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Gaussian Fluctuations

The theory of Gaussian fluctuations has a long and illustrious history

Most approaches to Gaussian fluctuations involve
approximation via an appropriate low-complexity function of roughly independent (or
weakly dependent) random variables
These random components should individually have small influence.

From classical CLT for sums of weakly dependent random variables to so-called
invariance principles, e.g. for low degree polynomials of independent random bits,
and a lot in between ...
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Marcinkiewicz’s Theorem

Let X be a real random variable. Set ΨX (u) := E[e iuX ].

Theorem (Marcinkiewicz, 1939)
If ΨX is an entire characteristic function that is of the form exp(P(u)) for some
polynomial P, then X has to be a Gaussian.
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Marcinkiewicz’s Theorem
Observe that

Ψ = exp(f ) for some entire function f :: Ψ has no zeros on the whole of C.
f a polynomial :: log Ψ is of polynomial growth.

Question
What are the optimal conditions under which a Marcinkiewicz-type theorem holds?

Let Mf (r) := max{|f (z)| : |z | = r}. Then limr→∞
log+ Mf (r)

r > 0 does not fall
within the ambit of Marcinkiewicz’s Theorem, e.g. it is realised in the case of the
Poisson distribution.
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Marcinkiewicz’s Theorem
In 1960, Linnik conjectured that a Marcinkiewicz type theorem holds if

lim
r→∞

log+ Mf (r)
r = 0

where
Ostrovskii confirmed that Linnik’s conjecture is true, as soon as

lim sup
r→∞

log+ Mf (r)
r = 0,

using ideas from Wiman-Valiron theory.
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Quantitative Marcinkiewicz Theorem
Quantiative or ’stable’ versions of classic, qualitative theorems have gained
importance.
A quantitative Marcinkiewicz Theorem ?

Natural hypothesis : ‘ΨX = exp(f ) for some entire function f ’ replaced by ‘ΨX has
no zeros on a disk D(0, r)’.

Natural conclusion : exact Gaussianity replaced by distance of X from a Gaussian,
depending on the size of D(0, r) and the growth rate of log Mf ≃ log log ΨX on
D(0, r).
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A sQuantitative Marcinkiewicz Theorem
Our Quantitative Marcinkiewicz Theorem is the following :

Theorem (Dinh, G., Tran, Tran)
Suppose there is a number r > 0 such that

1 E[er |X |] < ∞;

2 Ψ(u) := E[e iuX ] doesn’t vanish on the closed disk D(0, r).
Then, for some universal constant A > 0 we have

sup
x∈R

|FX̄ (x) − ϕ(x)| ≤ 2|σ − 1| + A ·
1 + log+ log max|u|=r |Ψ(u)|

r ·
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A Quantitative Marcinkiewicz Theorem
Consider a sequence of real r.v. Xn of variance σ2

n > 0. Define X̂n := Xn−EXn
σn

·

Theorem (Dinh, G., H.S. Tran, M.H. Tran)
Assume that there are positive numbers rn such that

1 E[ern|Xn|] < ∞;
2 Ψn(u) := E[e iuXn ] doesn’t vanish on the closed disk D(0, rn).

Assume also that
lim

n→∞

1 + log+ log sup|u|=rn |Ψn(u)|
rnσn

= 0.

Then the sequence {Xn} satisfies the CLT, i.e., X̂n → N(0, 1) as n → ∞.
Indeed, we have for some universal constant A > 0

sup
x∈R

|FX̂n
(x) − ϕ(x)| ≤ A ·

1 + log+ log sup|u|=rn |Ψn(u)|
rnσn

,

which a fortiori provides a rate for the CLT.
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Quantitative Marcinkiewicz Theorem : a historical perspective
Classical works due to Marcinkiewicz, Linnik, Ostrovskii, Zimogljad

Recent work of similar flavour by Michelen and Sahasrabuddhe, followed by
Eremenko and Fryntov.
Work in the setting of zero-freeness on an infinite strip. In our applications,
non-vanishing on a disk is important.
Different flavour of quantitative Marcinkiewicz due to Golinskii and Sapogov, based
on coefficients of log Ψ.
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Quantitative Marcinkiewicz Theorem : a historical perspective
Zero-free condition obtained via structure of the application, often using additional
ingredients such as Lee-Yang theory, determinantal structures, etc.

In applications, growth of log log characteristic functions is often mild, contributing
at most a log factor
Thus, CLT with rates is reduced to a variance bounding exercise, usually we have a
Gaussian limit as soon as variance grows faster than a suitable rate (e.g., log).
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Application to Spin systems
Let Λ ⊂ Rd be a d-dimensional cube. A spin configuration on Λ is a map

σΛ : Λ → RN

with
σx := σΛ(x) = (σ1

x , . . . , σN
x ) , ∀x ∈ Λ.

