Gaussian fluctuations for spin systems and point processes: near-optimal rates via quantitative Marcinkiewicz's theorem

Subhro Ghosh

National University of Singapore

Gaussian Fluctuations

- The theory of Gaussian fluctuations has a long and illustrious history

Gaussian Fluctuations

- The theory of Gaussian fluctuations has a long and illustrious history
- Most approaches to Gaussian fluctuations involve

Gaussian Fluctuations

- The theory of Gaussian fluctuations has a long and illustrious history

■ Most approaches to Gaussian fluctuations involve

- approximation via an appropriate low-complexity function of roughly independent (or weakly dependent) random variables
- These random components should individually have small influence.

Gaussian Fluctuations

- The theory of Gaussian fluctuations has a long and illustrious history

■ Most approaches to Gaussian fluctuations involve

- approximation via an appropriate low-complexity function of roughly independent (or weakly dependent) random variables
- These random components should individually have small influence.
- From classical CLT for sums of weakly dependent random variables to so-called invariance principles, e.g. for low degree polynomials of independent random bits, and a lot in between ...

Marcinkiewicz's Theorem

Let X be a real random variable. Set $\Psi_{X}(u):=\mathbb{E}\left[e^{i u X}\right]$.
Theorem (Marcinkiewicz, 1939)
If Ψ_{X} is an entire characteristic function that is of the form $\exp (P(u))$ for some polynomial P, then X has to be a Gaussian.

Observe that

- $\Psi=\exp (f)$ for some entire function $f:: \Psi$ has no zeros on the whole of \mathbb{C}.
- f a polynomial :: $\log \Psi$ is of polynomial growth.

Marcinkiewicz's Theorem

Observe that

- $\Psi=\exp (f)$ for some entire function $f:: \Psi$ has no zeros on the whole of \mathbb{C}.
- f a polynomial :: $\log \Psi$ is of polynomial growth.

Question

What are the optimal conditions under which a Marcinkiewicz-type theorem holds?

Marcinkiewicz's Theorem

Observe that

- $\Psi=\exp (f)$ for some entire function $f:: \Psi$ has no zeros on the whole of \mathbb{C}.
- f a polynomial :: $\log \Psi$ is of polynomial growth.

Question

What are the optimal conditions under which a Marcinkiewicz-type theorem holds?
■ Let $M_{f}(r):=\max \{|f(z)|:|z|=r\}$. Then $\lim _{r \rightarrow \infty} \frac{\log ^{+} M_{f}(r)}{r}>0$ does not fall within the ambit of Marcinkiewicz's Theorem, e.g. it is realised in the case of the Poisson distribution.

Marcinkiewicz's Theorem

- In 1960, Linnik conjectured that a Marcinkiewicz type theorem holds if

$$
\lim _{r \rightarrow \infty} \frac{\log ^{+} M_{f}(r)}{r}=0
$$

where

- Ostrovskii confirmed that Linnik's conjecture is true, as soon as

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{+} M_{f}(r)}{r}=0
$$

using ideas from Wiman-Valiron theory.

Quantitative Marcinkiewicz Theorem

- Quantiative or 'stable' versions of classic, qualitative theorems have gained importance.
- A quantitative Marcinkiewicz Theorem ?

Quantitative Marcinkiewicz Theorem

- Quantiative or 'stable' versions of classic, qualitative theorems have gained importance.
- A quantitative Marcinkiewicz Theorem ?

■ Natural hypothesis: ' $\Psi_{X}=\exp (f)$ for some entire function f ' replaced by ' Ψ_{X} has no zeros on a disk $\overline{\mathbb{D}(0, r)}$ '.

Quantitative Marcinkiewicz Theorem

- Quantiative or 'stable' versions of classic, qualitative theorems have gained importance.
- A quantitative Marcinkiewicz Theorem ?

■ Natural hypothesis: ' $\Psi_{X}=\exp (f)$ for some entire function f ' replaced by ' Ψ_{X} has no zeros on a disk $\overline{\mathbb{D}(0, r)}$ '.

- Natural conclusion : exact Gaussianity replaced by distance of X from a Gaussian, depending on the size of $\overline{\mathbb{D}(0, r)}$ and the growth rate of $\log M_{f} \simeq \log \log \Psi_{X}$ on $\overline{\mathbb{D}(0, r)}$.

