Soft Riemann-Hilbert problems and planar orthogonal polynomials

Haakan Hedenmalm

14 December 2023

LEVERHULME
TRUST \qquad

Bergman kernel asymptotics and microlocal analysis

The Bergman (Hilbert) space $\mathcal{H}=A^{2}(\Omega, w)$ consists of the holomorphic functions $f: \Omega \rightarrow \mathbb{C}$ with

$$
\|f\|_{\mathcal{H}}^{2}=\int_{\mathbb{C}}|f|^{2} w \mathrm{dA}<+\infty
$$

where dA denotes (normalized) are measure. Here, $\Omega \subset \mathbb{C}$ and $w: \Omega \rightarrow \mathbb{R}_{+}$is a continuous weight function. We could consider later on Ω as a subdomain of a Riemann surface, or a higher-dimensional complex manifold. The Bergman kernel associated with \mathcal{H} a domain Ω and a weight $\omega>0$ is the function $\mathrm{k}_{\mathcal{H}}(\cdot, \cdot)$ with

$$
\forall f \in \mathcal{H}: \quad f(z)=\left\langle f, \mathrm{k}_{\mathcal{H}}(\cdot, z)\right\rangle_{\mathcal{H}}, \quad z \in \Omega .
$$

The study of Bergman kernels has a nontrivial intersection with microlocal analysis (Boutet de Monvel, Sjöstrand, Berman-Berndtsson-Sjöstrand et al). Here, we consider a nonlocal instance when the analysis takes place along a loop in place of a point.

Commentary on the microlocal methods

In the work of Berman-Berndtsson-Sjöstrand the following operator identity is central:

$$
\begin{equation*}
S \nabla=2 m M_{z-w} S, \tag{1}
\end{equation*}
$$

where

$$
\nabla=\partial_{\theta}+2 m M_{z-w}, \quad S=\exp \left(\frac{1}{2 m} \partial_{w} \partial_{\theta}\right)
$$

Here, w and θ are the variables, and we may fix wlog that $z:=0$. The identity (1) permits us to test for the negligible amplitudes $a=\nabla A$ by applying the diffusion operator S. In this setting, m is a positive parameter which tends to infinity, M_{z-w} is multiplication by $z-w$, and (w, θ) is a deformation of (w, \bar{w}) as holomorphic coordinates. This works well in the local setting of a point $z=0$, but to handle the nonlocal setting of a loop we skip the search for S and look directly for the potential A for a given amplitude a. This search fits in with the matrix $\bar{\partial}$-problem of Its and Takhtajan [6], which explicitly asks for a potential.

The setting: the confining potential Q

Growth requirement

We require that $Q: \mathbb{C} \rightarrow \mathbb{R}$ is C^{2}-smooth, and that

$$
Q(z) \geq\left(1+\varepsilon_{0}\right) \log (1+|z|)+\mathrm{O}(1)
$$

holds in the complex plane \mathbb{C}, for some $\varepsilon_{0}>0$.
Subharmonic function classes
For $\tau>0$, we let $\operatorname{Subh}_{\tau}(\mathbb{C})$ stand for the collection of subharmonic functions $u: \mathbb{C} \rightarrow \mathbb{R} \cup\{-\infty\}$ with growth controlled by

$$
u(z) \leq \tau \log (1+|z|)+\mathrm{O}(1)
$$

at infinity.
Obstacle problem
For $0<\tau<1+\varepsilon_{0}$, let \breve{Q}_{τ} be given pointwise by

$$
\check{Q}_{\tau}(z):=\sup \left\{q(z): q \in \operatorname{Subh}_{\tau}(\mathbb{C}), q \leq Q \text { on } \mathbb{C}\right\} .
$$

Properties of the solution to the obstacle problem

Growth
Trivially, $\check{Q}_{\tau} \leq Q$ everywhere. Also,

$$
\check{Q}_{\tau}=\tau \log (|z|+1)+\mathrm{O}(1)
$$

at infinity.
Smoothness
The function \check{Q}_{τ} is $C^{1,1}$-smooth on \mathbb{C}, and harmonic in $\mathbb{C} \backslash \mathcal{S}_{\tau}$, where

$$
\mathcal{S}_{\tau}:=\left\{z \in \mathbb{C}: \check{Q}_{\tau}(z)=Q(z)\right\}
$$

is the contact set, also called the droplet. The droplet is a compact subset of \mathbb{C}.

Our setting

We will concentrate on the parameter value $\tau=1$.

