o 0 1
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RHP associated with the Fredholm determinant

(3) Asz— ocoand +Imz > 0, we have
d_
O(z) = (1 + e} + O(Z—2)) diag (Z_%, 1, Z%)LieG(z)’
Z

where ®_; = ¥_; + ¥;'Y_ | ¥.

(4) Asz— s, we have 7 R
. I —&Inz-s) —s5=In(z-s) 1 -1 -1
O(z) = D1(2)| 0 1 0
0 O 1 0 1 O N ZEV,
0 O 1

where @, (z) is analytic at z = s satisfying the following expansion
D1(2) = o) (I + V() =) + Oz = 9))),  z—> 5.

(5) As z — —s, the behavior of ®(z) is determined by the following symmetric
relation -1 0 O

D(z) = —diag(l, -1, 1)<I>(—z)[ 0 0 1].
0 10
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Differential identity

Proposition

We h d.. _d P
¢ fave $F(s, Y,p) = — lndet (I - ¥k ;)

p [(CD(O) (s)) (d)(lo)(s))3l] . 3)

Proof
First,

3
| \

4 In det( — y?(spe) =—tr|([ - y?(Pe) y— 7(Pe = —R(s,s) — R(-s, —s).
ds & ds

From the lemma of Deift et al., we also get

F(x) = Y. (0)f(x), H®) = Y.(x)h(x), X € (=s,5).

Then, a straightforward computation yields (3). O
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Lax Pair

From the RHP for ®, we have

ECD(Z; s) = L(z; 5)D(z; 5), E(D(Z; 5) = U(z; )D& ), @
0z Os
h 0 0 O
where L(zs) = [0 0 O] A A Az(s)’
z 00 zZ=s zts
Uzs) = _A1ls) | Ax(s)
=9 Z+s
0 . 01(o)
with Ay(s) = | V2po(s) 0 1, Ai(s) = |qa(s) (Pl(S) pa(s) p3(s)), and
0 V2qu(s) O 7o)

As(s) being related to A\ (s) through the following relation

As(s) = diag(1, -1, DA, (s) diag(1, -1, 1). 5)

i
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Lax Pair

Proof.

All jumps in the RH problem for @ are independent of z and s. This implies
0 0
Lzs) = —0Es) ©@s) ', Us) = o-0zs) )"
0z 0s
are analytic in the complex z plane except for possible isolated singularities at z = +s
and z = oo.
0 00 01 0 0 0 O
As 7 — oo, Lizs)=[0 0 0|z+|5 0 1|+|®_,|0 0 Of|+0G™.
1 00 0 £ 0 1 0 0
1 0 1 1
Aszos L@ ~-—=0P©[0 0 0|ofw .
Lmsem 00 0
q1(5) 1 P1(s) 7 0
By setting | ¢2(s) | = @)(9)[0| and [pa(s)| = —==®"(s)"| 1|, we obtain the
2mi
q3(s) 0 3(5) 1
expression of Aj(s). O

v
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The Hamiltonian system

@ From the general theory of Jimbo-Miwa-Ueno, the Hamiltonian H(s) =
H(po,p1, 2, P390, 41,92, q3; §) is given by

01 1
H(s) = 5T {@i“%s) [g 0 gJ] = =5 [(@7©),, + (@), |

@ We have
H(s) = V2po(s)pa(s)q1(s) + V2p3(5)qo(s)qa(s) + p1(s)qa(s) + pa(s)q3(s)
1
+sp3(s)q1(s) + % (P1()q1(s) — P2(8)qa(s) + p3(5)q3(5))*, 6)

and
/ H ’
Qk(s) = i pk(s) == k’ k = 07 1,2’ 3

@ The above Hamiltonian is equivalent to that used in Brézin and Hikami
(PRE, 1998) under a simple rescalling.
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Integral representation

Theorem

With the Hamiltonian H(s) given in (6), we have

F(s;y,p) = 2f H(7)dr, ve[0,1], s € (0,+00). @)
0
H(s) satisfies the following asymptotic behaviors: as s — 07,
H(s) = O0(1),
and, as s — +o0,
355/3 ps P21/ 1 S
-5/3 _
— + — — — + =1
ey <] 2T T 3E 5 PO v

V3gis'/3 — Bio 48> 2V3Bi
V313 3s 9s
where B = 2m In(1 -—y) € 1R+, vy € [0, 1),

and 9(s) = 95 B) = — 2853 + L3 L argT(1 ~p) — Bi(4 Ins +In(3)).

cos(29(s)) + O(s™"3), vy e[0,1),
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Large gap asymptotics

9¢% 2 265 2 4
S%+&—p—s}——lns+2p—16+C+O(s_%), 5§ — +o00,

F(s;1,p) = —
T

uniformly for p in any compact subset of R, where C is an undetermined constant
independent of p and s.

