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Bergman kernel asymptotics and microlocal analysis

The Bergman (Hilbert) space H = A2(Ω,w) consists of the holomorphic
functions f : Ω→ C with

‖f ‖2H =

∫
C
|f |2wdA < +∞

where dA denotes (normalized) are measure. Here, Ω ⊂ C and
w : Ω→ R+ is a continuous weight function. We could consider later on
Ω as a subdomain of a Riemann surface, or a higher-dimensional complex
manifold. The Bergman kernel associated with H a domain Ω and a
weight ω > 0 is the function kH(·, ·) with

∀f ∈ H : f (z) = 〈f , kH(·, z)〉H, z ∈ Ω.

The study of Bergman kernels has a nontrivial intersection with
microlocal analysis (Boutet de Monvel, Sjöstrand,
Berman-Berndtsson-Sjöstrand et al). Here, we consider a nonlocal
instance when the analysis takes place along a loop in place of a point.



Commentary on the microlocal methods

In the work of Berman-Berndtsson-Sjöstrand the following operator
identity is central:

S∇ = 2mMz−wS , (1)
where

∇ = ∂θ + 2mMz−w , S = exp
( 1
2m

∂w∂θ

)
.

Here, w and θ are the variables, and we may fix wlog that z := 0. The
identity (1) permits us to test for the negligible amplitudes a = ∇A by
applying the diffusion operator S . In this setting, m is a positive
parameter which tends to infinity, Mz−w is multiplication by z − w , and
(w , θ) is a deformation of (w , w̄) as holomorphic coordinates. This works
well in the local setting of a point z = 0, but to handle the nonlocal
setting of a loop we skip the search for S and look directly for the
potential A for a given amplitude a. This search fits in with the matrix
∂̄-problem of Its and Takhtajan [6], which explicitly asks for a potential.



The setting: the confining potential Q

Growth requirement
We require that Q : C→ R is C 2-smooth, and that

Q(z) ≥ (1 + ε0) log(1 + |z |) + O(1)

holds in the complex plane C, for some ε0 > 0.

Subharmonic function classes
For τ > 0, we let Subhτ (C) stand for the collection of subharmonic
functions u : C→ R ∪ {−∞} with growth controlled by

u(z) ≤ τ log(1 + |z |) + O(1)

at infinity.

Obstacle problem
For 0 < τ < 1 + ε0, let Q̌τ be given pointwise by

Q̌τ (z) := sup
{
q(z) : q ∈ Subhτ (C), q ≤ Q on C

}
.



Properties of the solution to the obstacle problem

Growth
Trivially, Q̌τ ≤ Q everywhere. Also,

Q̌τ = τ log(|z |+ 1) + O(1)

at infinity.

Smoothness
The function Q̌τ is C 1,1-smooth on C, and harmonic in C \ Sτ , where

Sτ :=
{
z ∈ C : Q̌τ (z) = Q(z)}

is the contact set, also called the droplet. The droplet is a compact
subset of C.



Our setting

We will concentrate on the parameter value τ = 1.

Our assumptions
The set S1 is diffeomorphic to the closed disk D̄, where
D := {z ∈ C : |z | < 1}. Moreover, the boundary Γ1 := ∂S1 is a closed
real-analytically smooth loop. In a neighborhood of Γ1, Q is
real-analytically smooth, and ∆Q > 0 holds on the same neighborhood.

Remark
It is good to put these assumptions in perspective. If, e.g., we were to
assume that Q is real-analytically smooth on C, with ∆Q > 0
everywhere, it would not follow from this that S1 is simply connected
with real-analytically smooth boundary loop. Instead, a theorem of Sakai
(Acta Math 1991) guarantees that under those conditions, the boundary
consists of isolated points and pieces of real-analytic arcs which may
meet at classified singularities (cusps or kissing points).



Exponentially varying weights

Exponentially varying weights
We consider the weights wmQ := e−2mQ and the weighted spaces
L2
mQ := L2(C,wmQdA).