Our assumptions

The set \mathcal{S}_{1} is diffeomorphic to the closed disk $\overline{\mathbb{D}}$, where $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$. Moreover, the boundary $\Gamma_{1}:=\partial \mathcal{S}_{1}$ is a closed real-analytically smooth loop. In a neighborhood of Γ_{1}, Q is real-analytically smooth, and $\Delta Q>0$ holds on the same neighborhood.

Remark

It is good to put these assumptions in perspective. If, e.g., we were to assume that Q is real-analytically smooth on \mathbb{C}, with $\Delta Q>0$ everywhere, it would not follow from this that \mathcal{S}_{1} is simply connected with real-analytically smooth boundary loop. Instead, a theorem of Sakai (Acta Math 1991) guarantees that under those conditions, the boundary consists of isolated points and pieces of real-analytic arcs which may meet at classified singularities (cusps or kissing points).

Exponentially varying weights

Exponentially varying weights

We consider the weights $w_{m Q}:=\mathrm{e}^{-2 m Q}$ and the weighted spaces $L_{m Q}^{2}:=L^{2}\left(\mathbb{C}, w_{m Q} \mathrm{dA}\right)$.
Then by the growth assumption on Q,

$$
\int_{\mathbb{C}}(1+|z|)^{2 n} \mathrm{e}^{-2 m Q(z)} \mathrm{dA}(z) \leq C \int_{\mathbb{C}}(1+|z|)^{2 n-2\left(1+\varepsilon_{0}\right) m} \mathrm{dA}(z)
$$

which gives that if p is a polynomial of degree n, then $p \in L_{m Q}^{2}$ provided that $n<\left(1+\varepsilon_{0}\right) m-1$. We recall that a polynomial is said to be monic if its leading coefficient equals 1 .
Orthogonal polynomials in $L_{m Q}^{2}$
We let $P_{0}, P_{1}, P_{2}, \ldots$ denote the monic orthogonal polynomials in $L_{m Q}^{2}$. This may be a finite sequence.

The problem

Asymptotic analysis of $P=P_{m}$
We focus on degree $n=m$, and ask for an asymptotic formula for $P=P_{m}$ as $m \rightarrow+\infty$.
We notice that $m<\left(1+\varepsilon_{0}\right) m-1$ holds if and only if $\varepsilon_{0} m>1$, which is the case for big enough m.

The soft Riemann-Hilbert problem

The soft Riemann-Hilbert problem
$Y=Y(z)$ is the 1×2 matrix

$$
Y:=(P, \quad \Phi)
$$

and $W_{m Q}$ is the soft jump matrix

$$
W_{m Q}:=\left(\begin{array}{cc}
0 & \mathrm{e}^{-2 m Q} \\
0 & 0
\end{array}\right)
$$

The soft Riemann-Hilbert problem is the equation

$$
\begin{equation*}
\bar{\partial} Y=\bar{Y} W_{m Q} \tag{2}
\end{equation*}
$$

coupled with the asymptotics at infinity

$$
\begin{equation*}
Y=\left(z^{n}+\mathrm{O}\left(|z|^{n-1}\right), \quad \mathrm{O}\left(|z|^{-n-1}\right)\right) . \tag{3}
\end{equation*}
$$

Analysis of the soft Riemann-Hilbert problem

We calculate

$$
\bar{Y} W_{m Q}=\left(\begin{array}{ll}
\bar{P}, & \bar{\Phi}
\end{array}\right)\left(\begin{array}{cc}
0 & \mathrm{e}^{-2 m Q} \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0, & \bar{P} \mathrm{e}^{-2 m Q}
\end{array}\right) .
$$

On the other hand,

$$
\bar{\partial} Y=(\bar{\partial} P, \quad \bar{\partial} \Phi),
$$

so the relation (2) amounts to

$$
\bar{\partial} P=0, \quad \bar{\partial} \Phi=\bar{P} \mathrm{e}^{-2 m Q} .
$$

In particular, P is entire. Actually, from (3) we see that P is a monic polynomial of degree n. The second condition in (3) asserts that

$$
\Phi(z)=\mathrm{O}\left(|z|^{-n-1}\right) \quad \text { as } \quad|z| \rightarrow+\infty .
$$

We shall see that this condition expresses that P is orthogonal to all polynomials of lower degree than n in the space $L_{m Q}^{2}$.

