Gaussian fluctuations for spin systems and point processes: near-optimal rates via quantitative Marcinkiewicz's theorem

Subhro Ghosh

National University of Singapore

The theory of Gaussian fluctuations has a long and illustrious history

- The theory of Gaussian fluctuations has a long and illustrious history
- Most approaches to Gaussian fluctuations involve

- The theory of Gaussian fluctuations has a long and illustrious history
- Most approaches to Gaussian fluctuations involve
 - approximation via an appropriate *low-complexity* function of roughly independent (or weakly dependent) random variables
 - These random components should individually have small *influence*.

- The theory of Gaussian fluctuations has a long and illustrious history
- Most approaches to Gaussian fluctuations involve
 - approximation via an appropriate *low-complexity* function of roughly independent (or weakly dependent) random variables
 - These random components should individually have small influence.
- From classical CLT for sums of weakly dependent random variables to so-called invariance principles, e.g. for low degree polynomials of independent random bits, and a lot in between ...

Let X be a real random variable. Set $\Psi_X(u) := \mathbb{E}[e^{iuX}]$.

Theorem (Marcinkiewicz, 1939)

If Ψ_X is an entire characteristic function that is of the form $\exp(P(u))$ for some polynomial P, then X has to be a Gaussian.

Observe that

- $\Psi = \exp(f)$ for some entire function $f :: \Psi$ has no zeros on the whole of \mathbb{C} .
- f a polynomial :: log Ψ is of polynomial growth.

Observe that

- $\Psi = \exp(f)$ for some entire function $f :: \Psi$ has no zeros on the whole of \mathbb{C} .
- f a polynomial :: log Ψ is of polynomial growth.

Question

What are the optimal conditions under which a Marcinkiewicz-type theorem holds?

Observe that

- $\Psi = \exp(f)$ for some entire function $f :: \Psi$ has no zeros on the whole of \mathbb{C} .
- f a polynomial :: log Ψ is of polynomial growth.

Question

What are the optimal conditions under which a Marcinkiewicz-type theorem holds?

• Let $M_f(r) := \max\{|f(z)| : |z| = r\}$. Then $\lim_{r\to\infty} \frac{\log^+ M_f(r)}{r} > 0$ does not fall within the ambit of Marcinkiewicz's Theorem, e.g. it is realised in the case of the Poisson distribution.

In 1960, Linnik conjectured that a Marcinkiewicz type theorem holds if

$$\lim_{r\to\infty}\frac{\log^+ M_f(r)}{r}=0$$

where

• Ostrovskii confirmed that Linnik's conjecture is true, as soon as

$$\limsup_{r\to\infty}\frac{\log^+ M_f(r)}{r}=0,$$

using ideas from Wiman-Valiron theory.

 Quantiative or 'stable' versions of classic, qualitative theorems have gained importance.

• A quantitative Marcinkiewicz Theorem ?

- Quantiative or 'stable' versions of classic, qualitative theorems have gained importance.
- A quantitative Marcinkiewicz Theorem ?
- Natural hypothesis : ' $\Psi_X = \exp(f)$ for some entire function f' replaced by ' Ψ_X has no zeros on a disk $\overline{\mathbb{D}(0, r)}$ '.

- Quantiative or 'stable' versions of classic, qualitative theorems have gained importance.
- A quantitative Marcinkiewicz Theorem ?
- Natural hypothesis : $\Psi_X = \exp(f)$ for some entire function f' replaced by Ψ_X has no zeros on a disk $\overline{\mathbb{D}(0, r)}$.
- Natural conclusion : exact Gaussianity replaced by distance of X from a Gaussian, depending on the size of $\overline{\mathbb{D}(0, r)}$ and the growth rate of $\log M_f \simeq \log \log \Psi_X$ on $\overline{\mathbb{D}(0, r)}$.

Our Quantitative Marcinkiewicz Theorem is the following :

Theorem (Dinh, G., Tran, Tran)

Suppose there is a number r > 0 such that

1 $\mathbb{E}[e^{r|X|}] < \infty;$

Our Quantitative Marcinkiewicz Theorem is the following :

Theorem (Dinh, G., Tran, Tran)

Suppose there is a number r > 0 such that

- 1 $\mathbb{E}[e^{r|X|}] < \infty;$
- **2** $\Psi(u) := \mathbb{E}[e^{iuX}]$ doesn't vanish on the closed disk $\overline{\mathbb{D}(0,r)}$.