Then by the growth assumption on Q,∫
C

(1 + |z |)2ne−2mQ(z)dA(z) ≤ C

∫
C

(1 + |z |)2n−2(1+ε0)mdA(z),

which gives that if p is a polynomial of degree n, then p ∈ L2
mQ provided

that n < (1 + ε0)m − 1. We recall that a polynomial is said to be monic
if its leading coefficient equals 1.

Orthogonal polynomials in L2
mQ

We let P0,P1,P2, . . . denote the monic orthogonal polynomials in L2
mQ .

This may be a finite sequence.



The problem

Asymptotic analysis of P = Pm

We focus on degree n = m, and ask for an asymptotic formula for
P = Pm as m→ +∞.

We notice that m < (1 + ε0)m − 1 holds if and only if ε0m > 1, which is
the case for big enough m.



The soft Riemann-Hilbert problem

The soft Riemann-Hilbert problem
Y = Y (z) is the 1× 2 matrix

Y :=
(
P , Φ

)
and WmQ is the soft jump matrix

WmQ :=

(
0 e−2mQ

0 0

)
.

The soft Riemann-Hilbert problem is the equation

∂̄Y = ȲWmQ (2)

coupled with the asymptotics at infinity

Y =
(
zn + O(|z |n−1) , O(|z |−n−1)

)
. (3)



Analysis of the soft Riemann-Hilbert problem

We calculate

ȲWmQ =
(
P̄, Φ̄

)(0 e−2mQ

0 0

)
=
(
0 , P̄ e−2mQ

)
.

On the other hand,
∂̄Y =

(
∂̄P , ∂̄Φ

)
,

so the relation (2) amounts to

∂̄P = 0, ∂̄Φ = P̄ e−2mQ .

In particular, P is entire. Actually, from (3) we see that P is a monic
polynomial of degree n. The second condition in (3) asserts that

Φ(z) = O(|z |−n−1) as |z | → +∞.

We shall see that this condition expresses that P is orthogonal to all
polynomials of lower degree than n in the space L2

mQ .



Analysis of the soft Riemann-Hilbert problem, II
We know that P is a monic polynomial of degree n, and that

∂̄Φ = P̄ e−2mQ .

This equation is solved by convolution with the fundamental solution for
the ∂̄ operator:

Φ(z) =

∫
C

P̄(ξ) e−2mQ(ξ)

z − ξ
dA(ξ).

Finite geometric series expansion gives that

1
z − ξ

=
1
z

+
ξ

z2 + · · ·+ ξn

zn+1 +
ξn+1

zn+1(z − ξ)
,

so that

Φ(z) =

∫
C

P̄(ξ) e−2mQ(ξ)

z − ξ
dA(ξ) =

n∑
j=0

z−j−1
∫
C
ξj P̄(ξ) e−2mQ(ξ)dA(ξ)

+ z−n−1
∫
C

ξn+1P̄(ξ) e−2mQ(ξ)

z − ξ
dA(ξ).



Analysis of the soft Riemann-Hilbert problem, III

Proposition
If n ≤ (1 + ε0)m − 2, then

Φ(z) = O(|z |−n−1) at ∞⇐⇒ ∀j = 0, . . . , n − 1 : 〈z j ,P〉mQ = 0.

In other words, under the decay condition on Φ, P is the monic degree n
orthogonal polynomial in L2

mQ .



Ad-hoc ansatz for P

Let Q be the bounded holomorphic function in C \ S1 with ReQ = Q on
Γ1 and ImQ(∞) = 0. It extends analytically across Γ1. Also, let
φ : C \ S1 → De be the conformal mapping that preserves infinity with
φ′(∞) > 0.

The ansatz for P
We fix n = m, and put

P = cmφ
memQF ,

where cm := (φ′(∞)−m−1e−mQ(∞) > 0. We normalize F (∞) = φ′(∞).