The spins σx are distributed according to some compactly supported, non-negative Borel
measure µ0 on RN .
We consider the Hamiltonian

HΛ(σΛ) := −
∑

(x ,y)⊂Λ

N∑
i=1

J i
xy σi

xσi
y −

∑
x∈Λ

N∑
i=1

hi
xσi

x ,

where J i
xy = J i

yx are coupling constants and hx = (h1
x , . . . , hN

x ) is the external
magnetic field at x ∈ Λ.
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Application to Spin systems
The probability measure on the space of such σΛ-s is given by

PΛ(σΛ) = 1
Zβ,Λ({hx}x∈Λ) exp(−βHΛ(σΛ))

∏
x∈Λ

dµ0(σx ),

where β > 0 is the inverse temperature, and

Zβ,Λ({hx}x∈Λ) :=
∫

(RN)⊗|Λ|
exp(−βHΛ(σΛ))

∏
x∈Λ

dµ0(σx )

is the partition function of the system.
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Application to Spin systems

Ising model : ±1-valued spins

XY model (a.k.a. Planar Rotor model) : S1-valued spins

Heisenberg model : S2-valued spins

Fluctuation theory is well-studied for classical Ising model, much less understood for
spin models with continuous symmetries (such as the Heisenberg model or the XY
model).

Improved rate of convergence compared to CLT for discrete statistical mechanical
models by Lebowitz, Pittel, Ruelle and Speer, from O(N−1/6) to O(log N · N−1/2).
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Application to Spin systems
The object of interest is the magnetization or the total spin, which will be denoted by SΛ

SΛ :=
∑
x∈Λ

σx .

We demonstrate that
Theorem (Dinh, G., Tran, Tran)
Under ferromagnetic conditions, SΛ satisfies a CLT upon centering and scaling as
|Λ| ↑ ∞, with the speed of convergence at the rate O(log |Λ| · |Λ|−1/2).

Rate of convergence in CLT comparable to classic 1/
√

n rate for i.i.d. variables,
upto log factors !
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A direct computation shows that

E[e iu⟨SΛ,e1⟩] =
∫

(RN)⊗|Λ| e iu
∑

x∈Λ σ1
x e−βHΛ(σΛ) ∏

x∈Λ dµ0(σx )
Zβ,Λ({hx}x∈Λ)

= Zβ,Λ({hx + β−1iue1}x∈Λ)
Zβ,Λ({hx}x∈Λ) ,

where e1 := (1, 0, . . . , 0) ∈ CN .
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Lee-Yang theory
The Lee-Yang theorem is a crucial ingredient to apply our CLT version to this setting.
We consider the following subset of CN

Ω+
N := {h = (h1, . . . , hN) ∈ CN : ℜh1 >

N∑
i=2

|hi |}.

Under some conditions about the measure µ0 and the coupling constants J i
xy , we have

the following

Theorem (Lee-Yang Theorem)
The partition function Zβ,Λ({hx}x∈Λ) doesn’t vanish whenever hx ∈ Ω+

N for each x ∈ Λ.
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Key ideas of proof
Recall that

Ψ⟨SΛ,e1⟩(u) = Zβ,Λ({hx + β−1iue1}x∈Λ)
Zβ,Λ({hx}x∈Λ) ·

Since Ω+
N =

{
ℜh1 >

∑N
i=2 |hi |

}
is an open set, if |u| small enough (let’s say, |u| ≤ rΛ)

then
hx + β−1iue1 ∈ Ω+

N , ∀x ∈ Λ.

This will imply Ψ⟨SΛ,e1⟩(u) does not vanish on D(0, rΛ). Under some assumptions about
the external magnetic field h, we can simplify the situation to the case of the same
radius r for all SΛ.
Hence the non-vanishing condition for the characteristic function is satisfied.
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Key ideas of proof
Thus, to obtain a CLT, we only have to verify

lim
|Λ|↑∞

log+ log |E[erΛ|⟨SΛ,e1⟩|]|
rΛ

√
Var(⟨SΛ, e1⟩)

= 0.

Since µ0 is compactly supported, there is a positive number M (depending only on µ0)
such that

|SΛ| = |
∑
x∈Λ

σ1
x | ≤ M · |Λ|

This implies
log+ log |E[erΛ|SΛ|]| ≲ log |Λ|.
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Key ideas of proof
To control the variance of ⟨SΛ, e1⟩, we define

ΛO := {(x1, . . . , xd) ∈ Λ : x1 + . . . + xd is odd}

and
ΛE := {(x1, . . . , xd) ∈ Λ : x1 + . . . + xd is even}.

For a vertex x ∈ Λ, we denote by ∂x the set of all the vertices that are connected to x .
Then if x ∈ ΛE , ∂x ⊂ ΛO, and vice versa. Thus

PΛ(σx , x ∈ ΛE |σy , y ∈ ΛO) ∝ exp
(
β

( ∑
x∈ΛE

∑
y∈∂x

N∑
i=1

J i
xy σi

xσi
y +

∑
x∈ΛE

N∑
i=1

hi
xσi

x

)) ∏
x∈ΛE

dµ0(σx )

=
∏

x∈ΛE

exp
(
β

( ∑
y∈∂x

N∑
i=1

J i
xy σi

xσi
y +

N∑
i=1

hi
xσi

x

))
dµ0(σx ).