Our Quantitative Marcinkiewicz Theorem is the following :

Theorem (Dinh, G., Tran, Tran)

Suppose there is a number r > 0 such that

1 $\mathbb{E}[e^{r|X|}] < \infty;$

2 $\Psi(u) := \mathbb{E}[e^{iuX}]$ doesn't vanish on the closed disk $\overline{\mathbb{D}(0,r)}$.

Then, for some universal constant A > 0 we have

$$\sup_{x \in \mathbb{R}} |F_{\bar{X}}(x) - \phi(x)| \leq 2|\sigma - 1| + A \cdot \frac{1 + \log^+ \log \max_{|u| = r} |\Psi(u)|}{r}$$

Consider a sequence of real r.v. X_n of variance $\sigma_n^2 > 0$. Define $\hat{X}_n := \frac{X_n - \mathbb{E}X_n}{\sigma_n}$.

Consider a sequence of real r.v. X_n of variance $\sigma_n^2 > 0$. Define $\hat{X}_n := \frac{X_n - \mathbb{E}X_n}{\sigma_n}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_n such that

1 $\mathbb{E}[e^{r_n|X_n|}] < \infty;$

Consider a sequence of real r.v. X_n of variance $\sigma_n^2 > 0$. Define $\hat{X}_n := \frac{X_n - \mathbb{E}X_n}{\sigma_n}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_n such that

1 $\mathbb{E}[e^{r_n|X_n|}] < \infty;$

2 $\Psi_n(u) := \mathbb{E}[e^{iuX_n}]$ doesn't vanish on the closed disk $\overline{\mathbb{D}(0, r_n)}$.

Consider a sequence of real r.v. X_n of variance $\sigma_n^2 > 0$. Define $\hat{X}_n := \frac{X_n - \mathbb{E}X_n}{\sigma_n}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_n such that

1 $\mathbb{E}[e^{r_n|X_n|}] < \infty;$

2 $\Psi_n(u) := \mathbb{E}[e^{iuX_n}]$ doesn't vanish on the closed disk $\overline{\mathbb{D}}(0, r_n)$. Assume also that

$$\lim_{n\to\infty}\frac{1+\log^+\log\sup_{|u|=r_n}|\Psi_n(u)|}{r_n\sigma_n}=0.$$

Consider a sequence of real r.v. X_n of variance $\sigma_n^2 > 0$. Define $\hat{X}_n := \frac{X_n - \mathbb{E}X_n}{\sigma_n}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_n such that

r

1 $\mathbb{E}[e^{r_n|X_n|}] < \infty;$

2 $\Psi_n(u) := \mathbb{E}[e^{iuX_n}]$ doesn't vanish on the closed disk $\overline{\mathbb{D}}(0, r_n)$. Assume also that

$$\lim_{n\to\infty}\frac{1+\log^+\log\sup_{|u|=r_n}|\Psi_n(u)|}{r_n\sigma_n}=0.$$

Then the sequence $\{X_n\}$ satisfies the CLT, i.e., $\hat{X}_n \to N(0,1)$ as $n \to \infty$.

Consider a sequence of real r.v. X_n of variance $\sigma_n^2 > 0$. Define $\hat{X}_n := \frac{X_n - \mathbb{E}X_n}{\sigma_n}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_n such that

1 $\mathbb{E}[e^{r_n|X_n|}] < \infty;$

2 $\Psi_n(u) := \mathbb{E}[e^{iuX_n}]$ doesn't vanish on the closed disk $\overline{\mathbb{D}}(0, r_n)$. Assume also that

$$\lim_{n\to\infty}\frac{1+\log^+\log\sup_{|u|=r_n}|\Psi_n(u)|}{r_n\sigma_n}=0.$$

Then the sequence $\{X_n\}$ satisfies the CLT, i.e., $\hat{X}_n \to N(0,1)$ as $n \to \infty$.