Remark
The functions on the right-hand side are not well-defined in the entire
plane, while P is. The expressions on the right-hand side are all
holomorphic in C \ S1 and extend across Γ1.



The ansatz for Φ

The function Q̌1 is harmonic in C \ S1. In our setting the restriction to
C \ S1 possesses a harmonic extension across Γ1, which we call Q̆1. Then

Q̆1 = ReQ+ log |φ|.

We put R := Q − Q̆1, which has quadratic growth around Γ1. Let

erf (x) :=
1√
2π

∫ x

−∞
e−t

2/2dt

be the standard Gaussian error function.

The ansatz for Φ
We put

Φ = cm m−
1
2φ−me−mQ

{
A erf (2m

1
2V ) + (2πm)−

1
2Bχ1 e−2mR

}
,

where V 2 = R near Γ1. V is positive in the exterior to Γ1, and negative
in the interior. Moreover, A is holomorphic in C \ S1 and across Γ1.



Asymptotic expansions

The functions F ,A,B are supposed to have asymptotic expansions in
m−1:

F = F0 + m−1F1 + m−2F2 + . . . ,

where each Fj is fixed independently of m. The same for A and B of
course. No convergence is assumed, however. What is meant is that for
each positive integer N,

F = F0 + m−1F1 + . . .+ m−NFN + O(m−N−1).

Here, each Fj is holomorphic and bounded in C \ S1 and across Γ1.
Likewise, in the expansion

A = A0 + m−1A1 + . . .+ m−NAN + O(m−N−1),

each Aj is holomorphic and bounded in C \ S1 and across Γ1. However,
the corresponding terms Bj associated with B are only smooth in a
neighborhood of Γ1.



The basic equation

The function χ1 is a C∞-smooth cut-off function, which equals 1 in a
fixed neighborhood of Γ1, and vanishes off a slightly bigger
neighborhood. We put B1 = Bχ1, and calculate:

∂̄Φ = (2/π)
1
2 cm φ

−me−mQ
(
A∂̄V − B1∂̄R + 1

2m
−1∂̄B1)e−2mR

in a neighborhood of Γ1. On the other hand, we observe that

P̄ e−2mQ = F̄φ−me−mQ e−2mR .

Equality of these two expressions reduces to the equation (since V 2 = R)

A∂̄V − 2BV ∂̄V + 1
2m
−1∂̄B = (π/2)

1
2 F̄ (4)

in a small neighborhood of Γ1, as B1 = Bχ1 = B there.



The first equation

We restrict to Γ1 and use that V = 0 there:

A∂̄V + 1
2m
−1∂̄B = (π/2)

1
2 F̄ on Γ1. (5)

where it is given that

F (z) = φ′(∞) + O(|z |−1), A(z) = O(|z |−1).

Remark
The equation (5) amounts to a Riemann-Hilbert problem in an
alternative coordinate chart (where the unit circle T replaces Γ1).



The second equation

For the moment we observe that the first equation involves an unknown
B, but luckily it is of higher order, so it does influence the first terms A0
and F0 which get determined right away by the Riemann-Hilbert problem.
The original equation (4) contains more information than (5) alone.
Suppose for the moment we were able to solve the equation (5). Then
we may solve for B using (4):

B =
A∂̄V + 1

2m
−1∂̄B − (π/2)

1
2 F̄

2V ∂̄V
. (6)

Since V vanishes only to degree 1 with ∂̄V 6= 0 along Γ1, the division
produces a smooth function, and if the numerator is real-analytic across
Γ1, so is the ratio and hence B.



The iteration

The combination of the Riemann-Hilbert “jump” problem (5) and the
smooth division problem (6) supplies the full algorithm. We may liken it
to the Newton algorithm for finding the zeros of polynomials: once we
are in the ballpark the algorithm gets us ever closer to the solution. We
use (5) with B = 0 to get the initial A and F . Next, we apply (6) with
the previous choices of A,F , and B to get an updated choice for B. This
new B is then implemented into (5) to get improved A and F .
Proceeding iteratively we obtain the full asymptotic expansion.