A sQuantitative Marcinkiewicz Theorem

Our Quantitative Marcinkiewicz Theorem is the following :
Theorem (Dinh, G., Tran, Tran)
Suppose there is a number $r>0$ such that
$1 \mathbb{E}\left[e^{r|X|}\right]<\infty$;

A sQuantitative Marcinkiewicz Theorem

Our Quantitative Marcinkiewicz Theorem is the following :

```
Theorem (Dinh, G., Tran, Tran)
Suppose there is a number \(r>0\) such that
\(1 \mathbb{E}\left[e^{r|X|}\right]<\infty\);
\(2 \Psi(u):=\mathbb{E}\left[e^{i u X}\right]\) doesn't vanish on the closed disk \(\overline{\mathbb{D}(0, r)}\).
```


A sQuantitative Marcinkiewicz Theorem

Our Quantitative Marcinkiewicz Theorem is the following :
Theorem (Dinh, G., Tran, Tran)
Suppose there is a number $r>0$ such that
$\mathbb{E}\left[e^{r|X|}\right]<\infty$;
$2 \Psi(u):=\mathbb{E}\left[e^{i u X}\right]$ doesn't vanish on the closed disk $\overline{\mathbb{D}(0, r)}$.
Then, for some universal constant $A>0$ we have

$$
\sup _{x \in \mathbb{R}}\left|F_{\bar{X}}(x)-\phi(x)\right| \leq 2|\sigma-1|+A \cdot \frac{1+\log ^{+} \log \max _{|u|=r}|\Psi(u)|}{r}
$$

A Quantitative Marcinkiewicz Theorem

Consider a sequence of real r.v. X_{n} of variance $\sigma_{n}^{2}>0$. Define $\hat{X}_{n}:=\frac{X_{n}-\mathbb{E} X_{n}}{\sigma_{n}}$.

A Quantitative Marcinkiewicz Theorem

Consider a sequence of real r.v. X_{n} of variance $\sigma_{n}^{2}>0$. Define $\hat{X}_{n}:=\frac{X_{n}-\mathbb{E} X_{n}}{\sigma_{n}}$.
Theorem (Dinh, G., H.S. Tran, M.H. Tran)
Assume that there are positive numbers r_{n} such that
1 $\mathbb{E}\left[e^{r_{n}\left|X_{n}\right|}\right]<\infty$;

A Quantitative Marcinkiewicz Theorem

Consider a sequence of real r.v. X_{n} of variance $\sigma_{n}^{2}>0$. Define $\hat{X}_{n}:=\frac{X_{n}-\mathbb{E} X_{n}}{\sigma_{n}}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_{n} such that
1 $\mathbb{E}\left[e^{r_{n} \mid X_{n}}\right]<\infty$;
$2 \Psi_{n}(u):=\mathbb{E}\left[e^{i u X_{n}}\right]$ doesn't vanish on the closed disk $\overline{\mathbb{D}\left(0, r_{n}\right)}$.

A Quantitative Marcinkiewicz Theorem

Consider a sequence of real r.v. X_{n} of variance $\sigma_{n}^{2}>0$. Define $\hat{X}_{n}:=\frac{X_{n}-\mathbb{E} X_{n}}{\sigma_{n}}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_{n} such that
1 $\mathbb{E}\left[e^{r_{n} \mid X_{n}}\right]<\infty$;
$2 \Psi_{n}(u):=\mathbb{E}\left[e^{i u X_{n}}\right]$ doesn't vanish on the closed disk $\overline{\mathbb{D}\left(0, r_{n}\right)}$.
Assume also that

$$
\lim _{n \rightarrow \infty} \frac{1+\log ^{+} \log \sup _{|u|=r_{n}}\left|\Psi_{n}(u)\right|}{r_{n} \sigma_{n}}=0
$$