Indeed, we have for some universal constant A > 0

n

$$\sup_{x \in \mathbb{R}} |F_{\hat{X}_n}(x) - \phi(x)| \le A \cdot \frac{1 + \log^+ \log \sup_{|u| = r_n} |\Psi_n(u)|}{r_n \sigma_n}$$

which a fortiori provides a rate for the CLT.

Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad
- Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad
- Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.
- Work in the setting of zero-freeness on an infinite strip.

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad
- Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.
- Work in the setting of zero-freeness on an infinite strip. In our applications, non-vanishing on a disk is important.

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad
- Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.
- Work in the setting of zero-freeness on an infinite strip. In our applications, non-vanishing on a disk is important.
- Different flavour of quantitative Marcinkiewicz due to Golinskii and Sapogov, based on coefficients of log Ψ.

 Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.

- Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.
- In applications, growth of log log characteristic functions is often mild, contributing at most a log factor

- Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.
- In applications, growth of log log characteristic functions is often mild, contributing at most a log factor
- Thus, CLT with rates is reduced to a variance bounding exercise,

- Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.
- In applications, growth of log log characteristic functions is often mild, contributing at most a log factor
- Thus, CLT with rates is reduced to a variance bounding exercise, usually we have a Gaussian limit as soon as variance grows faster than a suitable rate (e.g., log).

Let $\Lambda \subset \mathbb{R}^d$ be a *d*-dimensional cube. A **spin configuration** on Λ is a map

$$\sigma_{\Lambda}:\Lambda
ightarrow \mathbb{R}^{N}$$

with

$$\sigma_{x} := \sigma_{\Lambda}(x) = (\sigma_{x}^{1}, \dots, \sigma_{x}^{N}) \quad , \quad \forall x \in \Lambda.$$

The spins σ_x are distributed according to some compactly supported, non-negative Borel measure μ_0 on \mathbb{R}^N .

We consider the Hamiltonian

$$\mathcal{H}_{\Lambda}(\sigma_{\Lambda}):=-\sum_{(x,y)\subset\Lambda}\sum_{i=1}^{N}J_{xy}^{i}\sigma_{x}^{i}\sigma_{y}^{i}-\sum_{x\in\Lambda}\sum_{i=1}^{N}h_{x}^{i}\sigma_{x}^{i},$$

where $J_{xy}^i = J_{yx}^i$ are coupling constants and $h_x = (h_x^1, \dots, h_x^N)$ is the external magnetic field at $x \in \Lambda$.

The probability measure on the space of such σ_{Λ} -s is given by

$$\mathbb{P}_{\Lambda}(\sigma_{\Lambda}) = \frac{1}{\mathcal{Z}_{\beta,\Lambda}(\{h_x\}_{x \in \Lambda})} \exp(-\beta H_{\Lambda}(\sigma_{\Lambda})) \prod_{x \in \Lambda} d\mu_0(\sigma_x)$$

where $\beta > 0$ is the **inverse temperature**, and

$$\mathcal{Z}_{eta, \Lambda}(\{h_x\}_{x\in \Lambda}) := \int_{(\mathbb{R}^N)^{\otimes |\Lambda|}} \exp(-eta H_{\Lambda}(\sigma_{\Lambda})) \prod_{x\in \Lambda} d\mu_0(\sigma_x)$$

is the partition function of the system.

- Ising model : ± 1 -valued spins
- XY model (a.k.a. Planar Rotor model) : S¹-valued spins
- Heisenberg model : \mathbb{S}^2 -valued spins

- Ising model : ± 1 -valued spins
- XY model (a.k.a. Planar Rotor model) : S¹-valued spins
- Heisenberg model : S²-valued spins
- Fluctuation theory is well-studied for classical Ising model, much less understood for spin models with continuous symmetries (such as the Heisenberg model or the XY model).

- Ising model : ± 1 -valued spins
- XY model (a.k.a. Planar Rotor model) : S¹-valued spins
- Heisenberg model : S²-valued spins
- Fluctuation theory is well-studied for classical Ising model, much less understood for spin models with continuous symmetries (such as the Heisenberg model or the XY model).
- Improved rate of convergence compared to CLT for discrete statistical mechanical models by Lebowitz, Pittel, Ruelle and Speer, from O(N^{-1/6}) to O(log N · N^{-1/2}).

