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Toeplitz matrices and determinants
For ϕ ∈ L1

N×N defined on the unit circle T with Fourier coefficients

ϕj =
1

2π

∫ 2π

0

f(eiθ)e−ijθ dθ

define the Toeplitz and Hankel matrices by

Tn(ϕ) = (ϕj−k)
n−1
j,k=0 and Hn(ϕ) = (ϕj+k+1)

n−1
j,k=0

which have the forms
ϕ0 ϕ−1 ϕ−2 · · ·
ϕ1 ϕ0 ϕ−1 · · ·
ϕ2 ϕ1 ϕ0 · · ·
...

...
...

. . .

 and


ϕ0 ϕ1 ϕ2 · · ·
ϕ1 ϕ2 ϕ3 · · ·
ϕ2 ϕ3 ϕ4 · · ·
...

...
...

. . .

 .

We are interested in the behavior of

detTn(ϕ) and det
(
Tn(ϕ) +Hn(ψ)

)
as n→ ∞.
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Toeplitz and Hankel operators

For a ∈ L∞
N×n, define T (a) and H(a) on ℓ2N by

T (a) = (aj−k)j,k≥0 and H(a) = (aj+k+1)j,k≥0.

Equivalently, we can view them as the operators

T (a)f =

 N∑
j=1

T (akj)fj

N

k=1

and H(a)f =

 N∑
j=1

H(akj)fj

N

k=1

acting on the Hardy space H2
N = {(f1, . . . , fN ) : fk ∈ H2}, where

H2 = {f ∈ L2(T) : fk = 0 for k < 0}

and
T (f) = PMf and H(f) = PMfJ

where P is the orthogonal projection of L2(T) onto H2, Mfg = fg, and
Jf(t) = t̄f(t̄) (t ∈ T) is the flip operator.
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Szegő-Widom limit theorem

We say a ∈ F if

∥a∥F :=

∞∑
n=−∞

|an|+

( ∞∑
n=−∞

|n| · |an|2
)1/2

<∞.

Theorem 1 (Szegő-Widom)
Let ϕ ∈ FN×N be such that the determinant detϕ(t) does not vanish on
all of T and has winding number zero. Then

lim
n→∞

detTn(ϕ)

G[ϕ]n
= E(ϕ) := detT (ϕ)T (ϕ−1),

where the right side is a well-defined operator determinant and

G[ϕ] = exp

(
1

2π

∫ 2π

0

(log detϕ)(eix) dx

)
(1)

in which log detϕ is continuous on T.
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Comments on the Szegő-Widom limit theorem

▶ We can define det I + T when T is a trace class operator. Such T
are compact with discrete eigenvalues λi that satisfy

∞∑
i=0

|λi| <∞ so that det(I + T ) =

∞∏
i=0

(1 + λi)

is well defined.

▶ If both T (ϕ) and T (ϕ−1) are invertible, the proof is easier than in
the general case where the stated assumption on detϕ(t) is
equivalent to both T (ϕ) and T (ϕ−1) being Fredholm with index
zero.

▶ The class F considered above can be replaced by more general
classes, such as Krein algebras.

▶ In the scalar case (N = 1) a multitude of different proofs of the
classical Szegő Limit Theorem exist; including those that use
Riemann-Hilbert problems (RHPs).
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Borodin-Okounkov-Case-Geronimo formula

Requires an invertibility assumption on ϕ, so not as general but an
extremely insightful and useful exact formula.

An invertible symbol ϕ has a Wiener-Hopf factorization

ϕ = u−u+ = v+v−

if the kth Fourier coefficients of u+, u
−1
+ , v+, v

−1
+ vanish for k > 0 and

u−, u
−1
− , v−, v

−1
− vanish for k < 0.

Theorem 2 (Borodin-Okounkov-Case-Geronimo)
If the conditions of the Szegö-Widom theorem hold and if, in addition,
T (ϕ) and T (ϕ−1) are invertible, then

detTn(ϕ) = G(ϕ)nE(ϕ) · det
(
I −H(z−nv−u

−1
+ )H(ũ−1

− ṽ+z
−n)
)
,

where f̃(z) = f(z̄).

