Pinched-up periodic KPZ fixed point

Jinho Baik
University of Michigan

May 2024 @ Jeju

Zhipeng Liu (University of Kansas)

- Jinho Baik and Zhipeng Liu, Pinched-up periodic KPZ fixed point, 2024
- Zhipeng Liu and Yizao Wang, A conditional scaling limit of the KPZ fixed point with height tending to infinity at one location, 2022
- Jinho Baik and Zhipeng Liu, Multi-point distribution of periodic TASEP, JAMS, 2019

Brownian motion pinched up at $t=1$: Conditioned that $B(1)=L$,

$$
B(1+t)-B(1) \stackrel{d}{=} B^{(1)}(t) \quad \text { for } t>1
$$

and

$$
B(t)-t L \stackrel{d}{=} \mathbb{B}(t) \quad \text { for } 0<t<1
$$

where $\mathbb{B}(t)$ is a Brownian bridge.

1. KPZ fixed point
2. What happens if it is pinched up at a particular $\left(x_{0}, t_{0}\right)$?
3. Periodic KPX fixed point
4. Pinched up case

KPZ fixed point

- 2d random field $\mathrm{H}(x, t), x \in \mathbb{R}, t>0$.
- It was constructed by Mateski, Quastel, Remenik 2021
- It is the conjectured universal limit of random growth models (KPZ equation, corner growth model), interacting particle systems (exclusion processes), and directed polymers,

$$
\frac{h\left(x T^{2 / 3}, t T\right)-a(x, t) T}{b(x, t) T^{1 / 3}} \rightarrow \mathrm{H}(x, t) \quad \text { as } T \rightarrow \infty
$$

Narrow-wedge initial condition

Assume $\mathrm{H}(0,0)=0$ and $\mathrm{H}(x, 0)=-\infty$ for $x \neq 0$.

- $\alpha \mathrm{H}\left(\alpha^{-2} x, \alpha^{-3} t\right) \stackrel{d}{=} \mathrm{H}(x, t)$ and $\mathrm{H}(x, t) \stackrel{d}{=} t^{1 / 3} \mathrm{H}(0,1)-\frac{x^{2}}{t}$
- One-point: $\mathrm{H}(x, t) \stackrel{d}{=} t^{1 / 3}$ TW $-\frac{x^{2}}{t}$
- Equal-time: $x \mapsto \mathrm{H}(x, t)$ is the Airy2 process, after scaling
- Transition probabilities from $\mathrm{H}\left(\cdot, t_{1}\right)$ to $\mathrm{H}\left(\cdot, t_{2}\right)$ Mateski, Quastel, Remenik 2021
- Johansson and Rahman, and independently Liu computed the multi-point distributions $\mathbb{P}\left(\cap_{i=1}^{m} \mathrm{H}\left(x_{i}, t_{i}\right) \leq \beta_{i}\right)$ in 2022

Pinch-up

What does $\mathrm{H}(x, t)$ look like if we condition that $\mathrm{H}(0,1)=L$ and for large $L>0$?

For $t=1$:
Heuristics from the Airy process (e.g., [Ganguly and Hedge 2022]) indicates that

$$
\mathbb{E}[\mathrm{H}(u \sqrt{L}, 1)] \approx \begin{cases}(1-2|u|) L & |u| \leq 1 \\ -u^{2} L & |u|>1\end{cases}
$$

KPZ fixed point conditional to be large at one point

For $t>1$:
$\mathrm{H}(x, 1)-\mathrm{H}(0,1)$ looks like the narrow-wedge initial condition. From the Markovian property, we expect that conditional on $\mathrm{H}(0,1)=L \rightarrow \infty$,

$$
\mathrm{H}(x, 1+t)-\mathrm{H}(0,1) \approx \mathrm{H}^{(1)}(x, t) \quad \text { for } t>0
$$

This was proved for one-point distributions in 2023 by Ron Nissim and Ray Zhang.