Application to Spin systems

The object of interest is the magnetization or the total spin, which will be denoted by S_{Λ}

$$S_{\Lambda} := \sum_{x \in \Lambda} \sigma_x$$

Application to Spin systems

The object of interest is the magnetization or the total spin, which will be denoted by S_{Λ}

$$S_{\Lambda} := \sum_{x \in \Lambda} \sigma_x.$$

We demonstrate that

Theorem (Dinh, G., Tran, Tran)

Under ferromagnetic conditions, S_{Λ} satisfies a CLT upon centering and scaling as $|\Lambda| \uparrow \infty$, with the speed of convergence at the rate $O(\log |\Lambda| \cdot |\Lambda|^{-1/2})$.

Application to Spin systems

The object of interest is the magnetization or the total spin, which will be denoted by S_{Λ}

$$S_{\Lambda} := \sum_{x \in \Lambda} \sigma_x.$$

We demonstrate that

Theorem (Dinh, G., Tran, Tran)

Under ferromagnetic conditions, S_{Λ} satisfies a CLT upon centering and scaling as $|\Lambda| \uparrow \infty$, with the speed of convergence at the rate $O(\log |\Lambda| \cdot |\Lambda|^{-1/2})$.

Rate of convergence in CLT comparable to classic $1/\sqrt{n}$ rate for i.i.d. variables, upto log factors !

A direct computation shows that

$$\mathbb{E}[e^{iu\langle S_{\Lambda},e_{1}\rangle}] = \frac{\int_{(\mathbb{R}^{N})^{\otimes|\Lambda|}} e^{iu\sum_{x\in\Lambda}\sigma_{x}^{1}}e^{-\beta H_{\Lambda}(\sigma_{\Lambda})}\prod_{x\in\Lambda}d\mu_{0}(\sigma_{x})}{\mathcal{Z}_{\beta,\Lambda}(\{h_{x}\}_{x\in\Lambda})}$$
$$= \frac{\mathcal{Z}_{\beta,\Lambda}(\{h_{x}+\beta^{-1}iue_{1}\}_{x\in\Lambda})}{\mathcal{Z}_{\beta,\Lambda}(\{h_{x}\}_{x\in\Lambda})},$$

where $e_1 := (1, 0, \dots, 0) \in \mathbb{C}^N$.

A direct computation shows that

$$\mathbb{E}[e^{iu\langle S_{\Lambda},e_{1}\rangle}] = \frac{\int_{(\mathbb{R}^{N})^{\otimes|\Lambda|}} e^{iu\sum_{x\in\Lambda}\sigma_{x}^{1}}e^{-\beta H_{\Lambda}(\sigma_{\Lambda})}\prod_{x\in\Lambda}d\mu_{0}(\sigma_{x})}{\mathcal{Z}_{\beta,\Lambda}(\{h_{x}\}_{x\in\Lambda})}$$
$$= \frac{\mathcal{Z}_{\beta,\Lambda}(\{h_{x}+\beta^{-1}iue_{1}\}_{x\in\Lambda})}{\mathcal{Z}_{\beta,\Lambda}(\{h_{x}\}_{x\in\Lambda})},$$

where $e_1 := (1, 0, \dots, 0) \in \mathbb{C}^N$.

Lee-Yang theory

The Lee-Yang theorem is a crucial ingredient to apply our CLT version to this setting. We consider the following subset of \mathbb{C}^N

$$\Omega^+_N := \{h = (h^1, \dots, h^N) \in \mathbb{C}^N : \Re h^1 > \sum_{i=2}^N |h^i| \}.$$

.

Under some conditions about the measure μ_0 and the coupling constants $J^i_{{\rm xy}}$, we have the following

Theorem (Lee-Yang Theorem)

The partition function $\mathcal{Z}_{\beta,\Lambda}(\{h_x\}_{x\in\Lambda})$ doesn't vanish whenever $h_x \in \Omega^+_N$ for each $x \in \Lambda$.