Singular version of BOCG!?
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Szegő-Widom theorem à la BOCG

Define Pnx = (x0, . . . , xn−1, 0, 0, . . .) for x ∈ ℓ2N and let Q = I − Pn.
Then

H(z−nv−u
−1
+ )H(ũ−1

− ṽ+z
−n) = QnH(v−u

−1
+ )H(ũ−1

− ṽ+)Qn.

Since Qnx→ 0 for each x ∈ ℓ2N ,

QnH(v−u
−1
+ )H(ũ−1

− ṽ+)Qn

tends to zero in the trace norm, and so

det(I −QnH(v−u
−1
+ )H(ũ−1

− ṽ+)Qn) → 1.

Thus, by the BOCG formula,

detTn(ϕ) = G(ϕ)nE(ϕ) · det
(
I −H(z−nv−u

−1
+ )H(ũ−1

− ṽ+z
−n)
)

∼ G(ϕ)nE(ϕ)

as n→ ∞.
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Toeplitz plus Hankel matrices

For matrix symbols ϕ and ψ, consider

PnT (ϕ) +H(ψ)Pn or (ϕj−k + ψj+k+1).

Their determinants arise naturally in applications:

▶ If ψ = −ϕ and if ϕ = gg̃ for appropriately defined g, the determinant
of PnT (ϕ) +H(ψ)Pn computes the average of det g(U) over the
subgroup of orthogonal matrices of size 2n with determinant 1.

▶ Other averages over the classical compact groups can be computed
using different choices of ψ.

These averages are important in RMT and number theory1

1see, e.g., Baik, Rains: Algebraic aspects of increasing subsequences (2001);
Conrey, Forrester, Snaith: Averages of ratios of characteristic polynomials for the
compact classical groups (2005); Conrey, Snaith: Applications of the L-functions
ratios conjectures (2007).
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Asymptotics of Toeplitz plus Hankel determinants

This is somewhat similar to the case of Toeplitz determinants.

Theorem 3 (Basor-Ehrhard-V)
Suppose ϕ satisfies the conditions necessary for the BOCG identity and
that H(ψ) is a trace class operator. Then

det(PnT (ϕ) +H(ψ)Pn) ∼ G(ϕ)nE(ϕ) det(I + T (ϕ)−1H(ψ))

where the constants G(ϕ) and E(ϕ) are defined as before.

While the above result yields a general asymptotic formula, it is not in
some sense complete. One would like a BOCG type formula and in the
scalar case it would be useful to have more concrete descriptions for the
constants.
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Under additional assumptions, we obtain a BOCG type formula.

These include the following cases (but also other “compatible pairs”):

(I) M(ϕ) = T (ϕ) +H(ϕ),

(II) M(ϕ) = T (ϕ)−H(ϕ),

(III) M(ϕ) = T (ϕ)−H(z−1ϕ),

Theorem 4 (Basor-Ehrhardt-V)
If ϕ = ϕ+ϕ− and ϕ is even, that is, ϕ(eiθ) = ϕ(e−iθ), then

detPnM(ϕ)Pn = G(ϕ)nE det(I +QnKQn),

where E = detT (ϕ−1
+ )M(ϕ)T (ϕ−1

− ) and K =M(ϕ−1
+ )T (ϕ+)− I.

In each case (I)–(III), K can be expressed as a Hankel operator.
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Finite sections of functions of Toeplitz operators

Theorem 5 (Basor-Ehrhardt-V)
If ϕ ∈ F , f is analytic on a region containing σ(T (ϕ)), and both T (f(ϕ))
and T (f(ϕ)−1) are invertible, then

detPnf(T (ϕ))Pn ∼ G(f(ϕ))n det f(T (ϕ))T ((f(ϕ)−1).

Proof. To show first that f(T (ϕ))− T (f(ϕ)) is trace class, note

T (ϕ)T (ϕ−1) = I −H(ϕ)H(ϕ̃−1)

is the identity plus a trace class operator, so that T (ϕ)−1 − T (ϕ−1) is
trace class. Write

f(T (ϕ))−T (f(ϕ)) = 1

2πi

∫
C
f(z) (z−T (ϕ))−1 dz− 1

2πi
T (

∫
C
f(z) (z−ϕ)−1 dz)

where C is any contour in C \ σ(T (ϕ)), and use an approximation
argument to show that f(T (ϕ))− T (f(ϕ)) is also trace class.