A Quantitative Marcinkiewicz Theorem

Consider a sequence of real r.v. X_{n} of variance $\sigma_{n}^{2}>0$. Define $\hat{X}_{n}:=\frac{X_{n}-\mathbb{E} X_{n}}{\sigma_{n}}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_{n} such that
1 $\mathbb{E}\left[e^{r_{n} \mid X_{n}}\right]<\infty$;
$2 \Psi_{n}(u):=\mathbb{E}\left[e^{i u X_{n}}\right]$ doesn't vanish on the closed disk $\overline{\mathbb{D}\left(0, r_{n}\right)}$.
Assume also that

$$
\lim _{n \rightarrow \infty} \frac{1+\log ^{+} \log \sup _{|u|=r_{n}}\left|\Psi_{n}(u)\right|}{r_{n} \sigma_{n}}=0 .
$$

Then the sequence $\left\{X_{n}\right\}$ satisfies the CLT, i.e., $\hat{X}_{n} \rightarrow N(0,1)$ as $n \rightarrow \infty$.

A Quantitative Marcinkiewicz Theorem

Consider a sequence of real r.v. X_{n} of variance $\sigma_{n}^{2}>0$. Define $\hat{X}_{n}:=\frac{X_{n}-\mathbb{E} X_{n}}{\sigma_{n}}$.

Theorem (Dinh, G., H.S. Tran, M.H. Tran)

Assume that there are positive numbers r_{n} such that
1 $\mathbb{E}\left[e^{r_{n}\left|X_{n}\right|}\right]<\infty$;
2 $\Psi_{n}(u):=\mathbb{E}\left[e^{i u X_{n}}\right]$ doesn't vanish on the closed disk $\overline{\mathbb{D}\left(0, r_{n}\right)}$.
Assume also that

$$
\lim _{n \rightarrow \infty} \frac{1+\log ^{+} \log \sup _{|u|=r_{n}}\left|\Psi_{n}(u)\right|}{r_{n} \sigma_{n}}=0 .
$$

Then the sequence $\left\{X_{n}\right\}$ satisfies the CLT, i.e., $\hat{X}_{n} \rightarrow N(0,1)$ as $n \rightarrow \infty$.
Indeed, we have for some universal constant $A>0$

$$
\sup _{x \in \mathbb{R}}\left|F_{\hat{X}_{n}}(x)-\phi(x)\right| \leq A \cdot \frac{1+\log ^{+} \log \sup _{|u|=r_{n}}\left|\Psi_{n}(u)\right|}{r_{n} \sigma_{n}}
$$

which a fortiori provides a rate for the CLT.

Quantitative Marcinkiewicz Theorem : a historical perspective

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad

Quantitative Marcinkiewicz Theorem : a historical perspective

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad
- Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.

Quantitative Marcinkiewicz Theorem : a historical perspective

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad

■ Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.
■ Work in the setting of zero-freeness on an infinite strip.

Quantitative Marcinkiewicz Theorem : a historical perspective

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad

■ Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.
■ Work in the setting of zero-freeness on an infinite strip. In our applications, non-vanishing on a disk is important.

Quantitative Marcinkiewicz Theorem : a historical perspective

- Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad

■ Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by Eremenko and Fryntov.
■ Work in the setting of zero-freeness on an infinite strip. In our applications, non-vanishing on a disk is important.
■ Different flavour of quantitative Marcinkiewicz due to Golinskii and Sapogov, based on coefficients of $\log \Psi$.

Quantitative Marcinkiewicz Theorem : a historical perspective

- Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.

Quantitative Marcinkiewicz Theorem : a historical perspective

- Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.
- In applications, growth of log log characteristic functions is often mild, contributing at most a log factor

Quantitative Marcinkiewicz Theorem : a historical perspective

- Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.
■ In applications, growth of log log characteristic functions is often mild, contributing at most a log factor
- Thus, CLT with rates is reduced to a variance bounding exercise,

Quantitative Marcinkiewicz Theorem : a historical perspective

- Zero-free condition obtained via structure of the application, often using additional ingredients such as Lee-Yang theory, determinantal structures, etc.
- In applications, growth of log log characteristic functions is often mild, contributing at most a log factor
- Thus, CLT with rates is reduced to a variance bounding exercise, usually we have a Gaussian limit as soon as variance grows faster than a suitable rate (e.g., log).