For $0<t<1$:

Liu and Wang showed in 2022 that, conditional on $\mathrm{H}(0,1)=L \rightarrow \infty$,

$$
\frac{\mathrm{H}\left(\frac{x}{\sqrt{2} L^{1 / 4}}, t\right)-t L}{\sqrt{2} L^{1 / 4}} \rightarrow\left(\mathbb{B}_{1}(t)-x\right) \wedge\left(\mathbb{B}_{2}(t)+x\right)
$$

for $(x, t) \in \mathbb{R} \times(0,1)$ in the finite-dimensional distributions sense where $\mathbb{B}_{1}, \mathbb{B}_{2}$ are independent Brownian bridges.

Heuristics on the scaling

Property of KPZ fixed point

$$
\mathrm{H}(0,1) \stackrel{d}{=} \max _{x \in \mathbb{R}}\left\{\mathrm{H}(x, t)+\mathrm{H}^{(1)}(x, 1-t)\right\}
$$

Geodesic $x=x_{\text {max }}(t)$

Consider the probability

$$
P(x, y):=\mathbb{P}\left(x_{\max }=x, \mathrm{H}\left(x_{\max }, t\right)-t L=y \mid \mathrm{H}(0,1)=L\right)
$$

When $L>0$ is large, heuristically,

$$
\begin{aligned}
P(x, y) & \approx \frac{\mathbb{P}\left(\mathrm{H}(x, t)=t L+y, \mathrm{H}^{(1)}(x, 1-t)=(1-t) L-y\right)}{\mathbb{P}(\mathrm{H}(0,1)=L)} \\
& \approx \frac{\mathbb{P}\left(\mathrm{TW}=\left(t L+y+\frac{x^{2}}{t}\right) t^{1 / 3}\right) \mathbb{P}\left(\mathrm{TW}=\left((1-t) L-y+\frac{x^{2}}{1-t}\right)(1-t)^{1 / 3}\right)}{\mathbb{P}(\mathrm{TW}=L)}
\end{aligned}
$$

Right tail of the TW distribution

$$
\mathbb{P}(\mathrm{TW}=y) \mathrm{d} y \approx \frac{e^{-\frac{4}{3} y^{3 / 2}}}{8 \pi y} \mathrm{~d} y \quad y \rightarrow+\infty
$$

After Taylor expansion,

$$
\log P(x, y) \approx-\frac{1}{t(1-t)}\left[2 x^{2} L^{1 / 2}+\frac{y^{2}}{2 L^{1 / 2}}\right]
$$

This is $O(1)$ when $x=O\left(L^{-1 / 4}\right)$ and $y=O\left(L^{1 / 4}\right)$.

Periodic KPZ fixed point

The spatial correlations of KPZ universality models scale as $T^{2 / 3}$. Thus, random growth processes on a ring are not affected by the ring size a if $a \gg T^{2 / 3}$. The interesting limit arises when

$$
T, a \rightarrow \infty \text { such that } p:=\frac{2 a}{T^{2 / 3}} \text { is fixed }
$$

In this "relaxation time scale", the multi-point distributions were obtained for

- continuous-time TASEP [Baik and Liu 2019]
- discrete-time TASEP [Liao 2022]
- PushASEP [Li and Saenz 2023]
- PNG and Brownian directed last passage percolation [Tripathi 2024]

p-periodic KPZ fixed point

- Periodicity:

$$
\mathcal{H}_{p}(\gamma+p, \tau)=\mathcal{H}_{p}(\gamma, \tau)
$$

We assume the periodic narrow wedge initial condition.

- It is expected to interpolate the KPZ fixed point and the Brownian motion:

$$
\mathcal{H}_{p}(2 \gamma, \tau) \rightarrow \mathrm{H}(\gamma, \tau) \quad \text { as } p \rightarrow \infty \text { (long period) }
$$

and

$$
\frac{\sqrt{2} p^{1 / 4}}{\pi^{1 / 4}}\left(\mathcal{H}_{p}(\gamma, \tau)+p^{-1} \tau\right) \rightarrow \mathrm{B}(\tau) \quad \text { as } p \rightarrow 0 \text { (short period) }
$$

- The one-point distribution case when $\gamma=0$ was proved by Baik, Liu, and Silva 2022

Results for pinched-up periodic KPZ fixed point

Theorem [Baik and Liu]: Let

$$
\widetilde{\mathcal{H}}_{p}(x, t):=\frac{\mathcal{H}_{p}\left(\frac{\sqrt{2} x}{\ell^{1 / 4}}, t\right)-t \ell}{\sqrt{2} \ell^{1 / 4}} \quad \text { conditional on } \mathcal{H}_{p}(0,1)=\ell
$$

