Derivative moments of CUE characteristic polynomials

Nick Simm

Joint work with Fei Wei (University of Oxford)

University of Sussex

Random matrices and related topics in Jeju

Research supported by the Royal Society

Circular Unitary Ensemble

Let $U \in U(N)$ be chosen uniformly at random with respect to Haar measure $d\mu$ from the group of $N \times N$ unitary matrices.

This is called Circular Unitary Ensemble (CUE).

We define the characteristic polynomial as

$$\Lambda_N(z) = \det \left(I - U^{\dagger}z\right), \qquad z \in \mathbb{C}.$$

- Keating-Snaith '00: Statistical properties of $\Lambda_N(z)$ are believed to parallel analogous properties of the Riemann zeta function.
- Eigenvalues and zeros: Chance encounter between Freeman Dyson and Hugh Montgomery in 1972.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

Riemann zeta function

Dirichlet series and Euler product:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \quad \text{Re}(s) > 1.$$

The ζ -function encodes the distribution of the prime numbers.

Analytic continuation to \mathbb{C} :

$$\zeta(s) = \left(2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s)\right) \zeta(1-s).$$

The Riemann hypothesis states that all non-trivial zeros of $\zeta(s)$ lie on the critical line $s = \frac{1}{2} + it$.

Characteristic polynomial:

$$\Lambda_N(z) = \det \left(I - zU^{\dagger}\right)$$

Riemann zeta function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Nick Simm 4 / 18

Characteristic polynomial:

$$\Lambda_N(z) = \det(I - zU^{\dagger})$$

Integrals over the unitary group:

$$M_{k,N}^{\mathrm{RMT}} = \int_{U(N)} |\Lambda_N(e^{i\theta})|^{2k} d\mu(U)$$

Riemann zeta function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Integrals on the critical line:

$$M_{k,T}^{\rm NT} = rac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2k} dt$$

Nick Simm 4 / 18

Characteristic polynomial:

$$\Lambda_N(z) = \det(I - zU^{\dagger})$$

Integrals over the unitary group:

$$M_{k,N}^{\mathrm{RMT}} = \int_{U(N)} |\Lambda_N(e^{i\theta})|^{2k} d\mu(U)$$

Asymptotics:

$$M_{k,N}^{\rm RMT} = C_k N^{k^2} (1 + o(1))$$

as $N \to \infty$.

Riemann zeta function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Integrals on the critical line:

$$M_{k,T}^{\rm NT} = \frac{1}{T} \int_0^T |\zeta(1/2 + it)|^{2k} dt$$

Conjectured (k > 2) asymptotics :

$$M_{k,T}^{\mathrm{NT}} = C_k'(\log T)^{k^2} a_k^{\mathrm{arith}}(1+o(1))$$

as $T \to \infty$. Proved when k = 1, 2.

Nick Simm 4 / 18

Characteristic polynomial:

$$\Lambda_N(z) = \det \left(I - zU^{\dagger}\right)$$

Integrals over the unitary group:

$$M_{k,N}^{\mathrm{RMT}} = \int_{U(N)} |\Lambda_N(e^{i\theta})|^{2k} d\mu(U)$$

Asymptotics:

$$M_{k,N}^{\text{RMT}} = C_k N^{k^2} (1 + o(1))$$

as $N \to \infty$.

Riemann zeta function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Integrals on the critical line:

$$M_{k,T}^{\mathrm{NT}}=rac{1}{T}\int_{0}^{T}\leftert \zeta(1/2+it)
ightert ^{2k}dt$$

Conjectured (k > 2) asymptotics :

$$M_{k,T}^{\mathrm{NT}} = C_k'(\log T)^{k^2} a_k^{\mathrm{arith}}(1+o(1))$$

as $T \to \infty$. Proved when k = 1, 2.

A conjecture of Keating and Snaith (2000) says that for all k,

$$C_k = C'_k = \prod_{n=0}^{k-1} \frac{k!}{(k+n)!} = \frac{G(1+k)^2}{G(1+2k)}.$$

Derivatives

The derivative of the CUE characteristic polynomial is motivated by several related questions in number theory:

- RH is equivalent to no zeros of $\zeta'(s)$ in $0 < \sigma < \frac{1}{2}$.
- Some low order moments or joint moments of the derivative of the Riemann zeta function are known. e.g.