Application to Spin systems

Let $\Lambda \subset \mathbb{R}^{d}$ be a d-dimensional cube. A spin configuration on Λ is a map

$$
\sigma_{\Lambda}: \Lambda \rightarrow \mathbb{R}^{N}
$$

with

$$
\sigma_{x}:=\sigma_{\Lambda}(x)=\left(\sigma_{x}^{1}, \ldots, \sigma_{x}^{N}\right) \quad, \quad \forall x \in \Lambda .
$$

The spins σ_{x} are distributed according to some compactly supported, non-negative Borel measure μ_{0} on \mathbb{R}^{N}.
We consider the Hamiltonian

$$
H_{\Lambda}\left(\sigma_{\Lambda}\right):=-\sum_{(x, y) \subset \Lambda} \sum_{i=1}^{N} J_{x y}^{i} \sigma_{x}^{i} \sigma_{y}^{i}-\sum_{x \in \Lambda} \sum_{i=1}^{N} h_{x}^{i} \sigma_{x}^{i},
$$

where $J_{x y}^{i}=J_{y x}^{i}$ are coupling constants and $h_{x}=\left(h_{x}^{1}, \ldots, h_{x}^{N}\right)$ is the external magnetic field at $x \in \Lambda$.

Application to Spin systems

The probability measure on the space of such $\sigma_{\Lambda}-\mathrm{s}$ is given by

$$
\mathbb{P}_{\Lambda}\left(\sigma_{\Lambda}\right)=\frac{1}{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right)} \exp \left(-\beta H_{\Lambda}\left(\sigma_{\Lambda}\right)\right) \prod_{x \in \Lambda} d \mu_{0}\left(\sigma_{x}\right)
$$

where $\beta>0$ is the inverse temperature, and

$$
\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right):=\int_{\left(\mathbb{R}^{N}\right)^{\otimes|\Lambda|}} \exp \left(-\beta H_{\Lambda}\left(\sigma_{\Lambda}\right)\right) \prod_{x \in \Lambda} d \mu_{0}\left(\sigma_{x}\right)
$$

is the partition function of the system.

Application to Spin systems

■ Ising model : ± 1-valued spins
■ XY model (a.k.a. Planar Rotor model): \mathbb{S}^{1}-valued spins

- Heisenberg model : \mathbb{S}^{2}-valued spins

Application to Spin systems

■ Ising model : ± 1-valued spins
■ XY model (a.k.a. Planar Rotor model) : \mathbb{S}^{1}-valued spins

- Heisenberg model : \mathbb{S}^{2}-valued spins

■ Fluctuation theory is well-studied for classical Ising model, much less understood for spin models with continuous symmetries (such as the Heisenberg model or the XY model).

Application to Spin systems

■ Ising model : ± 1-valued spins
■ XY model (a.k.a. Planar Rotor model) : \mathbb{S}^{1}-valued spins

- Heisenberg model : \mathbb{S}^{2}-valued spins

■ Fluctuation theory is well-studied for classical Ising model, much less understood for spin models with continuous symmetries (such as the Heisenberg model or the XY model).

■ Improved rate of convergence compared to CLT for discrete statistical mechanical models by Lebowitz, Pittel, Ruelle and Speer, from $O\left(N^{-1 / 6}\right)$ to $O\left(\log N \cdot N^{-1 / 2}\right)$.

Application to Spin systems

The object of interest is the magnetization or the total spin, which will be denoted by S_{Λ}

$$
S_{\Lambda}:=\sum_{x \in \Lambda} \sigma_{x}
$$

Application to Spin systems

The object of interest is the magnetization or the total spin, which will be denoted by S_{Λ}

$$
S_{\Lambda}:=\sum_{x \in \Lambda} \sigma_{x} .
$$

We demonstrate that
Theorem (Dinh, G., Tran, Tran)
Under ferromagnetic conditions, S_{Λ} satisfies a CLT upon centering and scaling as $|\Lambda| \uparrow \infty$, with the speed of convergence at the rate $O\left(\log |\Lambda| \cdot|\Lambda|^{-1 / 2}\right)$.

Application to Spin systems

The object of interest is the magnetization or the total spin, which will be denoted by S_{Λ}

$$
S_{\Lambda}:=\sum_{x \in \Lambda} \sigma_{x} .
$$

We demonstrate that
Theorem (Dinh, G., Tran, Tran)
Under ferromagnetic conditions, S_{Λ} satisfies a CLT upon centering and scaling as $|\Lambda| \uparrow \infty$, with the speed of convergence at the rate $O\left(\log |\Lambda| \cdot|\Lambda|^{-1 / 2}\right)$.

