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Circular Unitary Ensemble

Let U ∈ U(N) be chosen uniformly at random with respect to Haar
measure dµ from the group of N × N unitary matrices.

This is called Circular Unitary Ensemble (CUE).

We define the characteristic polynomial as

ΛN(z) = det
(
I − U†z

)
, z ∈ C.

Keating-Snaith ’00: Statistical properties of ΛN(z) are believed to
parallel analogous properties of the Riemann zeta function.

Eigenvalues and zeros: Chance encounter between Freeman Dyson
and Hugh Montgomery in 1972.
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Riemann zeta function

Dirichlet series and Euler product:

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
, Re(s) > 1.

The ζ-function encodes the distribution of the prime numbers.

Analytic continuation to C:

ζ(s) =
(

2sπs−1 sin
(πs

2

)
Γ(1− s)

)
ζ(1− s).

The Riemann hypothesis states that all non-trivial zeros of ζ(s) lie on the
critical line s = 1

2 + it.
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Keating-Snaith philosophy

Characteristic polynomial:

ΛN(z) = det
(
I − zU†

)

Integrals over the unitary group:

MRMT
k,N =

∫
U(N)

|ΛN(e iθ)|2kdµ(U)

Asymptotics:

MRMT
k,N = CkN

k2(1 + o(1))

as N →∞.

Riemann zeta function:

ζ(s) =
∞∑
n=1

1

ns

Integrals on the critical line:

MNT
k,T =

1

T

∫ T

0

|ζ(1/2 + it)|2k dt

Conjectured (k > 2) asymptotics :

MNT
k,T = C ′k(logT )k

2

aarithk (1 + o(1))

as T →∞. Proved when k = 1, 2.

A conjecture of Keating and Snaith (2000) says that for all k,

Ck = C ′k =
k−1∏
n=0

k!

(k + n)!
=

G(1 + k)2

G(1 + 2k)
.
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Derivatives

The derivative of the CUE characteristic polynomial is motivated by
several related questions in number theory:

RH is equivalent to no zeros of ζ ′(s) in 0 < σ < 1
2 .

Some low order moments or joint moments of the derivative of the
Riemann zeta function are known. e.g.

1

T

∫ T

0
Z(t)Z ′(t)dt ∼ e2 − 5

4π
(log(T ))2

where Z(t) = e iν(t)ζ(1/2 + it) is Hardy’s Z -function (Conrey and
Ghosh ’89).
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The derivative of the characteristic polynomial

Zeros are inside the unit circle. Non-trivial scaling of density ρ(r),
r = 1− c

N , Mezzadri ’02.
Random matrix theory and the zeros of ζ ′(s) 4
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(b) N = 50

Figure 1. Zeros of characteristic polynomials of random unitary matrices (!) and of

their derivatives (").

In figure 1 are plotted the zeros of the characteristic polynomials Z(U, z) and

of their derivatives of two unitary matrices taken at random with respect to Haar

measure for N = 20 and N = 50. Such matrices can be easily generated numerically

by taking complex matrices whose entries are independent complex random numbers

with Gaussian distribution, and then by applying Gram-Schmidt orthogonalization to

the rows or columns (see, e.g., [14]). There are a few qualitative features that can be

immediately observed. Firstly, since the distribution (2.1) is translation invariant on the

unit circle, the density of the roots of Z ′(U, z) depends only on the distance from the

origin. Secondly, as mentioned in the introduction, the roots of Z ′(U, z) are all inside

the unit circle. This property can be easily understood with the following argument.