Analysis of the soft Riemann-Hilbert problem, II

We know that P is a monic polynomial of degree n, and that

$$
\bar{\partial} \Phi=\bar{P} \mathrm{e}^{-2 m Q} .
$$

This equation is solved by convolution with the fundamental solution for the $\bar{\partial}$ operator:

$$
\Phi(z)=\int_{\mathbb{C}} \frac{\bar{P}(\xi) \mathrm{e}^{-2 m Q(\xi)}}{z-\xi} \mathrm{dA}(\xi) .
$$

Finite geometric series expansion gives that

$$
\frac{1}{z-\xi}=\frac{1}{z}+\frac{\xi}{z^{2}}+\cdots+\frac{\xi^{n}}{z^{n+1}}+\frac{\xi^{n+1}}{z^{n+1}(z-\xi)},
$$

so that

$$
\begin{aligned}
& \Phi(z)=\int_{\mathbb{C}} \frac{\bar{P}(\xi) \mathrm{e}^{-2 m Q(\xi)}}{z-\xi} \mathrm{dA}(\xi)= \\
& \sum_{j=0}^{n} z^{-j-1} \int_{\mathbb{C}} \xi^{j} \bar{P}(\xi) \mathrm{e}^{-2 m Q(\xi)} \mathrm{dA}(\xi) \\
&+z^{-n-1} \int_{\mathbb{C}} \frac{\xi^{n+1} \bar{P}(\xi) \mathrm{e}^{-2 m Q(\xi)}}{z-\xi} \mathrm{dA}(\xi) .
\end{aligned}
$$

Analysis of the soft Riemann-Hilbert problem, III

Proposition

If $n \leq\left(1+\varepsilon_{0}\right) m-2$, then

$$
\Phi(z)=\mathrm{O}\left(|z|^{-n-1}\right) \text { at } \infty \Longleftrightarrow \forall j=0, \ldots, n-1:\left\langle z^{j}, P\right\rangle_{m Q}=0 .
$$

In other words, under the decay condition on Φ, P is the monic degree n orthogonal polynomial in $L_{m Q}^{2}$.

Ad-hoc ansatz for P

Let \mathcal{Q} be the bounded holomorphic function in $\mathbb{C} \backslash \mathcal{S}_{1}$ with $\operatorname{Re} \mathcal{Q}=Q$ on Γ_{1} and $\operatorname{Im} \mathcal{Q}(\infty)=0$. It extends analytically across Γ_{1}. Also, let $\phi: \mathbb{C} \backslash \mathcal{S}_{1} \rightarrow \mathbb{D}_{\mathrm{e}}$ be the conformal mapping that preserves infinity with $\phi^{\prime}(\infty)>0$.

The ansatz for P
We fix $n=m$, and put

$$
P=c_{m} \phi^{m} \mathrm{e}^{m \mathcal{Q}} F
$$

where $c_{m}:=\left(\phi^{\prime}(\infty)^{-m-1} \mathrm{e}^{-m \mathcal{Q}(\infty)}>0\right.$. We normalize $F(\infty)=\phi^{\prime}(\infty)$.

Remark

The functions on the right-hand side are not well-defined in the entire plane, while P is. The expressions on the right-hand side are all holomorphic in $\mathbb{C} \backslash \mathcal{S}_{1}$ and extend across Γ_{1}.

The ansatz for Φ

The function \breve{Q}_{1} is harmonic in $\mathbb{C} \backslash \mathcal{S}_{1}$. In our setting the restriction to $\mathbb{C} \backslash \mathcal{S}_{1}$ possesses a harmonic extension across Γ_{1}, which we call \breve{Q}_{1}. Then

$$
\breve{Q}_{1}=\operatorname{Re} \mathcal{Q}+\log |\phi| .
$$

We put $R:=Q-\breve{Q}_{1}$, which has quadratic growth around Γ_{1}. Let

$$
\operatorname{erf}(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \mathrm{e}^{-t^{2} / 2} \mathrm{~d} t
$$

be the standard Gaussian error function.
The ansatz for Φ
We put

$$
\Phi=c_{m} m^{-\frac{1}{2}} \phi^{-m} \mathrm{e}^{-m \mathcal{Q}}\left\{A \operatorname{erf}\left(2 m^{\frac{1}{2}} V\right)+(2 \pi m)^{-\frac{1}{2}} B \chi_{1} \mathrm{e}^{-2 m R}\right\},
$$

where $V^{2}=R$ near $\Gamma_{1} . V$ is positive in the exterior to Γ_{1}, and negative in the interior. Moreover, A is holomorphic in $\mathbb{C} \backslash \mathcal{S}_{1}$ and across Γ_{1}.