- Rate of convergence in CLT comparable to classic $1 / \sqrt{n}$ rate for i.i.d. variables, upto log factors!

A direct computation shows that

$$
\begin{aligned}
\mathbb{E}\left[e^{i u\left\langle S_{\Lambda}, e_{1}\right\rangle}\right] & =\frac{\int_{\left(\mathbb{R}^{N}\right)^{\otimes|\Lambda|}} e^{i u \sum_{x \in \Lambda} \sigma_{x}^{1}} e^{-\beta H_{\Lambda}\left(\sigma_{\Lambda}\right)} \prod_{x \in \Lambda} d \mu_{0}\left(\sigma_{x}\right)}{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right)} \\
& =\frac{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}+\beta^{-1} i u e_{1}\right\}_{x \in \Lambda}\right)}{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right)}
\end{aligned}
$$

where $e_{1}:=(1,0, \ldots, 0) \in \mathbb{C}^{N}$.

A direct computation shows that

$$
\begin{aligned}
\mathbb{E}\left[e^{i u\left\langle S_{\Lambda}, e_{1}\right\rangle}\right] & =\frac{\int_{\left(\mathbb{R}^{N}\right)^{\otimes|\Lambda|}} e^{i u \sum_{x \in \Lambda} \sigma_{x}^{1}} e^{-\beta H_{\Lambda}\left(\sigma_{\Lambda}\right)} \prod_{x \in \Lambda} d \mu_{0}\left(\sigma_{x}\right)}{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right)} \\
& =\frac{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}+\beta^{-1} i u e_{1}\right\}_{x \in \Lambda}\right)}{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right)}
\end{aligned}
$$

where $e_{1}:=(1,0, \ldots, 0) \in \mathbb{C}^{N}$.

Lee-Yang theory

The Lee-Yang theorem is a crucial ingredient to apply our CLT version to this setting. We consider the following subset of \mathbb{C}^{N}

$$
\Omega_{N}^{+}:=\left\{h=\left(h^{1}, \ldots, h^{N}\right) \in \mathbb{C}^{N}: \Re h^{1}>\sum_{i=2}^{N}\left|h^{i}\right|\right\} .
$$

Under some conditions about the measure μ_{0} and the coupling constants $J_{x y}^{i}$, we have the following

Theorem (Lee-Yang Theorem)

The partition function $\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right)$ doesn't vanish whenever $h_{x} \in \Omega_{N}^{+}$for each $x \in \Lambda$.

Key ideas of proof

Recall that

$$
\Psi_{\left\langle S_{\Lambda}, e_{1}\right\rangle}(u)=\frac{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}+\beta^{-1} i u e_{1}\right\}_{x \in \Lambda}\right)}{\mathcal{Z}_{\beta, \Lambda}\left(\left\{h_{x}\right\}_{x \in \Lambda}\right)}
$$

Since $\Omega_{N}^{+}=\left\{\Re h^{1}>\sum_{i=2}^{N}\left|h^{i}\right|\right\}$ is an open set, if $|u|$ small enough (let's say, $|u| \leq r_{\Lambda}$) then

$$
h_{x}+\beta^{-1} i u e_{1} \in \Omega_{N}^{+} \quad, \quad \forall x \in \Lambda .
$$

This will imply $\Psi_{\left\langle S_{\Lambda}, e_{1}\right\rangle}(u)$ does not vanish on $\overline{\mathbb{D}\left(0, r_{\Lambda}\right)}$. Under some assumptions about the external magnetic field h, we can simplify the situation to the case of the same radius r for all S_{Λ}.
Hence the non-vanishing condition for the characteristic function is satisfied.