Transfer to the unit circle

We write ϕ = ϕ1 := φ−1
1 : De → C \ S1 for the indicated conformal

mapping, tacitly extended across T, and consider

R := R ◦ ϕ, V := V ◦ ϕ, Ψ := Φ ◦ ϕ,

and the associated functions

A := A ◦ ϕ, B := B ◦ ϕ, F := ϕ′F ◦ ϕ.

Here, A and F are holomorphic functions in a neighborhood of D̄e with
asymptotics in accordance with the first equation:

F(z) = 1 + O(|z |−1), A(z) = O(|z |−1),

as |z | → +∞. In particular, F is bounded with value 1 at infinity, while A
is bounded and vanishes at infinity.



The first and second equations in new coordinates

In terms of these functions, the equation (4) reads

A∂̄V − 2BV ∂̄V + 1
2m
−1∂̄B = (π/2)

1
2 F̄.

Just as before, we split the equation in two separate steps:

A∂̄V + 1
2m
−1∂̄B = (π/2)

1
2 F̄ on T,

and

B =
A∂̄R̂ + 1

2m
−1∂̄B− (π/2)

1
2 F̄

2V ∂̄V
.

Remark
We refer to these as steps I and II, which we analyze below in some detail.



The solution algorithm: preliminaries

Local analysis around the circle T shows that

∂̄V = 2−
1
2 (∆R)

1
2 ζ on T. (7)

Here and in the sequel, ζ stands for the coordinate function ζ(z) = z .
Let HDe be the exterior Herglotz operator

HDe f (z) :=

∫
T

z + ζ

z − ζ
f (ζ)ds(ζ), z ∈ De,

where ds is arclength measure, normalized so that the circle T gets mass
1. The characterizing property is that the real part of HDe f has boundary
value equal to f . We will also need the projection operators

PH2
−
f =

1
2
HDe f +

1
2
〈f 〉T, PH2

−,0
f =

1
2
HDe f −

1
2
〈f 〉T,

where 〈f 〉T is the mean of f with respect to arc length measure.



The solution algorithm: preliminaries II

We introduce the function HR given by

HR := π−
1
4 exp

( 1
4HDe [log∆R]

)
,

which is a bounded (and bounded away from 0) holomorphic function in
De with holomorphic extension across T. Then |HR|2 = π−

1
2 (∆R)

1
2

holds on T, and the value at infinity equals

HR(∞) = π−
1
4 exp( 1

4 〈log∆R〉T) > 0.

It now follows that

∂̄V = 2−
1
2 ζ(∆R)

1
2 = (π/2)

1
2 ζ|HR|2 on T.



The solution algorithm: step I

The step I equation may be written as

F
HR

= ζAHR + (2π)−
1
2m−1 ∂B̄

HR
on T.

From the data, we see that F/HR is bounded and holomorphic in De, so
that F/HR ∈ H2

−, whereas ζAHR extends by Schwarz reflection to a
bounded holomorphic function on D, so that ζAHR ∈ H2. This means
that the step I equation is a Riemann-Hilbert problem with jump
(2π)−

1
2m−1∂B̄/HR, a situation which can be handled.

Step I solution
We have, for a constant a1,

F
HR

= a1 +
(2π)−

1
2

m
PH2

−,0

[
∂B̄
HR

]
,

and

ζAHR = ā1 −
(2π)−

1
2

m
PH2

−

[
∂̄B
H̄R

]
.



The constant a1

The constant a1

a1 =

〈
F

HR

〉
R

=
F(∞)

HR(∞)
=

1
HR(∞)

= π
1
4 exp

(
− 1

4 〈log∆R〉T
)
> 0,

since F(∞) = 1 is our assumed normalization and HR(∞) is known.