Asymptotic expansions

The functions F, A, B are supposed to have asymptotic expansions in m^{-1} :

$$
F=F_{0}+m^{-1} F_{1}+m^{-2} F_{2}+\ldots,
$$

where each F_{j} is fixed independently of m. The same for A and B of course. No convergence is assumed, however. What is meant is that for each positive integer N,

$$
F=F_{0}+m^{-1} F_{1}+\ldots+m^{-N} F_{N}+\mathrm{O}\left(m^{-N-1}\right)
$$

Here, each F_{j} is holomorphic and bounded in $\mathbb{C} \backslash \mathcal{S}_{1}$ and across Γ_{1}. Likewise, in the expansion

$$
A=A_{0}+m^{-1} A_{1}+\ldots+m^{-N} A_{N}+\mathrm{O}\left(m^{-N-1}\right)
$$

each A_{j} is holomorphic and bounded in $\mathbb{C} \backslash \mathcal{S}_{1}$ and across Γ_{1}. However, the corresponding terms B_{j} associated with B are only smooth in a neighborhood of Γ_{1}.

The basic equation

The function χ_{1} is a C^{∞}-smooth cut-off function, which equals 1 in a fixed neighborhood of Γ_{1}, and vanishes off a slightly bigger neighborhood. We put $B^{1}=B \chi_{1}$, and calculate:

$$
\bar{\partial} \Phi=(2 / \pi)^{\frac{1}{2}} c_{m} \phi^{-m} \mathrm{e}^{-m \mathcal{Q}}\left(A \bar{\partial} V-B^{1} \bar{\partial} R+\frac{1}{2} m^{-1} \bar{\partial} B^{1}\right) \mathrm{e}^{-2 m R}
$$

in a neighborhood of Γ_{1}. On the other hand, we observe that

$$
\bar{P} \mathrm{e}^{-2 m Q}=\bar{F} \phi^{-m} \mathrm{e}^{-m \mathcal{Q}} \mathrm{e}^{-2 m R} .
$$

Equality of these two expressions reduces to the equation (since $V^{2}=R$)

$$
\begin{equation*}
A \bar{\partial} V-2 B V \bar{\partial} V+\frac{1}{2} m^{-1} \bar{\partial} B=(\pi / 2)^{\frac{1}{2}} \bar{F} \tag{4}
\end{equation*}
$$

in a small neighborhood of Γ_{1}, as $B^{1}=B \chi_{1}=B$ there.

The first equation

We restrict to Γ_{1} and use that $V=0$ there:

$$
\begin{equation*}
A \bar{\partial} V+\frac{1}{2} m^{-1} \bar{\partial} B=(\pi / 2)^{\frac{1}{2}} \bar{F} \quad \text { on } \quad \Gamma_{1} . \tag{5}
\end{equation*}
$$

where it is given that

$$
F(z)=\phi^{\prime}(\infty)+\mathrm{O}\left(|z|^{-1}\right), \quad A(z)=\mathrm{O}\left(|z|^{-1}\right) .
$$

Remark

The equation (5) amounts to a Riemann-Hilbert problem in an alternative coordinate chart (where the unit circle \mathbb{T} replaces Γ_{1}).

The second equation

For the moment we observe that the first equation involves an unknown B, but luckily it is of higher order, so it does influence the first terms A_{0} and F_{0} which get determined right away by the Riemann-Hilbert problem. The original equation (4) contains more information than (5) alone. Suppose for the moment we were able to solve the equation (5). Then we may solve for B using (4):

$$
\begin{equation*}
B=\frac{A \bar{\partial} V+\frac{1}{2} m^{-1} \bar{\partial} B-(\pi / 2)^{\frac{1}{2}} \bar{F}}{2 V \bar{\partial} V} \tag{6}
\end{equation*}
$$

Since V vanishes only to degree 1 with $\bar{\partial} V \neq 0$ along Γ_{1}, the division produces a smooth function, and if the numerator is real-analytic across Γ_{1}, so is the ratio and hence B.

The iteration

The combination of the Riemann-Hilbert "jump" problem (5) and the smooth division problem (6) supplies the full algorithm. We may liken it to the Newton algorithm for finding the zeros of polynomials: once we are in the ballpark the algorithm gets us ever closer to the solution. We use (5) with $B=0$ to get the initial A and F. Next, we apply (6) with the previous choices of A, F, and B to get an updated choice for B. This new B is then implemented into (5) to get improved A and F. Proceeding iteratively we obtain the full asymptotic expansion.

