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Let (Aj7j>1<7j<j§n be i.i.d. Ber(l/2).
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Bernoulli matrices
Let (Ai7j)1§7j§j§n be i.i.d. Ber(l/2).
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If Kasym is the empirical spectral measure, then

(Wigner's law) Bajym = Isc in probability,
n
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where pisc = (2/7)y/(1 — 2?)1dx.
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If Kasym is the empirical spectral measure, then

(Wigner's law) Bajym = Isc in probability,
n

—+00

where pisc = (2/7)y/(1 — 2?)1dx.

What is the large deviation behaviour of 11, s 7
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Bernoulli matrices

e Large deviations of /1, /; turn out to be very difficult.
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(LDP) logP(UA/\/ﬁ ~v)=e i )7 Vv # fhsc,

where v,, is the speed and [ the rate function.
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Bernoulli matrices

e Large deviations of /1, /; turn out to be very difficult.

? —v v
(LDP) logP(UA/\/ﬁ ~v)=e i )7 Vv # fhsc,

where v,, is the speed and [ the rate function.
e What do we know ? Not much...

e (Guionnet-Zeitouni): Speed of large deviation is n”

log P(d(pa) s 11sc) > €) < —Cen®.
e |f the rate function [ exists, then
I(p) = +oo, if p(x?) > 1/4,

since n %tr(A —EA)? = 1/4 and EA rank 1.
e [ cannot be universal: I # Icog.

0o € Dy but gy ¢ D[GOE.
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Some universality in large deviation behaviour
Let A=A —EA. By Cauchy interlacing inequalities

1 1

drs(Ka/yms Ba)ym) < El“k(A —4)= o

» Large deviations of Payymand fiy, s are the same.
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Some universality in large deviation behaviour
Let A= A —EA. By Cauchy interlacing inequalities

1

1
dxs(Bayyms Ha)ym) < El"k(A —A)= o

» Large deviations of Lasymand fiy, s are the same.

What about other spectral observables?

e (Guionnet-Husson) A4, s satisfies a LDP

with speed 7 and rate function J = JooEk.

e (A) /Lé/\/ﬁ(l’k) satisfies a LDP

2 "
with speed n' "% and rate function L¥ = Lk,OE.

» Universality is a manifestation of moderate deviation behaviour.
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Sparsification as a relaxation of the problem

Take p < 1 and consider A the adjacency matrix of the
Erd8s-Rényi graph G(n,p).
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Sparsification as a relaxation of the problem

Take p < 1 and consider A the adjacency matrix of the
Erd8s-Rényi graph G(n,p).

0 logn n
np S logn logn < np
Inhomogeneous graph: Homogeneous graph:
e isolated vertices e vertices have all almost the same degrees
e hubs e connected w.h.p
o leaves
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The subcritical regime np = A
» Asymptotically, G(n, %) looks like a Galton-Watson tree with
degree distribution Poi(\).
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The subcritical regime np = A

» Asymptotically, G(n, %) looks like a Galton-Watson tree with
degree distribution Poi(\).

(Abért-Thom-Virag) A = i, in probability

n—-+o00

where 1) is the expected spectral measure of GWT(Poi())).
o (Bordenave-Lelarge-Salez): 1y is symmetric
e (Salez): Dense set of atoms
e (Bordenave-Sen-Virdg): ., is purely atomic iff A < 1.
e (Arras-Bordenave): 1y oc # 0 if A large enough.

(Bordenave-Caputo) 114 satisfies a LDP with speed n.

» Obtained by contracting the LDP for G(n, A/n) with respect to
the local weak topology.
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The supercritical regime np > logn
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The supercritical regime np > logn

As soon as np > 1, Wigner's law holds

YN n:> Usc, in probability.

—+o00

(A.) If logn < np < n, j1a/ smp satisfies a LDP
with speed n%p and good rate function I.

» The rate function is the solution of a certain variational problem
o I(u) =0<= p= .
o I(u) = +oo if pis not symmetric.