In other words, given the spins on ΛO, the spins on ΛE are independent.
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Key ideas of proof
By the law of total variance, one has

Var [⟨SΛ, e1⟩] ≥ E[Var [⟨SΛ, e1⟩|σy , y ∈ ΛO]]

= E
[
Var

[ ∑
x∈Λ

σ1
x |σy , y ∈ ΛO

]]
= E

[
Var

[ ∑
x∈ΛE

σ1
x |σy , y ∈ ΛO

]]
=

∑
x∈ΛE

E[Var [σ1
x |σy , y ∈ ΛO]] ≥ c

2 |Λ|.

Lemma
If µ0 is compactly supported, the coupling constants J i

xy and the external magnetic field
hi

x are uniformly bounded (as the system size |Λ| grows), then there exists a constant
c > 0 (not depending on Λ) such that

Var [σ1
x |σy , y ∈ ∂x ] ≥ c a.s. ∀x ∈ Λ.
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Key ideas of proof
Putting all ingredients together

log+ log |E[erΛ|SΛ|]|
rΛ

√
Var(SΛ)

≲ log |Λ|
|Λ|1/2 ,

as desired.
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Application to α-determinantal processes
For a matrix A ∈ Cn×n, define

detα[A] :=
∑
σ∈Sn

αn−ν(σ)
n∏

i=1
Aiσ(i),

where ν(σ) is the number of cycles in σ ∈ Sn.

Let µ be a non-negative Borel measure on Rd and let K : Rd × Rd → C be a symmetric
kernel, the α-determinantal point process on Rd with kernel K and background
measure µ is a random locally finite point set on Rd such that :
For any finite subset {x1, . . . , xn} ⊂ Rd , the probability (with respect to µ⊗n) of having
points at these locations is given by the n-point correlation function

ρn(x1, . . . , xn) = detα[(K (xi , xj))1≤i ,j≤n].

• α = −1 is determinantal point process • α = 0 is Poisson point process • α = +1 is
permanental point process.
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For a matrix A ∈ Cn×n, define
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αn−ν(σ)
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i=1
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Application to α-determinantal processes
Let X be a α-determinantal point process on Rd . We will be interested in the
distribution of its linear statistics. For a test function φ : Rd → R with compact
support, the linear statistic Λ(φ) is given by

Λ(φ) :=
∑
x∈X

φ(x).

We will investigate the family of random variables given by the linear statistics

{Λ(φL)}L>0 , where φL(·) := φ(·/L).
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Application to α-determinantal processes
Under mild conditions about the background measure µ and the kernel K , we have the
following CLT for linear statistics:

Theorem (Dinh, G., Tran, Tran)
Let φ : Rd → R be a bounded compactly supported test function with ∥φ∥2 > 0. Then
Λ(φL) satisfies a CLT upon centering and scaling as L ↑ ∞ with the speed of
convergence at the rate O(log L · L−η) for some positive number η depending only on
the model.

Remarks
Esp. relevant when ambient dimension ≥ 3, where structural alternatives such as
connections to random matrix theory are not available
Covers a broad class of kernels, in particular kernels with slow spatial decay (such as
the Bessel kernel) in general dimensions
Obtain explicit rates of convergence in a wide spectrum of models.
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Application to α-DPPs : particular cases
Suppose d > 2 and

sup
x∈Rd

∫
Rd

∥x − y∥3|K (x , y)|2dy < ∞ (1)

and
inf

x∈Rd
inf

u∈Sd−1

∫
Rd

|⟨y − x , u⟩|2|K (x , y)|2dy > 0, (2)

and φ ∈ C2
c .Then

Result
[Under above conditions] Λ(φL) satisfies a CLT upon centering and scaling as L ↑ ∞
with the speed of convergence at the rate O(log L · L−η), where η = 1

2(d − 2).

Result
[Bessel process] For the Bessel kernel point process in d > 1, we have Λ(φL) satisfies a
CLT upon centering and scaling as L ↑ ∞ with the speed of convergence at the rate
O(log L · L−η), where η = d − 1.
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Key ingredients

Theorem (Shirai, Takahashi)
Let φ : Rd → R be a bounded, compactly supported test function. Then for every
u ∈ D(0, r) (r depends only on ∥φ∥∞), we have

E[exp(−uΛ(φ))] = Det[I + αMφ,uK ]−1/α

where Det is the Fredholm determinant, Mφ,u is the multiplication operator by the
function 1 − exp(−uφ(x)) and I is the identity operator on L2(µ). Further, the Laplace
transform is holomorphic in u on D(0, r).

To obtain a CLT, rL can be taken to be O(∥φL∥−1
∞ ) = O(1), and we have to verify

lim
L→∞

log+ log |E[erL|Λ(φL)|]|
rLσL

= 0.

We show that
log+ log |E[erL|Λ(φL)|]| ≲ log L and σL ≳ Lη

for some η > 0 depending only on the model, as desired.
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