11 / 35



Proof cont. Since f(T (ϕ))− T (f(ϕ)) = T for some T ∈ S1, it follows
that

f(T (ϕ))T (f(ϕ))−1 − I = T ′ =⇒ f(T (ϕ))T (f(ϕ))−1 = I + T ′

for some T ′ ∈ S1. Thus, since T (f(ϕ))
−1 − T ((f(ϕ)−1) is also trace

class, it follows that f(T (ϕ))T ((f(ϕ))−1) = I + S for some S ∈ S1, so

det f(T (ϕ))T ((f(ϕ))−1)

is well defined.

Now write f(ϕ) = (f(ϕ))+(f(ϕ))− where (f(ϕ))± are the Wiener-Hopf
factors of f(ϕ) guaranteed to exist by the invertibility of T (f(ϕ)−1).

Notice

Pnf(T ((ϕ))Pn = PnT (f(ϕ))+)T (f(ϕ))
−1
+ )f(T (ϕ))T (f(ϕ)−1

− )T (f(ϕ)−)Pn.

Since the outside operators are lower and upper triangular, the RHS
equals

PnT (f(ϕ))+)PnT (f(ϕ))
−1
+ )f(T (ϕ))T (f(ϕ)−1

− )PnT (f(ϕ)−)Pn.

Taking determinants shows that detPnf(T ((ϕ))Pn equals

(det(f(ϕ)+)0)
n (det(f(ϕ)−)0)

n︸ ︷︷ ︸
=G(f(ϕ))n

detPnT (f(ϕ))
−1
+ )f(T (ϕ))T (f(ϕ)−1

− )Pn︸ ︷︷ ︸
→det f(T (ϕ))T ((f(ϕ)−1)

.
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Example 6
If f(z) = ez, then

detPne
T (ϕ)Pn ∼ G(eϕ)n det eT (ϕ)T (e−ϕ) as n→ ∞.

In the scalar case, the constant can be computed

det eT (ϕ)T (e−ϕ) = exp
(1
2

∞∑
k=1

kϕkϕ−k

)
.
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Symbols with singularities
When N = 1, the asymptotics are known for symbols possessing zeros,
(integrable) singularities, jumps, and nonzero winding:

▶ Ehrhardt 2001 using operator theory

▶ Deift, Its, and Krasovsky 2011 using RHPs

We are interested in the jump type singularities. Let N = 1 and

ϕ(t) = ϕ0(t)

R∏
k=1

uβk,τk(t) (2)

where ϕ0 is smooth with no zeros and no winding and

uβ,τ (t) = (−t/τ)β = exp(iβ arg(−t/τ)) = eiβ(θ−θ0−π), t = eiθ (3)

with τ = eiθ0 and |arg( · )| < π.

Notice that
uβ,τ (τ ± 0) = exp(∓iβπ)

has one jump at τ .
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Theorem 7 (Ehrhardt 2001; Deift, Its, Krasovsky 2011)
Suppose that

|Reβk − Reβj | < 1 and βk /∈ Z \ {0}

for 1 ≤ j, k ≤ R. Then

Dn[ϕ] ∼ G(ϕ0)
n nΩE, as n→ ∞, (4)

where E ̸= 0 can be described and Ω = −
∑R

k=1 β
2
k.

▶ Proved by Basor 1978 under the assumption

(a) Reβk = 0 for all 1 ≤ k ≤ R.

▶ Basor 1979 and Böttcher 1982 under the weaker assumption

(b) |Reβk| < 1/2 for all 1 ≤ k ≤ R.

▶ If |Reβk − Reβj | = 1 is attained for at least some j, k, then the
Fisher-Hartwig asymptotics breaks down and a generalized
asymptotic formula was proved by Deift, Its, Krasovsky 2011 using
RHPs.
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Symbol classes
To specify the smoothness condition, introduce two classes of functions,
which generalize C1+ε(T) of differentiable functions with a
Hölder-Lipschitz continuous derivative of order 0 < ε < 1.

Definition 8
Denote by PC1+ε(T; Γ) the set of functions a ∈ PC(T; Γ) that are is
continuously differentiable on T \ Γ with a derivative satisfying a Hölder
condition of order ε > 0 on each arc (τk, τk+1).
Furthermore, let

C1+ε
pw (T; Γ) = PC1+ε(T; Γ) ∩ C(T), (5)

(the continuous functions with a piecewise Hölder derivative).