Recall that

$$\Psi_{\langle S_{\Lambda}, e_1 \rangle}(u) = \frac{\mathcal{Z}_{\beta, \Lambda}(\{h_x + \beta^{-1} i u e_1\}_{x \in \Lambda})}{\mathcal{Z}_{\beta, \Lambda}(\{h_x\}_{x \in \Lambda})}$$

Since $\Omega_N^+ = \left\{ \Re h^1 > \sum_{i=2}^N |h^i| \right\}$ is an open set, if |u| small enough (let's say, $|u| \le r_{\Lambda}$) then $h_x + \beta^{-1} iue_1 \in \Omega_N^+$, $\forall x \in \Lambda$.

This will imply
$$\Psi_{(S_{\Lambda},e_1)}(u)$$
 does not vanish on $\overline{\mathbb{D}(0,r_{\Lambda})}$. Under some assumptions about the external magnetic field h , we can simplify the situation to the case of the same radius r for all S_{Λ} .

Hence the non-vanishing condition for the characteristic function is satisfied.

Thus, to obtain a CLT, we only have to verify

$$\lim_{|\Lambda|\uparrow\infty}\frac{\log^+\log|\mathbb{E}[e^{r_{\Lambda}|\langle S_{\Lambda},e_1\rangle}]|}{r_{\Lambda}\sqrt{Var(\langle S_{\Lambda},e_1\rangle)}}=0.$$

Since μ_0 is compactly supported, there is a positive number M (depending only on μ_0) such that

$$|S_{\Lambda}| = |\sum_{x \in \Lambda} \sigma_x^1| \le M \cdot |\Lambda|$$

This implies

$$\log^+ \log |\mathbb{E}[e^{r_{\Lambda}|S_{\Lambda}|}]| \lesssim \log |\Lambda|.$$

To control the variance of $\langle S_{\Lambda}, e_1 \rangle$, we define

$$\Lambda_O := \{ (x_1, \ldots, x_d) \in \Lambda : x_1 + \ldots + x_d \text{ is odd} \}$$

and

$$\Lambda_E := \{ (x_1, \ldots, x_d) \in \Lambda : x_1 + \ldots + x_d \text{ is even} \}.$$

For a vertex $x \in \Lambda$, we denote by ∂x the set of all the vertices that are connected to x. Then if $x \in \Lambda_E$, $\partial x \subset \Lambda_O$, and vice versa. Thus

$$\begin{split} \mathbb{P}_{\Lambda}(\sigma_{x}, x \in \Lambda_{E} | \sigma_{y}, y \in \Lambda_{O}) \propto \exp\left(\beta \left(\sum_{x \in \Lambda_{E}} \sum_{y \in \partial x} \sum_{i=1}^{N} J_{xy}^{i} \sigma_{x}^{i} \sigma_{y}^{i} + \sum_{x \in \Lambda_{E}} \sum_{i=1}^{N} h_{x}^{i} \sigma_{x}^{i}\right)\right) \prod_{x \in \Lambda_{E}} d\mu_{0}(\sigma_{x}) \\ = \prod_{x \in \Lambda_{E}} \exp\left(\beta \left(\sum_{y \in \partial x} \sum_{i=1}^{N} J_{xy}^{i} \sigma_{x}^{i} \sigma_{y}^{i} + \sum_{i=1}^{N} h_{x}^{i} \sigma_{x}^{i}\right)\right) d\mu_{0}(\sigma_{x}). \end{split}$$

In other words, given the spins on Λ_O , the spins on Λ_E are independent.

By the law of total variance, one has

$$\begin{aligned} & \operatorname{Var}[\langle S_{\Lambda}, e_{1} \rangle] \geq & \mathbb{E}[\operatorname{Var}[\langle S_{\Lambda}, e_{1} \rangle | \sigma_{y}, y \in \Lambda_{O}]] \\ & = & \mathbb{E}\Big[\operatorname{Var}\Big[\sum_{x \in \Lambda} \sigma_{x}^{1} | \sigma_{y}, y \in \Lambda_{O}\Big]\Big] \\ & = & \mathbb{E}\Big[\operatorname{Var}\Big[\sum_{x \in \Lambda_{E}} \sigma_{x}^{1} | \sigma_{y}, y \in \Lambda_{O}\Big]\Big] \\ & = & \sum_{x \in \Lambda_{E}} \mathbb{E}[\operatorname{Var}[\sigma_{x}^{1} | \sigma_{y}, y \in \Lambda_{O}]] \geq \frac{c}{2} |\Lambda|. \end{aligned}$$

Lemma

If μ_0 is compactly supported, the coupling constants J_{xy}^i and the external magnetic field h_x^i are uniformly bounded (as the system size $|\Lambda|$ grows), then there exists a constant c > 0 (not depending on Λ) such that

$$Var[\sigma_x^1|\sigma_y, y \in \partial x] \ge c$$
 a.s. $\forall x \in \Lambda$.