Key ideas of proof

Thus, to obtain a CLT, we only have to verify

$$
\lim _{|\Lambda| \uparrow \infty} \frac{\left.\log ^{+} \log \mid \mathbb{E}\left[e^{r_{\Lambda} \mid\left\langle S_{\Lambda}, e_{1}\right\rangle}\right\rangle\right] \mid}{r_{\Lambda} \sqrt{\operatorname{Var}\left(\left\langle S_{\Lambda}, e_{1}\right\rangle\right)}}=0 .
$$

Since μ_{0} is compactly supported, there is a positive number M (depending only on μ_{0}) such that

$$
\left|S_{\Lambda}\right|=\left|\sum_{x \in \Lambda} \sigma_{x}^{1}\right| \leq M \cdot|\Lambda|
$$

This implies

$$
\log ^{+} \log \left|\mathbb{E}\left[e^{r_{\Lambda}\left|S_{\Lambda}\right|}\right]\right| \lesssim \log |\Lambda| .
$$

Key ideas of proof

To control the variance of $\left\langle S_{\Lambda}, e_{1}\right\rangle$, we define

$$
\Lambda_{O}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \Lambda: x_{1}+\ldots+x_{d} \text { is odd }\right\}
$$

and

$$
\Lambda_{E}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \Lambda: x_{1}+\ldots+x_{d} \text { is even }\right\}
$$

For a vertex $x \in \Lambda$, we denote by ∂x the set of all the vertices that are connected to x. Then if $x \in \Lambda_{E}, \partial x \subset \Lambda_{O}$, and vice versa. Thus

$$
\begin{aligned}
\mathbb{P}_{\Lambda}\left(\sigma_{x}, x \in \Lambda_{E} \mid \sigma_{y}, y \in \Lambda_{O}\right) & \propto \exp \left(\beta\left(\sum_{x \in \Lambda_{E}} \sum_{y \in \partial x} \sum_{i=1}^{N} J_{x y}^{i} \sigma_{x}^{i} \sigma_{y}^{i}+\sum_{x \in \Lambda_{E}} \sum_{i=1}^{N} h_{x}^{i} \sigma_{x}^{i}\right)\right) \prod_{x \in \Lambda_{E}} d \mu_{0}\left(\sigma_{x}\right) \\
& =\prod_{x \in \Lambda_{E}} \exp \left(\beta\left(\sum_{y \in \partial x} \sum_{i=1}^{N} J_{x y}^{i} \sigma_{x}^{i} \sigma_{y}^{i}+\sum_{i=1}^{N} h_{x}^{i} \sigma_{x}^{i}\right)\right) d \mu_{0}\left(\sigma_{x}\right)
\end{aligned}
$$

In other words, given the spins on Λ_{O}, the spins on Λ_{E} are independent.

Key ideas of proof

By the law of total variance, one has

$$
\begin{aligned}
\operatorname{Var}\left[\left\langle S_{\Lambda}, e_{1}\right\rangle\right] & \geq \mathbb{E}\left[\operatorname{Var}\left[\left\langle S_{\Lambda}, e_{1}\right\rangle \mid \sigma_{y}, y \in \Lambda_{O}\right]\right] \\
& =\mathbb{E}\left[\operatorname{Var}\left[\sum_{x \in \Lambda} \sigma_{x}^{1} \mid \sigma_{y}, y \in \Lambda_{O}\right]\right] \\
& =\mathbb{E}\left[\operatorname{Var}\left[\sum_{x \in \Lambda_{E}} \sigma_{x}^{1} \mid \sigma_{y}, y \in \Lambda_{O}\right]\right] \\
& =\sum_{x \in \Lambda_{E}} \mathbb{E}\left[\operatorname{Var}\left[\sigma_{x}^{1} \mid \sigma_{y}, y \in \Lambda_{O}\right]\right] \geq \frac{c}{2}|\Lambda| .
\end{aligned}
$$

Lemma

If μ_{0} is compactly supported, the coupling constants $J_{x y}^{i}$ and the external magnetic field h_{x}^{i} are uniformly bounded (as the system size $|\Lambda|$ grows), then there exists a constant $c>0$ (not depending on Λ) such that

$$
\operatorname{Var}\left[\sigma_{x}^{1} \mid \sigma_{y}, y \in \partial x\right] \geq c \quad \text { a.s. } \quad \forall x \in \Lambda .
$$

Key ideas of proof
Putting all ingredients together

$$
\frac{\log ^{+} \log \left|\mathbb{E}\left[e^{r_{\Lambda}\left|S_{\Lambda}\right|}\right]\right|}{r_{\Lambda} \sqrt{\operatorname{Var}\left(S_{\Lambda}\right)}} \lesssim \frac{\log |\Lambda|}{|\Lambda|^{1 / 2}},
$$

as desired.