Transfer to the unit circle

We write $\varphi=\varphi_{1}:=\phi_{1}^{-1}: \mathbb{D}_{\mathrm{e}} \rightarrow \mathbb{C} \backslash \mathcal{S}_{1}$ for the indicated conformal mapping, tacitly extended across \mathbb{T}, and consider

$$
\mathrm{R}:=R \circ \varphi, \quad \mathrm{~V}:=V \circ \varphi, \quad \Psi:=\Phi \circ \varphi,
$$

and the associated functions

$$
\mathrm{A}:=A \circ \varphi, \quad \mathrm{~B}:=B \circ \varphi, \quad \mathrm{~F}:=\varphi^{\prime} F \circ \varphi .
$$

Here, A and F are holomorphic functions in a neighborhood of $\overline{\mathbb{D}}_{\mathrm{e}}$ with asymptotics in accordance with the first equation:

$$
\mathrm{F}(z)=1+\mathrm{O}\left(|z|^{-1}\right), \quad \mathrm{A}(z)=\mathrm{O}\left(|z|^{-1}\right),
$$

as $|z| \rightarrow+\infty$. In particular, F is bounded with value 1 at infinity, while A is bounded and vanishes at infinity.

The first and second equations in new coordinates

In terms of these functions, the equation (4) reads

$$
\mathrm{A} \bar{\partial} \mathrm{~V}-2 \mathrm{BV} \bar{\partial} \mathrm{~V}+\frac{1}{2} m^{-1} \bar{\partial} \mathrm{~B}=(\pi / 2)^{\frac{1}{2}} \overline{\mathrm{~F}} .
$$

Just as before, we split the equation in two separate steps:

$$
\mathrm{A} \bar{\partial} \mathrm{~V}+\frac{1}{2} m^{-1} \bar{\partial} \mathrm{~B}=(\pi / 2)^{\frac{1}{2}} \overline{\mathrm{~F}} \quad \text { on } \quad \mathbb{T},
$$

and

$$
\mathrm{B}=\frac{\mathrm{A} \bar{\partial} \hat{\mathrm{R}}+\frac{1}{2} m^{-1} \bar{\partial} \mathrm{~B}-(\pi / 2)^{\frac{1}{2}} \overline{\mathrm{~F}}}{2 \mathrm{~V} \bar{\partial} \mathrm{~V}}
$$

Remark
We refer to these as steps I and II, which we analyze below in some detail.

The solution algorithm: preliminaries

Local analysis around the circle \mathbb{T} shows that

$$
\begin{equation*}
\bar{\partial} \mathrm{V}=2^{-\frac{1}{2}}(\Delta \mathrm{R})^{\frac{1}{2}} \zeta \quad \text { on } \mathbb{T} . \tag{7}
\end{equation*}
$$

Here and in the sequel, ζ stands for the coordinate function $\zeta(z)=z$. Let $\mathbf{H}_{\mathbb{D}_{\mathrm{e}}}$ be the exterior Herglotz operator

$$
\mathbf{H}_{\mathbb{D}_{\mathrm{e}}} f(z):=\int_{\mathbb{T}} \frac{z+\zeta}{z-\zeta} f(\zeta) \mathrm{d} s(\zeta), \quad z \in \mathbb{D}_{\mathrm{e}}
$$

where ds is arclength measure, normalized so that the circle \mathbb{T} gets mass 1. The characterizing property is that the real part of $\mathbf{H}_{\mathbb{D}_{\mathrm{e}}} f$ has boundary value equal to f. We will also need the projection operators

$$
\mathbf{P}_{H_{-}^{2}} f=\frac{1}{2} \mathbf{H}_{\mathbb{D}_{\mathrm{e}}} f+\frac{1}{2}\langle f\rangle_{\mathbb{T}}, \quad \mathbf{P}_{H_{-, 0}^{2}} f=\frac{1}{2} \mathbf{H}_{\mathbb{D}_{\mathrm{e}}} f-\frac{1}{2}\langle f\rangle_{\mathbb{T}},
$$

where $\langle f\rangle_{\mathbb{T}}$ is the mean of f with respect to arc length measure.