Putting all ingredients together

 $\frac{\log^+ \log |\mathbb{E}[e^{r_{\Lambda}|S_{\Lambda}|}]|}{r_{\Lambda}\sqrt{Var(S_{\Lambda})}} \lesssim \frac{\log |\Lambda|}{|\Lambda|^{1/2}},$

as desired.

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$\det_{\alpha}[A] := \sum_{\sigma \in S_n} \alpha^{n-\nu(\sigma)} \prod_{i=1}^n A_{i\sigma(i)}$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_n$.

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$\mathsf{det}_{lpha}[\mathsf{A}] := \sum_{\sigma \in S_n} lpha^{n-
u(\sigma)} \prod_{i=1}^n \mathsf{A}_{i\sigma(i)}$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_n$.

Let μ be a non-negative Borel measure on \mathbb{R}^d and let $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ be a symmetric kernel, the α -determinantal point process on \mathbb{R}^d with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^d such that :

For any finite subset $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the *n*-point correlation function

$$\rho_n(x_1,\ldots,x_n) = \det_{\alpha}[(\mathcal{K}(x_i,x_j))_{1 \le i,j \le n}]$$

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$\mathsf{det}_{lpha}[\mathsf{A}] := \sum_{\sigma \in S_n} lpha^{n-
u(\sigma)} \prod_{i=1}^n \mathsf{A}_{i\sigma(i)}$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_n$.

Let μ be a non-negative Borel measure on \mathbb{R}^d and let $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ be a symmetric kernel, the α -determinantal point process on \mathbb{R}^d with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^d such that :

For any finite subset $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the *n*-point correlation function

$$\rho_n(x_1,\ldots,x_n) = \det_{\alpha}[(\mathcal{K}(x_i,x_j))_{1 \leq i,j \leq n}]$$

• $\alpha = -1$ is determinantal point process

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$\det_{\alpha}[A] := \sum_{\sigma \in S_n} \alpha^{n-\nu(\sigma)} \prod_{i=1}^n A_{i\sigma(i)}$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_n$.

Let μ be a non-negative Borel measure on \mathbb{R}^d and let $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ be a symmetric kernel, the α -determinantal point process on \mathbb{R}^d with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^d such that :

For any finite subset $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the *n*-point correlation function

$$\rho_n(x_1,\ldots,x_n) = \det_{\alpha}[(\mathcal{K}(x_i,x_j))_{1 \leq i,j \leq n}]$$

• $\alpha = -1$ is determinantal point process • $\alpha = 0$ is Poisson point process

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$\mathsf{det}_{lpha}[\mathsf{A}] := \sum_{\sigma \in S_n} lpha^{n-
u(\sigma)} \prod_{i=1}^n \mathsf{A}_{i\sigma(i)}$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_n$.

Let μ be a non-negative Borel measure on \mathbb{R}^d and let $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ be a symmetric kernel, the α -determinantal point process on \mathbb{R}^d with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^d such that :

For any finite subset $\{x_1, \ldots, x_n\} \subset \mathbb{R}^d$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the *n*-point correlation function

$$\rho_n(x_1,\ldots,x_n) = \det_{\alpha}[(K(x_i,x_j))_{1 \le i,j \le n}]$$

• $\alpha = -1$ is determinantal point process • $\alpha = 0$ is Poisson point process • $\alpha = +1$ is permanental point process.

Let X be a α -determinantal point process on \mathbb{R}^d . We will be interested in the distribution of its linear statistics. For a test function $\varphi : \mathbb{R}^d \to \mathbb{R}$ with compact support, the linear statistic $\Lambda(\varphi)$ is given by

$$\Lambda(\varphi) := \sum_{x \in X} \varphi(x).$$

We will investigate the family of random variables given by the linear statistics

$$\{\Lambda(\varphi_L)\}_{L>0}$$
, where $\varphi_L(\cdot) := \varphi(\cdot/L)$.