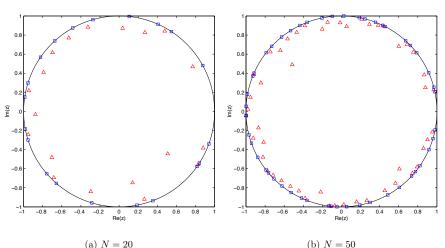
$$rac{1}{T}\int_0^T \mathcal{Z}(t)\mathcal{Z}'(t)dt \sim rac{e^2-5}{4\pi}\left(\log(T)
ight)^2$$

where $\mathcal{Z}(t)=e^{i\nu(t)}\zeta(1/2+it)$ is Hardy's Z-function (Conrey and Ghosh '89).

Nick Simm 5 / 18

The derivative of the characteristic polynomial

Zeros are *inside* the unit circle. Non-trivial scaling of density $\rho(r)$, $r=1-\frac{c}{N}$, Mezzadri '02.



4D > 4B > 4E > 4E > E 990

Nick Simm 6 / 18

The joint moments of the derivative are defined as

$$R_{h,k}(z) := \mathbb{E}(|\Lambda'_N(z)|^{2h}|\Lambda_N(z)|^{2k-2h}).$$

with $h \ge 0$, $k \ge h$.

Studied by several authors, mainly in the case that |z| = 1.

Nick Simm 7 / 18

The joint moments of the derivative are defined as

$$R_{h,k}(z) := \mathbb{E}(|\Lambda'_N(z)|^{2h}|\Lambda_N(z)|^{2k-2h}).$$

with $h \ge 0$, $k \ge h$.

Studied by several authors, mainly in the case that |z| = 1.

The results are of the form

$$R_{h,k}(1) \sim N^{k^2+2h} c_{h,k}, \qquad N \to \infty,$$

where $c_{h,k}$ is a certain constant. Several works from '01 to the present day, e.g. Hughes, Conrey et al., Dehaye, Winn, Basor et al., Bailey et al., Forrester, Snaith and collaborators.

Nick Simm 7 / 18

The joint moments of the derivative are defined as

$$R_{h,k}(z) := \mathbb{E}(|\Lambda'_N(z)|^{2h}|\Lambda_N(z)|^{2k-2h}).$$

with $h \ge 0$, $k \ge h$.

Studied by several authors, mainly in the case that |z| = 1.

The results are of the form

$$R_{h,k}(1) \sim N^{k^2+2h} c_{h,k}, \qquad N \to \infty,$$

where $c_{h,k}$ is a certain constant. Several works from '01 to the present day, e.g. Hughes, Conrey et al., Dehaye, Winn, Basor et al., Bailey et al., Forrester, Snaith and collaborators.

Interest in *non-integer exponents* k and h is mentioned in these papers, and pursued in work of Assiotis, Keating and Warren '20 for |z| = 1.

The joint moments of the derivative are defined as

$$R_{h,k}(z) := \mathbb{E}(|\Lambda'_N(z)|^{2h}|\Lambda_N(z)|^{2k-2h}).$$

with $h \ge 0$, $k \ge h$.

Studied by several authors, mainly in the case that |z| = 1.

The results are of the form

$$R_{h,k}(1) \sim N^{k^2+2h} c_{h,k}, \qquad N \to \infty,$$

where $c_{h,k}$ is a certain constant. Several works from '01 to the present day, e.g. Hughes, Conrey et al., Dehaye, Winn, Basor et al., Bailey et al., Forrester, Snaith and collaborators.

Interest in *non-integer exponents* k and h is mentioned in these papers, and pursued in work of Assiotis, Keating and Warren '20 for |z|=1.

This is not well understood when |z| < 1.

Nick Simm 7 / 18

Main result

We consider

$$R_{h,k}(z) := \mathbb{E}(|\Lambda'_N(z)|^{2h}|\Lambda_N(z)|^{2k-2h}).$$

Theorem (S. and Wei '24)

Let |z| < 1, $\operatorname{Re}(h) \ge 0$ and $\operatorname{Re}(k - h) \ge 0$. Then

$$\lim_{N\to\infty} R_{h,k}(z) = \frac{e^{-k^2|z|^2}\Gamma(h+1)}{(1-|z|^2)^{k^2+2h}} \, _1F_1\left(h+1,1;k^2|z|^2\right)$$

where ${}_{1}F_{1}(a,b;z)$ is the confluent hypergeometric function

$$_{1}F_{1}(a,b;z) = \sum_{j=0}^{\infty} \frac{(a)_{j}}{(b)_{j}} \frac{z^{j}}{j!}, \quad (a)_{j} = \frac{\Gamma(a+j)}{\Gamma(a)}.$$