Let z1, z2, . . . , zN be N complex numbers; if they all are on the same side of a straight

line passing through the origin, then

z1 + z2 + · · · + zN != 0 and
1

z1

+
1

z2

+ · · · +
1

zN

!= 0. (2.2)

Let {zj}N
j=1 be the roots of a polynomial p(z) and z a point outside the smallest convex

polygon containing {zj}N
j=1. Now, consider a straight line passing through z and lying

outside such a polygon. Because of equation (2.2), the logarithmic derivative

p ′(z)

p(z)
=

1

z − z1
+

1

z − z2
+ · · · + 1

z − zN

cannot vanish. There are two others less obvious features that figure 1 reveals and that

become more apparent as N increases: firstly, the roots of Z ′(U, z) concentrate in a

small region in proximity of the the unit circle; secondly, given two consecutive zeros
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Derivative moments

The joint moments of the derivative are defined as

Rh,k(z) := E(|Λ′N(z)|2h|ΛN(z)|2k−2h).

with h ≥ 0, k ≥ h.

Studied by several authors, mainly in the case that |z | = 1.

The results are of the form

Rh,k(1) ∼ Nk2+2hch,k , N →∞,

where ch,k is a certain constant. Several works from ’01 to the present
day, e.g. Hughes, Conrey et al., Dehaye, Winn, Basor et al., Bailey et al.,
Forrester, Snaith and collaborators.

Interest in non-integer exponents k and h is mentioned in these papers,
and pursued in work of Assiotis, Keating and Warren ’20 for |z | = 1.

This is not well understood when |z | < 1.
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Main result

We consider
Rh,k(z) := E(|Λ′N(z)|2h|ΛN(z)|2k−2h).

Theorem (S. and Wei ’24)

Let |z | < 1, Re(h) ≥ 0 and Re(k − h) ≥ 0. Then

lim
N→∞

Rh,k(z) =
e−k

2|z|2Γ(h + 1)

(1− |z |2)k2+2h 1F1
(
h + 1, 1; k2|z |2

)
where 1F1(a, b; z) is the confluent hypergeometric function

1F1(a, b; z) =
∞∑
j=0

(a)j
(b)j

z j

j!
, (a)j =

Γ(a + j)

Γ(a)
.
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Results for integer moments

When k, h ∈ N, the 1F1 simplifies down to:

lim
N→∞

Rh,k(z) =
1

(1− |z |2)k2+2h

h∑
j=0

(
h

j

)2

(h − j)! (|z |2k2)j

=
1

(1− |z |2)k2+2h
Lh(−k2|z |2)

where Lh(x) is the Laguerre polynomial of degree h.

On mesoscopic scales such that |z | = 1− c
Nα , with 0 < α < 1, we have

Rh,k(z) ∼ 1

(1− |z |2)k2+2h
Lh(−k2).
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Main idea

We write ΛN(z) = eGN(z), so that

|Λ′N(z)|2h|ΛN(z)|2k−2h = |G ′N(z)|2hek(GN(z)+GN(z))

where

GN(z) = log det
(
IN − zU†

)
=
∞∑
j=1

Tr(U−j)
j

z j .

Convergence to a random analytic function and log-correlated Gaussian
field G (z). Hughes, Keating, O’Connell ’01.

Lemma

The vector (GN(z),G ′N(z)) converges weakly to (G (z),G ′(z)) where

G (z) =
∞∑
j=1

z j√
j
Nj , |z | < 1

and Nj are i.i.d. standard complex normal random variables.
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Limiting correlation structure

Applying the Lemma, we show that as N →∞,

E
(
|G ′N(z)|2hek(GN(z)+GN(z))

)
→ E

(
|G ′(z)|2hek(G(z)+G(z))

)
,

where (G (z),G ′(z)) is a bi-variate complex Gaussian.

The mean vector and relation matrix are 0.

The covariance matrix is

Γ =

(
E(|G (z)|2) E(G (z)G ′(z))

E(G (z)G ′(z)) E(|G ′(z)|2)

)
=

(
− log

(
1− |z |2

)
z

(1−|z|2)
z

(1−|z|2)
1

(1−|z|2)2

)
.

The limiting expectation is a Gaussian integral over C2.
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Doing the Gaussian integral

The integral over G follows by completing the square. The remaining
integral (over G ′ = w) is

1

π

∫
C
d2w |w |2he−|w |2+kzw+kzw

=
∞∑

q1=0

∞∑
q2=0

(kz)q1(kz)q2

(q1)!(q2)!