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_2 > 0$. Then $\Lambda(\varphi_L)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O(\log L \cdot L^{-\eta})$ for some positive number η depending only on the model.

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_2 > 0$. Then $\Lambda(\varphi_L)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O(\log L \cdot L^{-\eta})$ for some positive number η depending only on the model.

Remarks

Esp. relevant when ambient dimension \geq 3, where structural alternatives such as connections to random matrix theory are not available

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_2 > 0$. Then $\Lambda(\varphi_L)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O(\log L \cdot L^{-\eta})$ for some positive number η depending only on the model.

Remarks

- Esp. relevant when ambient dimension \geq 3, where structural alternatives such as connections to random matrix theory are not available
- Covers a broad class of kernels, in particular kernels with slow spatial decay (such as the Bessel kernel) in general dimensions

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_2 > 0$. Then $\Lambda(\varphi_L)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O(\log L \cdot L^{-\eta})$ for some positive number η depending only on the model.

Remarks

- \blacksquare Esp. relevant when ambient dimension \geq 3, where structural alternatives such as connections to random matrix theory are not available
- Covers a broad class of kernels, in particular kernels with slow spatial decay (such as the Bessel kernel) in general dimensions
- Obtain explicit rates of convergence in a wide spectrum of models.

Application to α -DPPs : particular cases

Suppose d > 2 and

$$\sup_{x\in\mathbb{R}^d}\int_{\mathbb{R}^d}\|x-y\|^3|K(x,y)|^2dy<\infty$$
(1)

and

$$\inf_{x\in\mathbb{R}^d}\inf_{u\in\mathbb{S}^{d-1}}\int_{\mathbb{R}^d}|\langle y-x,u\rangle|^2|K(x,y)|^2dy>0, \tag{2}$$

and $\varphi \in C_c^2$. Then

Result

[Under above conditions] $\Lambda(\varphi_L)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O(\log L \cdot L^{-\eta})$, where $\eta = \frac{1}{2}(d-2)$.

Application to α -DPPs : particular cases

Suppose d > 2 and

$$\sup_{x\in\mathbb{R}^d}\int_{\mathbb{R}^d}\|x-y\|^3|K(x,y)|^2dy<\infty$$
(1)

and

$$\inf_{x\in\mathbb{R}^d}\inf_{u\in\mathbb{S}^{d-1}}\int_{\mathbb{R}^d}|\langle y-x,u\rangle|^2|K(x,y)|^2dy>0, \tag{2}$$

and $\varphi \in C_c^2$. Then

Result

[Under above conditions] $\Lambda(\varphi_L)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O(\log L \cdot L^{-\eta})$, where $\eta = \frac{1}{2}(d-2)$.

Result

[Bessel process] For the Bessel kernel point process in d > 1, we have $\Lambda(\varphi_L)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O(\log L \cdot L^{-\eta})$, where $\eta = d - 1$.

Theorem (Shirai, Takahashi)

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ be a bounded, compactly supported test function. Then for every $u \in \mathbb{D}(0, r)$ (r depends only on $\|\varphi\|_{\infty}$), we have

$$\mathbb{E}[\exp(-u\Lambda(\varphi))] = Det[I + \alpha M_{\varphi,u}K]^{-1/\alpha}$$

where Det is the Fredholm determinant, $M_{\varphi,u}$ is the multiplication operator by the function $1 - \exp(-u\varphi(x))$ and I is the identity operator on $L^2(\mu)$. Further, the Laplace transform is holomorphic in u on $\mathbb{D}(0, r)$.

To obtain a CLT, r_L can be taken to be $O(\|\varphi_L\|_{\infty}^{-1}) = O(1)$, and we have to verify

$$\lim_{l\to\infty} \frac{\log^{+}\log|\mathbb{E}[e^{r_{L}|\Lambda(\varphi_{L})|}]|}{r_{L}\sigma_{L}} = 0$$

We show that

$$\log^+ \log |\mathbb{E}[e^{r_L | \Lambda(\varphi_L) |}]| \lesssim \log L$$
 and $\sigma_L \gtrsim L^{\eta}$

for some $\eta>0$ depending only on the model, as desired.

THANK YOU !!