v
Theorem

. 2
3 \/;'Bls% — ‘/gpﬂisg — % Ins

F(s;y,p) =

— 22 1n(§) +2In(G(1 +B)G(1 = ) + O(s™3), 5 — +oo,

uniformly for y and p in any compact subset of [0, 1) and R, respectively,
where B = ﬁ In(1 — y) and G(z) is the Barnes G-function.
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Steepest descent analysis for the RHP for ®

=) =
Eél) 2(1)
S 1
© W 1
b = =

Figure: Contour in the RH analysis: y = 1 (left); 0 <y < 1 (right)
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Global parametrix: y = 1

(1) N(z)is analytic in C \ {(=o00, =1] U [1, +00)}.

(2) N satisfies the jump condition

0 10
-1 0 0], x> 1,
0 0 1

N+(-x)=N—(-x) 0 O 1
0 1 0f, x< -1
-1 0 O

(3) Asz — oo, we have

N(z) = (I +0™")) diag (Z—%, l,z%)Li.
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Global parametrix: 0 <y < 1

(1) N(z)is analytic in C \ R.
(2) Ni(z) = N_(2)In(2), z € R, where

0 0 1 0 0 1-vy
0 1 0|, ze(-o0,-1), 0 1 0 |, ze(-1,0),
-1 0 0 40 0

In(@) = Iy =
C 0 1-y 0
-1 0 Oa ZG(],-FOO), 1
0 0 1 v g (1), z€(0,1).

(3) As z — oo, we have

NG) = (1+0G™) diag (7%, 1,25) L.
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Local parametrix

@ When y = 1, local parametrices near z = +1 are given in terms of the
Bessel parametrix.
@ When0 <y <1,

o local parametrices near z = +1 are given in terms of the confluent hyperge-
ometric parametrix.

e local parametrix near z = 0 is given in terms of the Pearcey parametrix.
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Another differential identity

We have the following differential identities with respect to the parameter y:

d (< , d (S P
g ;pk(s)qk(s)—H(s) == ;pk(s)aqk(s) . ®

Moreover, H is related to the action differential Zizo prq, — H by
3
, 1d
2 Pe(s)Gi(s) = Hs) = H(s) + 3 == 2po(s)qo(s) + p2(s)qa(s) + 2p3(s)qs(s) = 35H(S)).

€))

| A

Proof

Differentiating H(po, p1, P2, P3. 90, 41, 42. g3; S) about y, we get
3 oH 8 H 0 >
5= Z( e 3y ——Pk(8) + _EQk(S)) = kz_(;(qk(S) 5P ~ PS5 qk(S))-
O

v
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Large gap asymptotics: constant determination for y < 1

First, we obtain from (9) that

S S 3
f H(t)dr = f [Z Pe(DG(T) —H(T)]dT
g 0 k=0

1
~1 [ZPO(T)CIO(T) + p2(T)qa(7) + 2p3(7)gq3(7) — 3TH(T)]

S
=0
By integrating both sides of (8) with respect to s, it follows that

o [ - B : o

— (T)q,(7) — H(7) |dr = (8) = qr(s)— (0)=4x(0).  (10)

3y Jo (;Pk Dk ] kZ:(;Pk (%% ];Pk aﬁQk
3

Note that Z Pi(8)q,(s) — H(s) = 0, when y = 0. Integrating both sides of (10) with

k=0
respect to y, we obtain

o3 (3 5
L [kZ:(; Pk(T)qz’c(T) - H(T)] dr = j(; (kz:; pk(S)a_ﬂ'qk(s)] dy'. (11)
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@ We obtained an integral formula for the Fredholm determinant associated
with the Pearcey kernel, which involves the associated Hamiltonian and
holds for all y € [0, 1].

o The large gap asymptotics for the Fredholm determinant are derived as
s — +oo, which is not uniformly valid for y € [0, 1]. The exponent of
the leading term drops by half, that is, s3 in the unthinned (y = 1) case
reduces to s3 in the thinned (0 <vy<1)case.

@ The constant term is given explicitly in terms of the Barnes G-function
when y € [0, 1). However, the constant terms is still unknown wheny = 1.
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@ We obtained an integral formula for the Fredholm determinant associated
with the Pearcey kernel, which involves the associated Hamiltonian and
holds for all y € [0, 1].

o The large gap asymptotics for the Fredholm determinant are derived as
s — +oo, which is not uniformly valid for y € [0, 1]. The exponent of
the leading term drops by half, that is, s3 in the unthinned (y = 1) case
reduces to s3 in the thinned (0 <vy<1)case.

@ The constant term is given explicitly in terms of the Barnes G-function
when y € [0, 1). However, the constant terms is still unknown wheny = 1.

Thank You!
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