The solution algorithm: step II

We write
∂̄V = (π/2)

1
2 ζ|HR|2 + 2WRV∂̄V, (8)

where the expression WR is real-analytic near T. We let UDe stand for
the harmonic extension to De of the restriction to T of a given smooth
function. We now find from Step I that

ζAHR = UDe [ζAHR] =
F̄

H̄R
− (2π)−

1
2m−1UDe

[
∂̄B
H̄R

]
holds in a neighborhood of the closed exterior disk D̄e, in the sense that
each term extends harmonically across T.

Step II solution

B = AWR +
1
2m

∂̄B− H̄RUDe(∂̄B/H̄R)

2V∂̄V



Combining Steps I and II

We first apply Step I with B = 0 to get candidates for A and F. The
next step is to apply Step II with the given A to get a better B. This
better B we again implement in Step I, to get new and improved A and
F. Again we apply Step II to get an even better B. We intermittently
apply steps I and II and zoom in on the solution.



The equation for the function B alone

It is more convenient to work with a single equation for the function B
alone (get rid of A).

The equation for B

B = a1
WR

ζHR
+ m−1

(
∂̄B− H̄RUDe [∂̄B/H̄R]

4V∂̄V
− (2π)−

1
2
WR

ζHR
PH2

−

[
∂̄B
H̄R

])
.

This is an operator equation of the type

B = B0 + m−1T[B], where B0 := a1
WR

ζHR
and T[B] := L[∂̄B/H̄R],

and the operator L is given by

L[f ] := H̄R
f −UDe [f ]

4V∂̄V
− (2π)−

1
2
WR

ζHR
PH2

−
[f ].



Iterative solution for B

We may attempt to solve the equation for B by iteration, that is, by
finite Neumann series approximation.

Approximate solution B
We put

B≈ = B0 + m−1T[B0] + . . .+ m−κ+1Tκ−1[B0],

for some appropriately chosen κ = κ∗(m) �
√
m.

Then
B≈ = B0 + m−1T[B≈] + Em, Em := −m−κTκ[B0].

Since we want to minimize the error Em, it is natural to study the growth
of the norm of Tk [B0] as k grows. This can be done using the methods
of the Nishida-Nirenberg theorem. We obtain A≈ and F≈ from Step I
using B≈ in place of B.



Main result

Theorem
We put P≈ := cmφ

memQF≈, where F≈ = ϕ′F≈ ◦ ϕ. Then each Fj

extends holomorphically to a fixed neighborhood of C \ intS1 for each
j = 0, . . . , κ∗(m), while log F0 is bounded and holomorphic in the same
neighborhood. Then there exists a fixed C∞-smooth cut-off function χ1,1
on C, with 0 ≤ χ1,1 ≤ 1, which equals 1 in an open neighborhood of the
closure of C \ S1, and vanishes off a slightly larger neighborhood, such
that χ1,1P

≈ becomes globally well-defined. Moreover, it is close to the
monic orthogonal polynomial P of degree n = m in L2

mQ :

‖P − χ1,1P
≈‖mQ = O(cmm

1
2 e−ε

√
m), where ‖χ1,1P

≈‖mQ � cmm
− 1

4 .

Here, ε > 0 is a constant that only depends on Q. It follows that

P = cmφ
memQ

(
F≈ + O(m e−

1
2 ε
√
m)
)
, on Dm,

holds in the uniform norm as m→ +∞, where Dm is the union of C \ S1
and a certain band of width � m−

1
4 around the loop Γ1 = ∂S1.



Commentary

The proof of the theorem is based on Hörmander’s L2 methods for the
∂̄-equation using suitably chosen smooth cut-off functions, as well as the
Bernstein-Walsh type pointwise growth estimate based on weighted
area-integrability.

Comparison with the Hedenmalm-Wennman theorem
The first result of this type is the recent work [5]. There, no effective
growth control of the asymptotic expansion for F was obtained, so the
result was somewhat weaker, in particular regarding the domain where
the expansion holds. In addition, the foliation method of [5] is technically
more demanding. The algorithm presented here is more transparent.
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