Application to α-determinantal processes

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$
\operatorname{det}_{\alpha}[A]:=\sum_{\sigma \in S_{n}} \alpha^{n-\nu(\sigma)} \prod_{i=1}^{n} A_{i \sigma(i)},
$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_{n}$.

Application to α-determinantal processes

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$
\operatorname{det}_{\alpha}[A]:=\sum_{\sigma \in S_{n}} \alpha^{n-\nu(\sigma)} \prod_{i=1}^{n} A_{i \sigma(i)},
$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_{n}$.
Let μ be a non-negative Borel measure on \mathbb{R}^{d} and let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a symmetric kernel, the α-determinantal point process on \mathbb{R}^{d} with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^{d} such that :
For any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the n-point correlation function

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}_{\alpha}\left[\left(K\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}\right] .
$$

Application to α-determinantal processes

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$
\operatorname{det}_{\alpha}[A]:=\sum_{\sigma \in S_{n}} \alpha^{n-\nu(\sigma)} \prod_{i=1}^{n} A_{i \sigma(i)},
$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_{n}$.
Let μ be a non-negative Borel measure on \mathbb{R}^{d} and let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a symmetric kernel, the α-determinantal point process on \mathbb{R}^{d} with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^{d} such that :
For any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the n-point correlation function

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}_{\alpha}\left[\left(K\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}\right] .
$$

- $\alpha=-1$ is determinantal point process

Application to α-determinantal processes

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$
\operatorname{det}_{\alpha}[A]:=\sum_{\sigma \in S_{n}} \alpha^{n-\nu(\sigma)} \prod_{i=1}^{n} A_{i \sigma(i)},
$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_{n}$.
Let μ be a non-negative Borel measure on \mathbb{R}^{d} and let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a symmetric kernel, the α-determinantal point process on \mathbb{R}^{d} with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^{d} such that :
For any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the n-point correlation function

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}_{\alpha}\left[\left(K\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}\right] .
$$

- $\alpha=-1$ is determinantal point process $\bullet \alpha=0$ is Poisson point process

Application to α-determinantal processes

For a matrix $A \in \mathbb{C}^{n \times n}$, define

$$
\operatorname{det}_{\alpha}[A]:=\sum_{\sigma \in S_{n}} \alpha^{n-\nu(\sigma)} \prod_{i=1}^{n} A_{i \sigma(i)},
$$

where $\nu(\sigma)$ is the number of cycles in $\sigma \in S_{n}$.
Let μ be a non-negative Borel measure on \mathbb{R}^{d} and let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a symmetric kernel, the α-determinantal point process on \mathbb{R}^{d} with kernel K and background measure μ is a random locally finite point set on \mathbb{R}^{d} such that :
For any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, the probability (with respect to $\mu^{\otimes n}$) of having points at these locations is given by the n-point correlation function

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}_{\alpha}\left[\left(K\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}\right] .
$$

- $\alpha=-1$ is determinantal point process $\bullet \alpha=0$ is Poisson point process $\bullet \alpha=+1$ is permanental point process.

Application to α-determinantal processes

Let X be a α-determinantal point process on \mathbb{R}^{d}. We will be interested in the distribution of its linear statistics. For a test function $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with compact support, the linear statistic $\Lambda(\varphi)$ is given by

$$
\Lambda(\varphi):=\sum_{x \in X} \varphi(x)
$$

We will investigate the family of random variables given by the linear statistics

$$
\left\{\Lambda\left(\varphi_{L}\right)\right\}_{L>0} \quad, \quad \text { where } \varphi_{L}(\cdot):=\varphi(\cdot / L)
$$

Application to α-determinantal processes

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_{2}>0$. Then $\Lambda\left(\varphi_{L}\right)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O\left(\log L \cdot L^{-\eta}\right)$ for some positive number η depending only on the model.

Application to α-determinantal processes

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_{2}>0$. Then $\Lambda\left(\varphi_{L}\right)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O\left(\log L \cdot L^{-\eta}\right)$ for some positive number η depending only on the model.