1

π

∫
C
d2w |w |2he−|w |2(w)q1(w)q2

=
∞∑

q1=0

∞∑
q2=0

(kz)q1(kz)q2

(q1)!(q2)!
δq1,q2Γ

(
h +

q1 + q2
2

+ 1

)

=
∞∑
q=0

Γ(h + q + 1)

(q!)2
(k2|z |2)q

= Γ(p + 1) 1F1(h + 1, 1; k2|z |2).
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Finite N , integer moments

This case is easier in principle. We can write for h ∈ N,

E(|Λ′N(z)|2h) = ∂z1∂z1 . . . ∂zh∂zhE

 h∏
j=1

ΛN(zj)ΛN(zj)

∣∣∣∣
z1=z,...,zh=z

Then we can apply

Theorem (Akemann and Vernizzi ’00)

The average of a product of k characteristic polynomials is

E

 N∏
j=1

h∏
i=1

(λj − zi )(λj − wi )

 =
det
(∑N+h−1

`=0 (ziwj)
`
)
i ,j=1,...,h∏

1≤i<j≤h(zj − zi )
∏

1≤i<j≤h(wj − wi )
.

This can be shown using the determinantal property of CUE.

Nick Simm 13 / 18



Finite N results

Carrying out the derivatives and merging, we find

E(|Λ′N(z)|2h) =
∑
~p,~q∈P

a~p,~q det

{
(rpi f

(pi )
N (r))(qj )

}h

i ,j=1

, r = |z |2

where P are partitions of h2+h
2 of length h, a~p,~q are combinatorial

coefficients and

fN(r) := 1 + r + r2 + . . .+ rN−1 =
rN − 1

r − 1
, r = |z |2.

Works well in meso or micro regimes e.g. |z | = 1− c
N , including |z | = 1.
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Microscopic regime

In this regime r = 1− c
N and we get

(rpi f
(pi )
N (r))(qj ) ∼ Npi+qj+1

∫ 1

0
xpi+qj e−cxdx

and taking determinants

det

{
(rpi f

(pi )
N (r))(qj )

}h

i ,j=1

∼ Nh2+2h det

{∫ 1

0
xpi+qj e−cxdx

}h

i ,j=1

which matches the order in the known case c = 0. There the determinant
is an explicit Cauchy determinant.

For c > 0 and pi = i , qj = j , this is a Hankel determinant related to
Painlevé V.
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Summary

I discussed our results for the average

E
(
|Λ′N(z)|2h|ΛN(z)|2k−2h

)
, |z | < 1.

To summarise:

We approximate ΛN(z) by eG(z) where G (z) is an appropriate
log-correlated Gaussian field.

Higher derivatives for h, k ∈ N can also be done using Wick’s theorem
for the multivariate Gaussian.

It would be interesting to obtain results uniformly in the annulus
1− δ < |z | ≤ 1 i.e. encompassing the different limit regimes.
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Conjecture for ζ

Let s = σ + it with σ > 1
2 fixed and consider joint moments

RNT
h,k (σ) = lim

T→∞
1

T

∫ T

0
|ζ ′(σ + it)|2h|ζ(σ + it)|2k−2hdt.

From our random matrix results, it seems reasonable to expect that for
h, k ∈ N, we have

RNT
h,k (σ) ∼ 1

(σ − 1
2)k2+2h

Lh(−k2)aarithh,k

as σ → 1
2 from above, where Lh(x) is the Laguerre polynomial. aarithh,k is an

arithmetic contribution the number theorists understand.
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Moments and zeros

Moments
d

dh
E(|ΛN(z)|2h)

∣∣∣∣
h=0

= 2E(log |ΛN(z)|)

Jensen’s formula (ρk zeros of Λ′N(z))

log |Λ′N(0)| = −
∑
k

log(r/|ρk |) +
1

2π

∫ 2π

0
log |ΛN(re iθ)|dθ

Therefore, in principle, moment computations may give insights into the
zero distribution of Λ′N(z).
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