4 D P 4 DP P 4 E P 4 E P 9 Y (*

Nick Simm 8 / 18

Results for integer moments

When $k, h \in \mathbb{N}$, the ${}_1F_1$ simplifies down to:

$$\lim_{N \to \infty} \mathcal{R}_{h,k}(z) = \frac{1}{(1 - |z|^2)^{k^2 + 2h}} \sum_{j=0}^{h} {h \choose j}^2 (h - j)! (|z|^2 k^2)^j$$

$$= \frac{1}{(1 - |z|^2)^{k^2 + 2h}} L_h(-k^2 |z|^2)$$

where $L_h(x)$ is the Laguerre polynomial of degree h.

On mesoscopic scales such that $|z|=1-\frac{c}{N^{\alpha}}$, with $0<\alpha<1$, we have

$$R_{h,k}(z) \sim \frac{1}{(1-|z|^2)^{k^2+2h}} L_h(-k^2).$$

107107127127 2 7740

Main idea

We write $\Lambda_N(z) = e^{G_N(z)}$, so that

$$|\Lambda'_{N}(z)|^{2h}|\Lambda_{N}(z)|^{2k-2h} = |G'_{N}(z)|^{2h}e^{k(G_{N}(z)+\overline{G_{N}(z)})}$$

where

$$G_N(z) = \log \det \left(I_N - z U^\dagger \right) = \sum_{j=1}^\infty rac{\mathrm{Tr}(U^{-j})}{j} z^j.$$

Convergence to a random analytic function and log-correlated Gaussian field G(z). Hughes, Keating, O'Connell '01.

Lemma

The vector $(G_N(z), G'_N(z))$ converges weakly to (G(z), G'(z)) where

$$G(z) = \sum_{i=1}^{\infty} \frac{z^j}{\sqrt{j}} \mathcal{N}_j, \qquad |z| < 1$$

and \mathcal{N}_i are i.i.d. standard complex normal random variables.

Limiting correlation structure

Applying the Lemma, we show that as $N \to \infty$,

$$\mathbb{E}\left(|G_N'(z)|^{2h}e^{k(G_N(z)+\overline{G_N(z)})}\right)\to \mathbb{E}\left(|G'(z)|^{2h}e^{k(G(z)+\overline{G(z)})}\right),$$

where (G(z), G'(z)) is a bi-variate complex Gaussian.

Limiting correlation structure

Applying the Lemma, we show that as $N \to \infty$,

$$\mathbb{E}\left(|G_N'(z)|^{2h}e^{k(G_N(z)+\overline{G_N(z)})}\right)\to \mathbb{E}\left(|G'(z)|^{2h}e^{k(G(z)+\overline{G(z)})}\right),$$

where (G(z), G'(z)) is a bi-variate complex Gaussian.

- The mean vector and relation matrix are 0.
- The covariance matrix is

$$\begin{split} \Gamma &= \begin{pmatrix} \mathbb{E}(|G(z)|^2) & \mathbb{E}(G(z)\overline{G'(z)}) \\ \mathbb{E}(\overline{G(z)}G'(z)) & \mathbb{E}(|G'(z)|^2) \end{pmatrix} \\ &= \begin{pmatrix} -\log(1-|z|^2) & \frac{z}{(1-|z|^2)} \\ \frac{\overline{z}}{(1-|z|^2)} & \frac{1}{(1-|z|^2)^2} \end{pmatrix}. \end{split}$$

The limiting expectation is a Gaussian integral over \mathbb{C}^2 .