Remarks

- Esp. relevant when ambient dimension ≥ 3, where structural alternatives such as connections to random matrix theory are not available

Application to α-determinantal processes

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_{2}>0$. Then $\Lambda\left(\varphi_{L}\right)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O\left(\log L \cdot L^{-\eta}\right)$ for some positive number η depending only on the model.

Remarks

■ Esp. relevant when ambient dimension ≥ 3, where structural alternatives such as connections to random matrix theory are not available

- Covers a broad class of kernels, in particular kernels with slow spatial decay (such as the Bessel kernel) in general dimensions

Application to α-determinantal processes

Under mild conditions about the background measure μ and the kernel K, we have the following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)

Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded compactly supported test function with $\|\varphi\|_{2}>0$. Then $\Lambda\left(\varphi_{L}\right)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O\left(\log L \cdot L^{-\eta}\right)$ for some positive number η depending only on the model.

Remarks

■ Esp. relevant when ambient dimension ≥ 3, where structural alternatives such as connections to random matrix theory are not available

- Covers a broad class of kernels, in particular kernels with slow spatial decay (such as the Bessel kernel) in general dimensions
- Obtain explicit rates of convergence in a wide spectrum of models.

Application to α-DPPs : particular cases

Suppose $d>2$ and

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\|x-y\|^{3}|K(x, y)|^{2} d y<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{d}} \inf _{u \in \mathbb{S}^{d-1}} \int_{\mathbb{R}^{d}}|\langle y-x, u\rangle|^{2}|K(x, y)|^{2} d y>0 \tag{2}
\end{equation*}
$$

and $\varphi \in C_{c}^{2}$. Then

Result

[Under above conditions] $\Lambda\left(\varphi_{L}\right)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O\left(\log L \cdot L^{-\eta}\right)$, where $\eta=\frac{1}{2}(d-2)$.

Application to α-DPPs : particular cases

Suppose $d>2$ and

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\|x-y\|^{3}|K(x, y)|^{2} d y<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{d}} \inf _{u \in \mathbb{S}^{d-1}} \int_{\mathbb{R}^{d}}|\langle y-x, u\rangle|^{2}|K(x, y)|^{2} d y>0 \tag{2}
\end{equation*}
$$

and $\varphi \in C_{c}^{2}$. Then

Result

[Under above conditions] $\Lambda\left(\varphi_{L}\right)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O\left(\log L \cdot L^{-\eta}\right)$, where $\eta=\frac{1}{2}(d-2)$.

Result

[Bessel process] For the Bessel kernel point process in $d>1$, we have $\Lambda\left(\varphi_{L}\right)$ satisfies a CLT upon centering and scaling as $L \uparrow \infty$ with the speed of convergence at the rate $O\left(\log L \cdot L^{-\eta}\right)$, where $\eta=d-1$.

Key ingredients

Theorem (Shirai, Takahashi)

Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded, compactly supported test function. Then for every $u \in \mathbb{D}(0, r)$ (r depends only on $\|\varphi\|_{\infty}$), we have

$$
\mathbb{E}[\exp (-u \Lambda(\varphi))]=\operatorname{Det}\left[I+\alpha M_{\varphi, u} K\right]^{-1 / \alpha}
$$

where Det is the Fredholm determinant, $M_{\varphi, u}$ is the multiplication operator by the function $1-\exp (-u \varphi(x))$ and I is the identity operator on $L^{2}(\mu)$. Further, the Laplace transform is holomorphic in u on $\mathbb{D}(0, r)$.

To obtain a CLT, r_{L} can be taken to be $O\left(\left\|\varphi_{L}\right\|_{\infty}^{-1}\right)=O(1)$, and we have to verify

$$
\lim _{L \rightarrow \infty} \frac{\log ^{+} \log \left|\mathbb{E}\left[e^{r_{L} \mid \Lambda\left(\varphi_{L}\right)}\right]\right|}{r_{L} \sigma_{L}}=0
$$

We show that

$$
\log ^{+} \log \left|\mathbb{E}\left[e^{r_{L}\left|\Lambda\left(\varphi_{L}\right)\right|}\right]\right| \lesssim \log L \quad \text { and } \quad \sigma_{L} \gtrsim L^{\eta}
$$

for some $\eta>0$ depending only on the model, as desired.

THANK YOU !!