» The only possible deviations are around measures coming from
Quadratic Vector Equations.
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Quadratic Vector Equations

» (Girko): Equations for the Stieltjes transform of limits of
empirical spectral measures of Wigner-type matrices.
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Quadratic Vector Equations

» (Girko): Equations for the Stieltjes transform of limits of
empirical spectral measures of Wigner-type matrices.

Let W : [0,1]*> — R, be a Borel measurable symmetric kernel s.t.

1
sup / W(z,y)dy < +o0,
z€[0,1] /0

i.e. T has a bounded degree function dy = [, W (.,y)dy.
The QVE associated with 1V is
1

m(z,x)

1
=z +/ W(z,y)m(z,y)dy, z € H,z € [0,1],
0

where H = {z € C: 3z > 0}.

(Ajanki, Erdés, Kriiger): Existence and uniqueness in BT, the
space of m : H x [0, 1] — H s.t. m(z,.) is bounded for any z € H.
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QVE measure of a kernel

If m = (m(2,2)).crze)0,1) is the unique solution in BT of the QVE

—z+/ m(z,y)dy, z € H,

then for any = € [0, 1],

m(.,x) is the Stieltjes transform of some v, € P(R).
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If m = (m(2,2)).crze)0,1) is the unique solution in BT of the QVE

—z+/ m(z,y)dy, z € H,

then for any = € [0, 1],

m(.,x) is the Stieltjes transform of some v, € P(R).
Define the QVE measure of the kernel W as vy = /01 vpdx.
(Ajanki, Erdés, Kriiger):

vy is symmetric

o~ D~ supp(vw) C [=2ldw (|57, 2]l dw||37]-
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QVE measure of a kernel
If m = (m(2,2)).cmzc)0,1) is the unique solution in B of the QVE

1
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QVE measure of a kernel
If m = (m(z,7)).emuel0,1) is the unique solution in BT of the QVE

1
=z +/ W (z,y)m(z,y)dy, z € H,
0

m(z,x)
then for any = € [0, 1],
m(.,x) is the Stieltjes transform of some v, € P(R).

Define the QVE measure of the kernel W as

1
UW:/ Vpdx.
0

(Erdés-Miilhbacher), (Zhu): Moments are tree homomorphisms
densities:

vw(r) = Y HF,W), keN
(F\0)ETk

where 7. is the set of unlabelled rooted planar trees with & edges

tF,W) = /[] H W(xi, x;) Hdmg
0,1]k

E(
GEE(E) 11/19
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Inhomogeous sparse Erdos-Rényi graphs

Take W a kernel with bounded degree function and set

Wi; = n? /(il’i]x(j_l ; W(x,y)dxdy, i,j=1,...,n.

n n ’n

Let G(n,pWW) be a graph on n vertices where the edge {i,j} is
present with probability pIV;; independently of the others.

(Girko): If np > 1,
Bajymp ;== tw, in probability

where A is the adjacency matrix of G/(n,pWW) and vy the QVE
measure of .

» The optimal large deviation strategies of YN correspond to
changing G(n,p) into one inhomogeous Erdds-Rényi graph
G(n,pW).
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QVE measure of integrable kernels

Extend the definition of the QVE measure to integrable kernels 11:

v = lim vy (e
w Cboo wi(C),

where W(©) is the degree truncated kernel

W(C) ($, y) = W(I‘, y)]ldw(:r)gc]ld‘,y(y)SC7 ((L’, y) € [0’ 1]2

W) =

dw (y) >
—
o
IS
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QVE measure of integrable kernels

Extend the definition of the QVE measure to integrable kernels 11:

v = lim vy (e
w Coboo wi(),

where W(©) is the degree truncated kernel

W(C) ($, y) = W(I‘, y)]ldw(:E)SC]ld‘,y(y)SC7 ((L’, y) € [0’ 1]2

Since dyy € L',

WO —wi, — o.
O 0 W(z,y) ” H10%+w
If U,V are kernels with

bounded degree functions

dw (y) >
—
o
)

e Palvo,vv) < U = VI
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The rate function in the supercritical sparse case

Recall that A is the adjacency matrix of G(n,p).