The integral over G follows by completing the square. The remaining integral (over G'=w) is

$$\frac{1}{\pi} \int_{\mathbb{C}} d^2 w |w|^{2h} e^{-|w|^2 + kzw + k\overline{zw}}$$

The integral over G follows by completing the square. The remaining integral (over G'=w) is

$$\frac{1}{\pi} \int_{\mathbb{C}} d^2 w |w|^{2h} e^{-|w|^2 + kzw + k\overline{zw}}$$

$$= \sum_{q_1=0}^{\infty} \sum_{q_2=0}^{\infty} \frac{(kz)^{q_1} (k\overline{z})^{q_2}}{(q_1)! (q_2)!} \frac{1}{\pi} \int_{\mathbb{C}} d^2 w |w|^{2h} e^{-|w|^2} (w)^{q_1} (\overline{w})^{q_2}$$

The integral over G follows by completing the square. The remaining integral (over G'=w) is

$$\begin{split} &\frac{1}{\pi} \int_{\mathbb{C}} d^2 w |w|^{2h} e^{-|w|^2 + kzw + k\overline{z}\overline{w}} \\ &= \sum_{q_1=0}^{\infty} \sum_{q_2=0}^{\infty} \frac{(kz)^{q_1} (k\overline{z})^{q_2}}{(q_1)! (q_2)!} \frac{1}{\pi} \int_{\mathbb{C}} d^2 w \, |w|^{2h} e^{-|w|^2} (w)^{q_1} (\overline{w})^{q_2} \\ &= \sum_{q_1=0}^{\infty} \sum_{q_2=0}^{\infty} \frac{(kz)^{q_1} (k\overline{z})^{q_2}}{(q_1)! (q_2)!} \delta_{q_1,q_2} \Gamma\left(h + \frac{q_1 + q_2}{2} + 1\right) \end{split}$$

The integral over G follows by completing the square. The remaining integral (over G'=w) is

$$\begin{split} &\frac{1}{\pi} \int_{\mathbb{C}} d^2 w |w|^{2h} e^{-|w|^2 + kzw + k\overline{z}\overline{w}} \\ &= \sum_{q_1=0}^{\infty} \sum_{q_2=0}^{\infty} \frac{(kz)^{q_1} (k\overline{z})^{q_2}}{(q_1)! (q_2)!} \frac{1}{\pi} \int_{\mathbb{C}} d^2 w \, |w|^{2h} e^{-|w|^2} (w)^{q_1} (\overline{w})^{q_2} \\ &= \sum_{q_1=0}^{\infty} \sum_{q_2=0}^{\infty} \frac{(kz)^{q_1} (k\overline{z})^{q_2}}{(q_1)! (q_2)!} \delta_{q_1,q_2} \Gamma\left(h + \frac{q_1 + q_2}{2} + 1\right) \\ &= \sum_{q=0}^{\infty} \frac{\Gamma(h + q + 1)}{(q!)^2} (k^2 |z|^2)^q \end{split}$$

The integral over G follows by completing the square. The remaining integral (over G'=w) is

$$\begin{split} &\frac{1}{\pi} \int_{\mathbb{C}} d^2 w |w|^{2h} e^{-|w|^2 + kzw + k\overline{zw}} \\ &= \sum_{q_1=0}^{\infty} \sum_{q_2=0}^{\infty} \frac{(kz)^{q_1} (k\overline{z})^{q_2}}{(q_1)! (q_2)!} \frac{1}{\pi} \int_{\mathbb{C}} d^2 w \, |w|^{2h} e^{-|w|^2} (w)^{q_1} (\overline{w})^{q_2} \\ &= \sum_{q_1=0}^{\infty} \sum_{q_2=0}^{\infty} \frac{(kz)^{q_1} (k\overline{z})^{q_2}}{(q_1)! (q_2)!} \delta_{q_1,q_2} \Gamma\left(h + \frac{q_1 + q_2}{2} + 1\right) \\ &= \sum_{q=0}^{\infty} \frac{\Gamma(h + q + 1)}{(q!)^2} (k^2 |z|^2)^q \\ &= \Gamma(p+1) \, {}_1F_1(h+1,1;k^2|z|^2). \end{split}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Finite N, integer moments

This case is easier in principle. We can write for $h \in \mathbb{N}$,

$$\mathbb{E}(|\Lambda'_{N}(z)|^{2h}) = \partial_{z_{1}}\partial_{\overline{z_{1}}}\dots\partial_{z_{h}}\partial_{\overline{z_{h}}}\mathbb{E}\left(\prod_{j=1}^{h}\Lambda_{N}(z_{j})\overline{\Lambda_{N}(z_{j})}\right)\Big|_{z_{1}=z,\dots,z_{h}=z}$$

Then we can apply

Theorem (Akemann and Vernizzi '00)

The average of a product of k characteristic polynomials is

$$\mathbb{E}\left(\prod_{j=1}^{N}\prod_{i=1}^{h}(\lambda_{j}-z_{i})(\overline{\lambda_{j}}-\overline{w_{i}})\right)=\frac{\det\left(\sum_{\ell=0}^{N+h-1}(z_{i}\overline{w_{j}})^{\ell}\right)_{i,j=1,\dots,h}}{\prod_{1\leq i< j\leq h}(z_{j}-z_{i})\prod_{1\leq i< j\leq h}(\overline{w_{j}}-\overline{w_{i}})}.$$

This can be shown using the determinantal property of CUE.