Both PC1+ε(T; Γ) and C1+ε
pw (T; Γ) are Banach algebras with

∥a∥ = ∥a∥∞ +
R∑

k=1

sup
θk<x<y<θk+1

|a′(eix)− a′(eiy)|
|x− y|ε

,

where θR+1 = θ1 + 2π.
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Main theorem
Given a matrix B ∈ CN×N , define the matrix analog of uβ,τ by

uB,τ (t) = (−t/τ)B = exp(iB arg(−t/τ)), t ∈ T. (6)

Notice that
uB,τ (τ ± 0) = e∓πiB

has a single jump at τ .

Theorem 9 (Basor-Ehrhardt-V arXiv:2307.00825)
Let ϕ ∈ PC1+ε

N×N (T; Γ) and suppose that T (ϕ) is Fredholm of index zero.
(i) Then ϕ admits a unique representation of the form

ϕ(t) = ϕ0(t)ϕ1(t) · · ·ϕR(t) (7)

where ϕ0 ∈ C1+ε
pw (T; Γ)N×N is an invertible function with

wind(detϕ0) = 0 and

ϕk(t) = uBk,τk(t), 1 ≤ k ≤ R,

with the matrices Bk ∈ CN×N having the property that the real parts of

all their eigenvalues β
(1)
k , . . . , β

(N)
k are contained in I = (−1/2, 1/2).
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(ii) Moreover,

lim
n→∞

detTn(ϕ)

GnnΩ
= E (8)

where

G =exp

(
1

2π

∫ 2π

0

(log detϕ0)(e
ix) dx

)
, (9)

Ω =−
R∑

k=1

N∑
j=1

(β
(j)
k )2, (10)

E =

R∏
k=1

N∏
j=1

G(1 + β
(j)
k )G(1− β

(j)
k ) (11)

× det
(
T (ϕ)T (ϕR)

−1 · · ·T (ϕ1)−1T (ϕ−1
1 )−1 · · ·T (ϕ−1

R )−1T (ϕ−1)
)
,

where the Barnes G-function is defined by

G(1+z) = (2π)z/2e−(z+1)z/2−γEz2/2
∞∏
k=1

((
1 +

z

k

)k
e−z+z2/(2k)

)
(12)

with γE being Euler’s constant.
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If the description of E is of no interest, the main result can be simplified,
an the product representation (7) is not needed.

Corollary 10
Let ϕ ∈ PC1+ε(T; Γ)N×N and and suppose that T (ϕ) is Fredholm of
index zero.
Then

lim
n→∞

detTn(ϕ)

GnnΩ
= E

where

G = exp

(
1

2π

∫ 2π

0

(log c)(eix) dx

)
, (13)

Ω = −
R∑

k=1

trace
(
(Lk)

2
)
, (14)

Lk =
1

2πi
log
(
ϕ(τk + 0)−1ϕ(τk − 0)

)
and c(t) =

detϕ(t)∏R
k=1 uβk,τk(t)

Moreover, E ̸= 0 if and only if T (ϕ) and T (ϕ−1) are invertible.

Remark. Our results only give the actual asymptotic behavior of
detTn(ϕ) when E is nonzero (which is not easy to determine). 19 / 35



Comments on the main theorem
▶ The part involving the Barnes G-function in the constant E is

always nonzero.

▶ The second part of the constant E is a well-defined operator
determinant, i.e., it is the determinant of an operator of the form
identity plus a trace class operator.

▶ In particular, the Toeplitz operators T (ϕk) and T (ϕ
−1
k ), 1 ≤ k ≤ R,

appearing therein are invertible.

▶ Note that T (ϕ0) and T (ϕ
−1
0 ) do not occur in the product. In fact,

T (ϕ0), T (ϕ
−1
0 ), T (ϕ), or T (ϕ−1) need not be invertible. Our

assumptions only imply that these four operators are Fredholm of
index zero (equivalent to invertibility if N = 1).

▶ It is possible the operator-determinant (and hence E) is zero,
namely when T (ϕ) or T (ϕ−1) is not invertible.