The solution algorithm: preliminaries II

We introduce the function H_{R} given by

$$
\mathrm{H}_{\mathrm{R}}:=\pi^{-\frac{1}{4}} \exp \left(\frac{1}{4} \mathbf{H}_{\mathbb{D}_{\mathrm{e}}}[\log \Delta \mathrm{R}]\right)
$$

which is a bounded (and bounded away from 0) holomorphic function in \mathbb{D}_{e} with holomorphic extension across \mathbb{T}. Then $\left|\mathrm{H}_{\mathrm{R}}\right|^{2}=\pi^{-\frac{1}{2}}(\Delta \mathrm{R})^{\frac{1}{2}}$ holds on \mathbb{T}, and the value at infinity equals

$$
\mathrm{H}_{\mathrm{R}}(\infty)=\pi^{-\frac{1}{4}} \exp \left(\frac{1}{4}\langle\log \Delta \mathrm{R}\rangle_{\mathbb{T}}\right)>0
$$

It now follows that

$$
\bar{\partial} \mathrm{V}=2^{-\frac{1}{2}} \zeta(\Delta \mathrm{R})^{\frac{1}{2}}=(\pi / 2)^{\frac{1}{2}} \zeta\left|\mathrm{H}_{\mathrm{R}}\right|^{2} \quad \text { on } \mathbb{T} .
$$

The solution algorithm: step I

The step I equation may be written as

$$
\frac{\mathrm{F}}{\mathrm{H}_{\mathrm{R}}}=\overline{\zeta \mathrm{AH}_{\mathrm{R}}}+(2 \pi)^{-\frac{1}{2}} m^{-1} \frac{\partial \overline{\mathrm{~B}}}{\mathrm{H}_{\mathrm{R}}} \text { on } \mathbb{T} \text {. }
$$

From the data, we see that $\mathrm{F} / \mathrm{H}_{\mathrm{R}}$ is bounded and holomorphic in \mathbb{D}_{e}, so that $\mathrm{F} / \mathrm{H}_{\mathrm{R}} \in \mathrm{H}_{-}^{2}$, whereas $\overline{\zeta \mathrm{AH}_{\mathrm{R}}}$ extends by Schwarz reflection to a bounded holomorphic function on \mathbb{D}, so that $\overline{\zeta \mathrm{AH}_{\mathrm{R}}} \in H^{2}$. This means that the step I equation is a Riemann-Hilbert problem with jump $(2 \pi)^{-\frac{1}{2}} m^{-1} \partial \overline{\mathrm{~B}} / \mathrm{H}_{\mathrm{R}}$, a situation which can be handled.

Step I solution
We have, for a constant a_{1},

$$
\frac{\mathrm{F}}{\mathrm{H}_{\mathrm{R}}}=a_{1}+\frac{(2 \pi)^{-\frac{1}{2}}}{m} \mathbf{P}_{H_{-, 0}^{2}}\left[\frac{\partial \overline{\mathrm{~B}}}{\mathrm{H}_{\mathrm{R}}}\right],
$$

and

$$
\zeta \mathrm{AH}_{\mathrm{R}}=\bar{a}_{1}-\frac{(2 \pi)^{-\frac{1}{2}}}{m} \mathbf{P}_{H_{-}^{2}}\left[\frac{\bar{\partial} \mathrm{~B}}{\overline{\mathrm{H}}_{\mathrm{R}}}\right]
$$

The constant a_{1}

The constant a_{1}

$$
a_{1}=\left\langle\frac{\mathrm{F}}{\mathrm{H}_{\mathrm{R}}}\right\rangle_{\mathbb{R}}=\frac{\mathrm{F}(\infty)}{\mathrm{H}_{\mathrm{R}}(\infty)}=\frac{1}{\mathrm{H}_{\mathrm{R}}(\infty)}=\pi^{\frac{1}{4}} \exp \left(-\frac{1}{4}(\log \Delta \mathrm{R}\rangle_{\mathbb{T}}\right)>0,
$$

since $\mathrm{F}(\infty)=1$ is our assumed normalization and $\mathrm{H}_{\mathrm{R}}(\infty)$ is known.

The solution algorithm: step II

We write

$$
\begin{equation*}
\bar{\partial} \mathrm{V}=(\pi / 2)^{\frac{1}{2}} \zeta\left|\mathrm{H}_{\mathrm{R}}\right|^{2}+2 W_{\mathrm{R}} \mathrm{~V} \bar{\partial} \mathrm{~V}, \tag{8}
\end{equation*}
$$

where the expression W_{R} is real-analytic near \mathbb{T}. We let $\mathbf{U}_{\mathbb{D}_{\mathrm{e}}}$ stand for the harmonic extension to \mathbb{D}_{e} of the restriction to \mathbb{T} of a given smooth function. We now find from Step I that

$$
\zeta \mathrm{AH}_{\mathrm{R}}=\mathbf{U}_{\mathbb{D}_{\mathrm{e}}}\left[\zeta \mathrm{AH} H_{\mathrm{R}}\right]=\frac{\overline{\mathrm{F}}}{\overline{\mathrm{H}}_{\mathrm{R}}}-(2 \pi)^{-\frac{1}{2}} m^{-1} \mathbf{U}_{\mathbb{D}_{\mathrm{e}}}\left[\frac{\bar{\partial} \mathrm{~B}}{\overline{\mathrm{H}}_{\mathrm{R}}}\right]
$$

holds in a neighborhood of the closed exterior disk $\overline{\mathbb{D}}_{\mathrm{e}}$, in the sense that each term extends harmonically across \mathbb{T}.