13 / 18

Finite *N* results

Carrying out the derivatives and merging, we find

$$\mathbb{E}(|\Lambda'_{N}(z)|^{2h}) = \sum_{\vec{p}, \vec{q} \in \mathcal{P}} a_{\vec{p}, \vec{q}} \det \left\{ (r^{p_i} f_{N}^{(p_i)}(r))^{(q_j)} \right\}_{i,j=1}^{h}, \qquad r = |z|^2$$

where \mathcal{P} are partitions of $\frac{h^2+h}{2}$ of length h, $a_{\vec{n},\vec{d}}$ are combinatorial coefficients and

$$f_N(r) := 1 + r + r^2 + \ldots + r^{N-1} = \frac{r^N - 1}{r - 1}, \qquad r = |z|^2.$$

Works well in *meso* or *micro* regimes e.g. $|z| = 1 - \frac{c}{N}$, including |z| = 1.

Nick Simm 14 / 18

Microscopic regime

In this regime $r = 1 - \frac{c}{N}$ and we get

$$(r^{p_i}f_N^{(p_i)}(r))^{(q_j)} \sim N^{p_i+q_j+1} \int_0^1 x^{p_i+q_j} e^{-cx} dx$$

and taking determinants

$$\det\left\{ (r^{p_i} f_N^{(p_i)}(r))^{(q_j)} \right\}_{i,j=1}^h \sim N^{h^2 + 2h} \det\left\{ \int_0^1 x^{p_i + q_j} e^{-cx} dx \right\}_{i,j=1}^h$$

which matches the order in the known case c = 0. There the determinant is an explicit Cauchy determinant.

For c > 0 and $p_i = i$, $q_i = j$, this is a Hankel determinant related to Painlevé V.

15 / 18

Summary

I discussed our results for the average

$$\mathbb{E}\left(|\Lambda_N'(z)|^{2h}|\Lambda_N(z)|^{2k-2h}\right),\quad |z|<1.$$

To summarise:

- We approximate $\Lambda_N(z)$ by $e^{G(z)}$ where G(z) is an appropriate log-correlated Gaussian field.
- Higher derivatives for $h, k \in \mathbb{N}$ can also be done using Wick's theorem for the multivariate Gaussian.

It would be interesting to obtain results uniformly in the annulus $1-\delta<|z|\leq 1$ i.e. encompassing the different limit regimes.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへで

Conjecture for (

Let $s = \sigma + it$ with $\sigma > \frac{1}{2}$ fixed and consider joint moments

$$R_{h,k}^{\mathrm{NT}}(\sigma) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\zeta'(\sigma+it)|^{2h} |\zeta(\sigma+it)|^{2k-2h} dt.$$

From our random matrix results, it seems reasonable to expect that for $h, k \in \mathbb{N}$, we have

$$R_{h,k}^{\mathrm{NT}}(\sigma) \sim rac{1}{(\sigma - rac{1}{2})^{k^2 + 2h}} L_h(-k^2) a_{h,k}^{\mathrm{arith}}$$

as $\sigma \to \frac{1}{2}$ from above, where $L_h(x)$ is the Laguerre polynomial. $a_{h,k}^{\text{arith}}$ is an arithmetic contribution the number theorists understand.

Moments and zeros

Moments

$$\frac{d}{dh}\mathbb{E}(|\Lambda_N(z)|^{2h})\bigg|_{h=0}=2\mathbb{E}(\log|\Lambda_N(z)|)$$

Jensen's formula (ρ_k zeros of $\Lambda'_N(z)$)

$$\log |\Lambda'_{N}(0)| = -\sum_{k} \log(r/|\rho_{k}|) + \frac{1}{2\pi} \int_{0}^{2\pi} \log |\Lambda_{N}(re^{i\theta})| d\theta$$

Therefore, in principle, moment computations may give insights into the zero distribution of $\Lambda'_N(z)$.