▶ If ϕ has no jumps (R = 0,Γ = ∅), we get the Szegő-Widom limit
theorem. No other general explicit expression is known for the
operator determinant in the constant E in the block case (N ≥ 2).
For certain very special classes, E can be computed, e.g. the work
of A. Its et al. below (using RHPs).
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Approach

Based in part on the localization or separation theorem of Basor 1979
which states that when the symbols ϕ and ψ do not have common
singularities and satisfy certain invertibility and smoothness criteria off
the singularites, then

lim
n→∞

Dn[ϕψ]

Dn[ϕ]Dn[ψ]

= det
(
T−1(ϕ)T (ϕψ)T−1(ψ)

)(
T−1(ϕ̃)T (ϕ̃ψ)T−1(ψ̃)

)
.

Thus, our strategy is

(1) Compute limn→∞Dn[f ] for “canonical symbols” f .

(2) Prove a localization theorem that pieces together the asymptotics
from (1).
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Approach cont.

▶ It may seem Basor’s original idea should easily transform to the
matrix-valued symbol case.

▶ However, her localization theorem requires at each step that certain
semi-infinite Toeplitz operators be invertible.

▶ In the scalar case this is not an issue because if two invertible
Toeplitz operators have bounded symbols that have disjoint
singularities, then the Toeplitz operator with the product symbol is
also invertible.

▶ However in the block case, one can only say that the resulting
operator is Fredholm of index zero.

▶ Thus a new version of the localization theorem needs to be proved
that does not require the same invertibility conditions.
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Application: Entanglement entropy

Entanglement entropy of various quantum spin chain models, such as the
XX, XY and Ising chains, can be computed using the Szegő-Widom limit
theorem or determinants involving Toeplitz matrices generated by 2× 2
matrix-valued symbols that possess jump discontinuities.

The use of the Szegő-Widom limit theorem still requires the computation
of the constant in the expansion that is known only in rare cases, such as
the work of Its, Mezzadri and Mo, who computed the von Neumann
entropy of entanglement of the ground state of a wide family of
one-dimensional quantum spin chain models (incl. the XX and the XY
models).

The basic idea of how Toeplitz determinants enter the study of
entanglement is as follows.
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Consider the Hamiltonian

Hα = −α
2

∑
0≤j≤k≤M−1

(Ajk + γBjk)σ
x
j σ

x
k

k−1∏
l=j+1

σz
l

+(Ajk − γBjk)σ
y
j σ

y
k

k−1∏
l=j+1

σz
l

−
M−1∑
j=0

σz
j , (15)

where σx
j , σ

y
j , σ

z
j stand for the Pauli matrices which describe spin

operators on the jth lattice site of a chain with M sites, A is symmetric,
B is antisymmetric, and both are translation-invariant.

If we divide the system into two subchains, denoting the part containing
the first L spins by A and the second part containing the remaining
M − L spins by B with 1 ≪ L≪M , then the von Neumann entropy
S(ρA) is given by

S(ρA) = − trace ρA log ρA, (16)

where ρA = traceB ρAB and ρAB = |Ψg⟩⟨Ψg|.
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Its, Mezzadri, Mo used the following

S(ρA) = lim
ϵ→0

1

4πi

∫
Γ(ϵ)

e(1 + ϵ, λ)
d logDL(λ)

dλ
dλ, (17)

where Γ(ϵ) is the contour depicted in Figure 1 and oriented
counterclockwise,

e(x, y) = −x+ y

2
log

(
x+ y

2

)
− x− y

2
log

(
x− y

2

)
,

and DL(λ) is the Toeplitz determinant of some symbol ϕ depending on
the model.

-1 1 1+ϵ-1-ϵ

Figure: The contour Γ(ϵ) of the integral in (17).
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Previously, the entropy of the XY model and its generalization was
computed using the Szegő-Widom theorem when ϕ is nice enough.

However, in critical cases, such as when α = 1, ϕ has jumps and the
Szegő-Widom limit theorem no longer applies.

This motivates the study of the asymptotics of Toeplitz determinants
with piecewise continuous matrix-valued symbols.

Consider the symbol

ϕ(eiθ) =

(
iλ g(θ)

−g(θ)−1 iλ

)

where

g(θ) =
α cos θ − 1− iγα sin θ

|α cos θ − 1− iγα sin θ|
.