(A.) If log < np < n, then 114/ smp satisfies a LDP with speed
n’p and rate function I:

I(v)=inf {HW):vw =v, W e W}, vePR),

where )V is the set of integrable kernels on [0, 1] and

H(W) = o2 h(W (z,y))dxdy, W € W,
0,1
with h(u) = wlogu — u + 1.
o H(G(n,pW) | G(n,p)) = n?*pH(W).
o If I(v) < 400 then the infimum is achieved.

e Conditioned on a large deviation of its spectrum, G(n,p) is
expected to look like G/(n, pIV) for some W € W.

15/19
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Supercritical sparse Wigner matrices
Consider M a Wigner matrix with bounded entries,
A the adjacency matrix of GG(n,p) independent of M.
Set:
X =MoA,

where o denotes the Hadamard product.
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Supercritical sparse Wigner matrices
Consider M a Wigner matrix with bounded entries,
A the adjacency matrix of GG(n,p) independent of M.
Set:
X =MoA,

where o denotes the Hadamard product.
» neither A or A — EA are sparse Wigner matrices but:

(Tikhomirov-Youssef): A — A’ is a sparse Wigner matrix
/ .
Ajj ~ Ber(p/e) and A" 1L A.
(A.) If logn < np < n, [1x/ mp satisfies a LDP with speed n”p
and rate function I :
IL(I/) = inf {HL(W) row =v, W e W}, v e P(R),
where H (W) = Ji 12 he (W (2, y))dzdy,

hi(u) = sup{fu — L(0)}, L(0) = E(e"Mi2) — 1, u,0 € R.
fER
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Why does sparsity help?

Starting point: Schur’s complement formula

(4)
1 (i) .

— =z+ G ()X X, 1€{1,...,n

Gii(2) le; k()X { J

where G, resp. G, is the resolvent of X, resp. X ().

17/19



Why does sparsity help?

Starting point: Schur’s complement formula

1

e —z+ZG’> (2)Xi; Xk, i€ {L,...,n}

where G, resp. G, is the resolvent of X, resp. X (7).
Thus, (Gi)1<i<, satisfies a perturbed QVE:

Gul)  ~ + %:X%ij(z) +di(z), i€{l,...,n}

where d;(z) = Zgi)(G G(l))X2 + 254k ij)ngsz

17/19



Why does sparsity help?

Starting point: Schur’s complement formula

1

e —z+ZG’> (2)Xi; Xk, i€ {L,...,n}
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Gul)  ~ + %:X%ij(z) +di(z), i€{l,...,n}
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» Claim: at the large deviation scale n2 D,
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Why does sparsity help?
» Claim: at the large deviation scale n’p,
Ay = #{i:|di(2)] > e} = o(n),
forany ¢ > 0,z € H.
» Resolvent identities: Z;l)(ij - G;-?)Xi?j = O(1/np) a.s.
» Conditioned on X (), D itk GJ('QXinik is a “sparse” chaos of
order 2:
P (| 3 Gg'ik)Xinik‘ > 5) < 9ecenpV/108(1/p)
J#k
Thus, E(A,) < e~c=npVioe(l/p),
If the d;'s were independent, then by Bennett's inequality

< o Csen?py/log(1/p)

)
P(A,, > on) < exp ( — onlog WX)) <
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Why does sparsity help?

» Claim: at the large deviation scale n’p,
Ay = #{i:|di(2)] > e} = o(n),
forany ¢ > 0,z € H.
» Resolvent identities: Zgl)(ij - G;?)X% = O(1/np) a.s.
» Conditioned on X (), D itk G§2Xi'ink is a “sparse” chaos of
order 2:
P (| 3 Gg'ik)Xinik‘ > 5) < 9ecenpV/108(1/p)
J#k
Thus, E(A,) < ¢ cmnv/s/0),
If the d;'s were independent, then by Bennett's inequality

P(A,, > on) < exp ( — dnlog ?N]‘I‘TEX)) < e=Coen®py/10g(1/p),

» Develop a Bennett-type inequality for dependent variables.
18/19



Thank you for your attention!
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