Step II solution

$$
\mathrm{B}=\mathrm{A} W_{\mathrm{R}}+\frac{1}{2 m} \frac{\bar{\partial} \mathrm{~B}-\overline{\mathrm{H}}_{\mathrm{R}} \mathbf{U}_{\mathbb{D}_{\mathrm{e}}}\left(\bar{\partial} \mathrm{~B} / \overline{\mathrm{H}}_{\mathrm{R}}\right)}{2 \mathrm{~V} \bar{\partial} \mathrm{~V}}
$$

Combining Steps I and II

We first apply Step I with B $=0$ to get candidates for A and F . The next step is to apply Step II with the given A to get a better B. This better B we again implement in Step I, to get new and improved A and F. Again we apply Step II to get an even better B. We intermittently apply steps I and II and zoom in on the solution.

The equation for the function B alone

It is more convenient to work with a single equation for the function B alone (get rid of A).

The equation for B

$$
\mathrm{B}=a_{1} \frac{W_{\mathrm{R}}}{\zeta \mathrm{H}_{\mathrm{R}}}+m^{-1}\left(\frac{\bar{\partial} \mathrm{~B}-\overline{\mathrm{H}}_{\mathrm{R}} \mathbf{U}_{\mathbb{D}_{\mathrm{e}}}\left[\bar{\partial} \mathrm{~B} / \overline{\mathrm{H}}_{\mathrm{R}}\right]}{4 \mathrm{~V} \overline{\mathrm{\partial}} \mathrm{~V}}-(2 \pi)^{-\frac{1}{2}} \frac{W_{\mathrm{R}}}{\zeta \mathrm{H}_{\mathrm{R}}} \mathbf{P}_{\mathrm{H}_{-}^{2}}\left[\frac{\bar{\partial} \mathrm{~B}}{\overline{\mathrm{H}}_{\mathrm{R}}}\right]\right) .
$$

This is an operator equation of the type
$\mathrm{B}=\mathrm{B}_{0}+m^{-1} \mathbf{T}[\mathrm{~B}]$, where $\quad \mathrm{B}_{0}:=a_{1} \frac{W_{\mathrm{R}}}{\zeta \mathrm{H}_{\mathrm{R}}} \quad$ and $\quad \mathbf{T}[\mathrm{B}]:=\mathrm{L}\left[\bar{\partial} \mathrm{B} / \overline{\mathrm{H}}_{\mathrm{R}}\right]$, and the operator \mathbf{L} is given by

$$
\mathbf{L}[f]:=\overline{\mathrm{H}}_{\mathrm{R}} \frac{f-\mathbf{U}_{\mathbb{D}_{\mathrm{e}}}[f]}{4 \mathrm{~V} \overline{\mathrm{\partial}} \mathrm{~V}}-(2 \pi)^{-\frac{1}{2}} \frac{W_{\mathrm{R}}}{\zeta \mathrm{H}_{\mathrm{R}}} \mathbf{P}_{\mathrm{H}_{-}^{2}}[f] .
$$

Iterative solution for B

We may attempt to solve the equation for B by iteration, that is, by finite Neumann series approximation.

Approximate solution B

We put

$$
\mathrm{B}^{\approx}=\mathrm{B}_{0}+m^{-1} \mathbf{T}\left[\mathrm{~B}_{0}\right]+\ldots+m^{-\kappa+1} \mathbf{T}^{\kappa-1}\left[\mathrm{~B}_{0}\right],
$$

for some appropriately chosen $\kappa=\kappa_{*}(m) \asymp \sqrt{m}$.
Then

$$
\mathrm{B}^{\approx}=\mathrm{B}_{0}+m^{-1} \mathbf{T}\left[\mathrm{~B}^{\approx}\right]+\mathcal{E}_{m}, \quad \mathcal{E}_{m}:=-m^{-\kappa} \mathbf{T}^{\kappa}\left[\mathrm{B}_{0}\right] .
$$

Since we want to minimize the error \mathcal{E}_{m}, it is natural to study the growth of the norm of $\mathbf{T}^{k}\left[\mathrm{~B}_{0}\right]$ as k grows. This can be done using the methods of the Nishida-Nirenberg theorem. We obtain $A \approx$ and $F \approx$ from Step I using $B \approx$ in place of B.