When α = 1 this symbol has a jump at θ = 0.
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The “jump ratio matrix” is

1

λ2 − 1

(
λ2 + 1 2λ

2λ λ2 + 1

)
.

The eigenvalues of the above are

λ+ 1

λ− 1
and

λ− 1

λ+ 1
.

Thus when λ is real and in (−1, 1) the corresponding βs have real parts
±1/2, which is not covered by our theorem, although it is possible the
results still hold.

At λ = ±1, the symbol is not invertible and thus also not covered by our
theorem. For other values of λ the asymptotics of the determinants are
covered by our results. Note that detϕ = 1− λ2 is a constant, and hence
the I-winding number of ϕ is zero.

Theorem 11 (Basor-Ehrhardt-V)
Suppose that λ /∈ [−1, 1]. Then

Dn[ϕ] ∼ (1− λ2)n nΩ E

where Ω = −2β2, E is given in (11), and β = 1
2πi log(

λ+1
λ−1 ) with the

appropriately chosen logarithms.

Therefore for λ /∈ [−1, 1], the asymptotics are given by

(1− λ2)n nΩ E

where Ω = −2β2, E is given in (11), and β = 1
2πi log(

λ+1
λ−1 ) with the

appropriately chosen logarithms.
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Another example where the jump discontinuities occur can be found in
the works of F. Ares, J.G Esteve, F. Falceto, A.R. de Queiroz where
similar entanglement problems related to spin chain models (such as
fermionic and Kitaev chains) are studied (non-rigorously). There the
symbol in question is of the form

ϕ(eiθ) = λI − 1

Λ(θ)
M(θ), (18)

where

M(θ) =

(
h+ 2 cos θ G(θ)

−G(θ) −h− 2 cos θ

)
, Λ(θ) =

√
(h+ 2 cos θ)2 + |G(θ)|2

G(θ) =


−i(π + θ), −π ≤ θ < −θ0
−iθ, −θ0 < θ < θ0

i(π − θ), θ0 < θ ≤ π

Again we can use our results to compute the asymptotics of Dn(ϕ).
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Special Session on Random Matrix Theory and Free Probability

Organized by Haakan Hedenmalm, Jani Virtanen, and
hopefully someone from free probability

IWOTA 2024 in Canterbury, England
August 12-16, 2024

https://blogs.kent.ac.uk/iwota2024

The topics include applications of operator theory, complex analysis, and
probability to random matrix theory, mathematical physics, and hopefully
connections and an exchange of ideas between these areas and free
probability.

For further info and to participate,
contact Jani Virtanen at jani.virtanen@helsinki.fi.
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Preliminary results: pure jumps

For pure jumps, via Jordan normal forms, diagonal forms, and upper
triangular forms, it can be shown the matrix case completely reduces to
the scalar case, for which these results are known.

Proposition 12
Assume that the eigenvalues β(1), . . . , β(N) of an N ×N matrix B have
real parts in I = (−1/2, 1/2). Then the operators T (uB,τ ) and T (ũB,τ )
are invertible on (ℓ2)N and the sequence Tn(uB,τ ) is stable. Furthermore,

detTn(uB,τ ) = EnΩ(1 + o(1)), as n→ ∞

with

Ω = −
N∑

k=1

(β(k))2, E =

N∏
k=1

G(1 + β(k))G(1− β(k)),

where G(z) stands for the Barnes G-function (12).
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Localization result

Theorem 13
Assume ϕ = ϕ0ϕ1 · · ·ϕR where ϕk = uBk,τk , 1 ≤ k ≤ R, and such that
the eigenvalues of Bk ∈ CN×N have real parts in the interval
I = (−1/2, 1/2). Moreover, suppose also that ϕ0 ∈ C1+ε

pw (T; Γ)N×N is

such that both T (ϕ0) and T (ϕ̃0) are invertible on (ℓ2)N . Then

lim
n→∞

detTn(ϕ)

G[ϕ0]n
∏R

k=1 detTn(ϕk)
= E (19)

where E = E1E2E3 and

E1 = detT (ϕ)T (ϕR)
−1 · · ·T (ϕ0)−1,

E2 = detT (ϕ̃)T (ϕ̃R)
−1 · · ·T (ϕ̃0)−1,

E3 = detT (ϕ0)T (ϕ
−1
0 ),

and G[ϕ0] is defined in (1).
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Proof of the localization result
It can be shown H(a)H(b̃) and H(ã)H(b) are trace class when
a = ϕ0 · · ·ϕk−1 and b = ϕk, 1 ≤ k ≤ R (see Lemma 4.2).