The following results hold for $(x, t) \in \mathbb{R} \times(0,1)$ in the sense of convergence of finite-dimensional distributions as $\ell \rightarrow \infty$:

- ("long" period)

$$
\widetilde{\mathcal{H}}_{p}(x, t) \rightarrow\left(\mathbb{B}_{1}(t)-x\right) \wedge\left(\mathbb{B}_{2}(t)+x\right) \quad \text { if } \ell^{-1 / 4} \ll p \text { and } \log p \ll \ell^{3 / 2}
$$

- (critically shrinking period)

$$
\widetilde{\mathcal{H}}_{p}(x, t) \rightarrow \mathrm{M}_{\mathrm{r}}(x, t) \quad \text { if } p=\mathrm{r} \sqrt{2} \ell^{-1 / 4} \text { for } \mathrm{r}>0 .
$$

- (short period)

$$
\widetilde{\mathcal{H}}_{p}(x, t) \rightarrow \frac{1}{\sqrt{2}} \mathbb{B}(t) \quad \text { if } \ell^{-1} \log \ell \ll p \ll \ell^{-1 / 4}
$$

Note: The long period result is expected to hold without assuming $\log p \ll \ell^{3 / 2}$.

Random field $\mathrm{M}_{\mathrm{r}}(x, t)$ for the critically shrinking case

For every $r>0$, let

$$
\mathrm{w}_{\mathrm{r}}(x, y)=\max \left\{x+\mathrm{r}\left[\frac{y-x}{2 r}\right], y-r\left[\frac{y-x}{2 r}\right]-\mathrm{r}\right\}
$$

Let $\mathbb{B}_{1}^{(r)}(t)$ be a Brownian bridge on the circle $S^{1}(r)=\mathbb{R} / \sqrt{2} r \mathbb{Z}$. Let $\mathbb{B}_{2}(t)$ be an independent standard Brownian bridge.
Define

$$
M_{r}(x, t)=w_{r}\left(\frac{\mathbb{B}_{1}^{(r)}(t)+\mathbb{B}_{2}(t)}{\sqrt{2}}-x, \frac{-\mathbb{B}_{1}^{(r)}(t)+\mathbb{B}_{2}(t)}{\sqrt{2}}+x\right)
$$

for $(x, t) \in \mathbb{R} \times(0,1)$, where $\mathbb{B}_{1}^{(r)}(t)$ is a Brownian bridge on the circle $S^{1}(r)=\mathbb{R} / \sqrt{2} \mathrm{r} \mathbb{Z}$ and $\mathbb{B}_{2}(t)$ is an independent standard Brownian bridge.

Note

$$
\lim _{r \rightarrow \infty}\left[\frac{\alpha}{2 r}\right]=\left\{\begin{array}{ll}
-1 & \alpha<0 \\
0 & \alpha \geq 0
\end{array} \quad \text { and } \quad \lim _{r \rightarrow 0} r\left[\frac{\alpha}{2 r}\right]=\frac{\alpha}{2}\right.
$$

Lemma
$\mathrm{w}_{\mathrm{r}}(x, y)=\max \left\{x+\mathrm{r}\left[\frac{y-x}{2 r}\right], y-r\left[\frac{y-x}{2 r}\right]-r\right\}$ satisfies

$$
\lim _{r \rightarrow \infty} w_{r}(x, y)=x \wedge y \quad \text { and } \quad \lim _{r \rightarrow 0} w_{r}(x, y)=\frac{x+y}{2}
$$

Thus, $M_{r}(x, t)=W_{r}\left(\frac{\mathbb{B}_{1}^{(r)}(t)+\mathbb{B}_{2}(t)}{\sqrt{2}}-x, \frac{-\mathbb{B}_{1}^{(r)}(t)+\mathbb{B}_{2}(t)}{\sqrt{2}}+x\right)$ satisfies:

- As $\mathrm{r} \rightarrow \infty$,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{r}}(x, t) \rightarrow & \min \left\{\frac{\mathbb{B}_{1}^{(\infty)}(t)+\mathbb{B}_{2}(t)}{\sqrt{2}}-x, \frac{-\mathbb{B}_{1}^{(\infty)}(t)+\mathbb{B}_{2}(t)}{\sqrt{2}}+x\right\} \\
& =\frac{d}{=}\left(\mathbb{B}_{1}^{(1)}(t)-x\right) \wedge\left(\mathbb{B}_{2}^{(2)}(t)+x\right)
\end{aligned}
$$

- As $r \rightarrow 0, \mathrm{M}_{\mathrm{r}}(x, t) \rightarrow \frac{1}{\sqrt{2}} \mathbb{B}_{2}(t)$

Elements of proof: Multi-point distributions

The proof relies on the exact formula of the multi-point distributions of Baik and Liu 2019,

$$
\begin{aligned}
& \mathbb{P}\left(\cap_{i=1}^{m-1}\left\{\mathcal{H}_{p}\left(\gamma_{i}, \tau_{i}\right) \geq \beta_{i}\right\} \cap\left\{\mathcal{H}_{p}\left(\gamma_{m}, \tau_{m}\right) \leq \beta_{m}\right\}\right) \\
& =\frac{(-1)^{m-1}}{(2 \pi \mathrm{i})^{m}} \oint \cdots \oint C(z) \operatorname{det}\left(1-\mathrm{K}_{z}\right) \prod_{i=1}^{m} \frac{\mathrm{~d} z_{i}}{z_{i}}
\end{aligned}
$$

where the contours circles satisfying $0<\left|z_{1}\right|<\cdots<\left|z_{m}\right|<1$ and

$$
\operatorname{det}\left(1-\mathrm{K}_{z}\right)=1+\sum_{n_{1}, \cdots, n_{m}=0}^{\infty} A\left(n_{1}, \cdots, n_{m}\right)
$$

To compute the conditional distribution, we evaluate the limit of

$$
\frac{\frac{\partial}{\partial \beta_{m}} \mathbb{P}\left(\cap_{i=1}^{m-1}\left\{\mathcal{H}_{p}\left(\gamma_{i}, \tau_{i}\right) \geq \beta_{i}\right\} \cap\left\{\mathcal{H}_{p}\left(\gamma_{m}, \tau_{m}\right) \leq \beta_{m}\right\}\right)}{\frac{\partial}{\partial \beta_{m}} \mathbb{P}\left(\mathcal{H}_{p}\left(\gamma_{m}, \tau_{m}\right) \leq \beta_{m}\right)}
$$

where $\gamma_{m}=0, \tau_{m}=1, \beta_{m}=L$. The main contribution comes from

$$
A(1, \cdots, 1)
$$

In the end, the limit for the "long" period case involves the integral

$$
\frac{1}{(2 \pi \mathrm{i})^{m}} \int \cdots \int \prod_{i=2}^{m} \frac{1}{\xi_{i}-\xi_{i-1}} \prod_{i=1}^{m} e^{\frac{\left(a_{i}-a_{i-1}\right)}{2} \xi_{i}^{2}-\left(b_{i}-b_{i-1}\right) \xi_{i}} \mathrm{~d} \xi_{i}
$$

which is equal to

$$
\mathbb{P}\left(\mathrm{B}\left(a_{1}\right) \geq b_{1}, \cdots, \mathrm{~B}\left(a_{m-1}\right) \geq b_{m-1}, \mathrm{~B}\left(a_{m}\right)=b_{m}\right),
$$

The critically shrinking period case $p=\mathrm{r} \sqrt{2} \ell^{-1 / 4}$ involves

$$
\sum_{k \in \mathbb{Z}^{m}} \frac{\mathbb{P}\left(\bigcap_{i=1}^{m-1}\left\{\mathrm{~B}_{1}\left(a_{i}\right)-b_{i} \geq r k_{i}\right\} \cap\left\{\mathrm{B}_{1}\left(a_{m}\right)-b_{m}=r k_{m}\right\}\right)}{w_{1}^{k_{1}} \cdots w_{m}^{k_{m}-k_{m-1}}}
$$

for complex numbers w_{1}, \cdots, w_{m}. An integral over w_{1}, \cdots, w_{m} involving this multi-sum above has a probability interpretation.

Thank you for attention