Main result

Theorem

We put $P^{\approx}:=c_{m} \phi^{m} \mathrm{e}^{m \mathcal{Q}} F^{\approx}$, where $F^{\approx}=\varphi^{\prime} \mathrm{F}^{\approx} \circ \varphi$. Then each F_{j} extends holomorphically to a fixed neighborhood of $\mathbb{C} \backslash \operatorname{int} \mathcal{S}_{1}$ for each $j=0, \ldots, \kappa_{*}(m)$, while $\log F_{0}$ is bounded and holomorphic in the same neighborhood. Then there exists a fixed C^{∞}-smooth cut-off function $\chi_{1,1}$ on \mathbb{C}, with $0 \leq \chi_{1,1} \leq 1$, which equals 1 in an open neighborhood of the closure of $\mathbb{C} \backslash \mathcal{S}_{1}$, and vanishes off a slightly larger neighborhood, such that $\chi_{1,1} P \approx$ becomes globally well-defined. Moreover, it is close to the monic orthogonal polynomial P of degree $n=m$ in $L_{m Q}^{2}$:

$$
\left\|P-\chi_{1,1} P \approx\right\|_{m Q}=\mathrm{O}\left(c_{m} m^{\frac{1}{2}} \mathrm{e}^{-\epsilon \sqrt{m}}\right), \quad \text { where }\left\|\chi_{1,1} P^{\approx}\right\|_{m Q} \asymp c_{m} m^{-\frac{1}{4}} .
$$

Here, $\epsilon>0$ is a constant that only depends on Q. It follows that

$$
P=c_{m} \phi^{m} \mathrm{e}^{m \mathcal{Q}}\left(F^{\approx}+\mathrm{O}\left(m \mathrm{e}^{-\frac{1}{2} \epsilon \sqrt{m}}\right)\right), \quad \text { on } D_{m},
$$

holds in the uniform norm as $m \rightarrow+\infty$, where D_{m} is the union of $\mathbb{C} \backslash \mathcal{S}_{1}$ and a certain band of width $\asymp m^{-\frac{1}{4}}$ around the loop $\Gamma_{1}=\partial \mathcal{S}_{1}$.

Commentary

The proof of the theorem is based on Hörmander's L^{2} methods for the $\bar{\partial}$-equation using suitably chosen smooth cut-off functions, as well as the Bernstein-Walsh type pointwise growth estimate based on weighted area-integrability.

Comparison with the Hedenmalm-Wennman theorem

The first result of this type is the recent work [5]. There, no effective growth control of the asymptotic expansion for F was obtained, so the result was somewhat weaker, in particular regarding the domain where the expansion holds. In addition, the foliation method of [5] is technically more demanding. The algorithm presented here is more transparent.

Bibliography

1. Ameur, Y., Hedenmalm, H., Makarov, N., Fluctuations of random normal matrices. Duke Math. J. 159 (2011), 31-81.
2. Berman, R., Berndtsson, R., Sjöstrand, J., A direct approach to Bergman asymptotics for positive line bundles. Ark. Mat. 46 (2008), 197-217.
3. Carleman, T., Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen. Ark. Mat. Astron. Fys. 17 (1923), 1-30.
4. Hedenmalm, H., Soft Riemann-Hilbert problems and orthogonal polynomials. Submitted.
5. Hedenmalm, H., Wennman, A., Planar orthogonal polynomials and boundary universality in the normal matrix model. Acta Math. 227 (2021), 309-406.

Bibliography, cont

6. Its, A. R., Takhtajan, L. A., Normal matrix models, $\bar{\partial}$-problem, and orthogonal polynomials on the complex plane. arXiv:0708.3867 7. Klein, C., McLaughlin, K., Spectral approach to D-bar problems. Comm. Pure Appl. Math. 70 (2017), no. 6, 1052-1083.
7. Nishida, T., A note on a theorem of Nirenberg. J. Differential Geometry 12 (1977), no. 4, 629-633.
8. Szegő, G., Über orthogonale Polynome die zu einer gegebenen Kurve der komplexen Ebene gehören. Math. Z. 9 (1921), 218-270.