Thus, Widom’s formula T (ab) = T (a)T (b) +H(a)H(b̃) shows that

K1 = T (ϕ)− T (ϕ0)T (ϕ1) · · ·T (ϕR) (20)

K2 = T (ϕ̃)− T (ϕ̃0)T (ϕ̃1) · · ·T (ϕ̃R) (21)

are trace class. Define

Pn(f0, f1, . . .) = (f0, f1, . . . , fn−1, 0, 0, . . .)

Wn(f0, f1, . . .) = (fn−1, fn−2, . . . , f0, 0, 0, . . .).

Using another formula of Widom

Tn(ab) = Tn(a)Tn(b) + PnH(a)H(b̃)Pn +WnH(ã)H(b)Wn

and induction, we can show that

Tn(ϕ) = Tn(ϕ0)Tn(ϕ1) · · ·Tn(ϕR) + PnK1Pn +WnK2Wn + Cn (22)

where Cn tends to zero in the trace norm.
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Because T (ϕ0) and T (ϕ̃0) are invertible, we know that Tn(ϕ0) and
Tn(ϕ̃0) are stable. Also, by Proposition 12, Tn(ϕk) and Tn(ϕ̃k) are
stable. Thus, for j = 0, . . . , R,

Tn(ϕj)
−1 → T (ϕj) and Tn(ϕ̃j)

−1 → T (ϕ̃j)

strongly. Put
An = Tn(ϕ)Tn(ϕR)

−1 · · ·Tn(ϕ0)−1.

Using the second Widom’s formula, (20), (21), and (22), we get

An = Pn + PnK1PnTn(ϕR)
−1 · · ·Tn(ϕ0)−1Pn

+WnK2PnTn(ϕ̃R)
−1 · · ·Tn(ϕ̃0)−1Wn + C ′

n.

Using the strong convergence of the inverses (and their adjoints),

An = Pn + PnL1Pn +WnL2Wn + Cn

with certain Cn → 0 in trace norm and

L1 = K1T (ϕR)
−1 · · ·T (ϕ0)−1 = T (ϕ)T (ϕR)

−1 · · ·T (ϕ0)−1 − I,

L2 = K2T (ϕ̃R)
−1 · · ·T (ϕ̃0)−1 = T (ϕ̃)T (ϕ̃R)

−1 · · ·T (ϕ̃0)−1 − I,

which are both trace class operators.
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Taking the determinant of An and passing to the limit gives the left side
of the following, while using Lemma 3.5, it follows that the limit equals
the product of two well-defined operator determinants,

lim
n→∞

detTn(ϕ)∏R
k=0 detTn(ϕk)

= lim
n→∞

detAn = det(I + L1) det(I + L2).

Using the previous expressions for L1 and L2, we get

lim
n→∞

detTn(ϕ)∏R
k=0 detTn(ϕk)

= E1E2

where

E1 = detT (ϕ)T (ϕR)
−1 · · ·T (ϕ0)−1,

E2 = detT (ϕ̃)T (ϕ̃R)
−1 · · ·T (ϕ̃0)−1.

It remains to apply the Szegő-Widom limit theorem to detTn(ϕ0).
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Removing the invertibility assumption

It remains to remove the extra assumption that T (ϕ0) and T (ϕ
−1
0 ) are

invertible from the previous result and replace it by a weaker condition on
ϕ0.

The proof of the Szegő-Widom limit theorem given by Widom 1976 gets
around this problem by using his elegant perturbation result:

▶ If T (ϕ) is a Fredholm operator with index zero one can find a matrix
Laurent polynomial q such that T (ϕ+ λq) is invertible whenever
0 < |λ| < ε.

A similar argument may also work in our case, but it seems that one
would need a result to simultaneously perturb T (ϕ) and T (ϕ̃) with the
same q to make them both invertible. Such a result has not yet been
established.

Our approach to remove the invertibility condition is rather different and
technical.

Open problem. Precise smoothness on ϕ0 that is required for the
asymptotics. This seems open even when N = 1.
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