Large deviations of the spectrum of supercritical sparse Erdős-Rényi graphs

Fanny Augeri

Bernoulli matrices

Let $\left(A_{i, j}\right)_{1 \leq i \leq j \leq n}$ be i.i.d. $\operatorname{Ber}(1 / 2)$.

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

Bernoulli matrices

Let $\left(A_{i, j}\right)_{1 \leq i \leq j \leq n}$ be i.i.d. $\operatorname{Ber}(1 / 2)$.

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

If $\mu_{A / \sqrt{n}}$ is the empirical spectral measure, then
(Wigner's law) $\quad \mu_{A / \sqrt{n}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}} \quad$ in probability,
where $\mu_{\mathrm{sc}}=(2 / \pi) \sqrt{\left(1-x^{2}\right)_{+}} d x$.

Bernoulli matrices

Let $\left(A_{i, j}\right)_{1 \leq i \leq j \leq n}$ be i.i.d. $\operatorname{Ber}(1 / 2)$.

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

If $\mu_{A / \sqrt{n}}$ is the empirical spectral measure, then
(Wigner's law) $\quad \mu_{A / \sqrt{n}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}} \quad$ in probability,
where $\mu_{\mathrm{sc}}=(2 / \pi) \sqrt{\left(1-x^{2}\right)_{+}} d x$.
What is the large deviation behaviour of $\mu_{A / \sqrt{n}}$?

Bernoulli matrices

- Large deviations of $\mu_{A / \sqrt{n}}$ turn out to be very difficult.

$$
(\mathrm{LDP}) \quad \log \mathbb{P}\left(\mu_{A / \sqrt{n}} \simeq \nu\right) \stackrel{?}{\frown} e^{-v_{n} I(\nu)}, \nu \neq \mu_{\mathrm{sc}},
$$

where v_{n} is the speed and I the rate function.

Bernoulli matrices

- Large deviations of $\mu_{A / \sqrt{n}}$ turn out to be very difficult.

$$
(\mathrm{LDP}) \quad \log \mathbb{P}\left(\mu_{A / \sqrt{n}} \simeq \nu\right) \stackrel{?}{\curvearrowleft} e^{-v_{n} I(\nu)}, \nu \neq \mu_{\mathrm{sc}},
$$

where v_{n} is the speed and I the rate function.

- What do we know ? Not much...

Bernoulli matrices

- Large deviations of $\mu_{A / \sqrt{n}}$ turn out to be very difficult.

$$
(\mathrm{LDP}) \quad \log \mathbb{P}\left(\mu_{A / \sqrt{n}} \simeq \nu\right) \stackrel{?}{\subsetneq} e^{-v_{n} I(\nu)}, \nu \neq \mu_{\mathrm{sc}},
$$

where v_{n} is the speed and I the rate function.

- What do we know ? Not much...
- (Guionnet-Zeitouni): Speed of large deviation is n^{2}

$$
\log \mathbb{P}\left(d\left(\mu_{A / \sqrt{n}}, \mu_{\mathrm{sc}}\right)>\varepsilon\right) \leq-C_{\varepsilon} n^{2}
$$

Bernoulli matrices

- Large deviations of $\mu_{A / \sqrt{n}}$ turn out to be very difficult.

$$
(\mathrm{LDP}) \quad \log \mathbb{P}\left(\mu_{A / \sqrt{n}} \simeq \nu\right) \stackrel{?}{\curvearrowleft} e^{-v_{n} I(\nu)}, \nu \neq \mu_{\mathrm{sc}},
$$

where v_{n} is the speed and I the rate function.

- What do we know ? Not much...
- (Guionnet-Zeitouni): Speed of large deviation is n^{2}

$$
\log \mathbb{P}\left(d\left(\mu_{A / \sqrt{n}}, \mu_{\mathrm{sc}}\right)>\varepsilon\right) \leq-C_{\varepsilon} n^{2}
$$

- If the rate function I exists, then

$$
I(\mu)=+\infty, \quad \text { if } \mu\left(x^{2}\right)>1 / 4,
$$

since $n^{-2} \operatorname{tr}(A-\mathbb{E} A)^{2}=1 / 4$ and $\mathbb{E} A$ rank 1 .

Bernoulli matrices

- Large deviations of $\mu_{A / \sqrt{n}}$ turn out to be very difficult.

$$
(\mathrm{LDP}) \quad \log \mathbb{P}\left(\mu_{A / \sqrt{n}} \simeq \nu\right) \stackrel{?}{\curvearrowleft} e^{-v_{n} I(\nu)}, \nu \neq \mu_{\mathrm{sc}},
$$

where v_{n} is the speed and I the rate function.

- What do we know ? Not much...
- (Guionnet-Zeitouni): Speed of large deviation is n^{2}

$$
\log \mathbb{P}\left(d\left(\mu_{A / \sqrt{n}}, \mu_{\mathrm{sc}}\right)>\varepsilon\right) \leq-C_{\varepsilon} n^{2}
$$

- If the rate function I exists, then

$$
I(\mu)=+\infty, \quad \text { if } \mu\left(x^{2}\right)>1 / 4,
$$

since $n^{-2} \operatorname{tr}(A-\mathbb{E} A)^{2}=1 / 4$ and $\mathbb{E} A$ rank 1 .

- I cannot be universal: $I \neq I_{\mathrm{GOE}}$.

$$
\delta_{0} \in \mathcal{D}_{I} \text { but } \delta_{0} \notin \mathcal{D}_{I_{\mathrm{GOE}}} .
$$

Some universality in large deviation behaviour

 Let $\underline{A}=A-\mathbb{E} A$. By Cauchy interlacing inequalities$$
d_{\mathrm{KS}}\left(\mu_{\underline{A} / \sqrt{n}}, \mu_{A / \sqrt{n}}\right) \leq \frac{1}{n} \operatorname{rk}(A-\underline{A})=\frac{1}{n} .
$$

$>$ Large deviations of $\mu_{\underline{A} / \sqrt{n}}$ and $\mu_{A / \sqrt{n}}$ are the same.

Some universality in large deviation behaviour

 Let $\underline{A}=A-\mathbb{E} A$. By Cauchy interlacing inequalities$$
d_{\mathrm{KS}}\left(\mu_{\underline{A} / \sqrt{n}}, \mu_{A / \sqrt{n}}\right) \leq \frac{1}{n} \operatorname{rk}(A-\underline{A})=\frac{1}{n} .
$$

$>$ Large deviations of $\mu_{\underline{A} / \sqrt{n}}$ and $\mu_{A / \sqrt{n}}$ are the same.
What about other spectral observables?

Some universality in large deviation behaviour Let $\underline{A}=A-\mathbb{E} A$. By Cauchy interlacing inequalities

$$
d_{\mathrm{KS}}\left(\mu_{\underline{A} / \sqrt{n}}, \mu_{A / \sqrt{n}}\right) \leq \frac{1}{n} \operatorname{rk}(A-\underline{A})=\frac{1}{n} .
$$

$>$ Large deviations of $\mu_{\underline{A} / \sqrt{n}}$ and $\mu_{A / \sqrt{n}}$ are the same.
What about other spectral observables?

- (Guionnet-Husson) $\lambda_{\underline{A} / \sqrt{n}}$ satisfies a LDP
with speed n and rate function $J=J_{\text {GOE }}$.

Some universality in large deviation behaviour Let $\underline{A}=A-\mathbb{E} A$. By Cauchy interlacing inequalities

$$
d_{\mathrm{KS}}\left(\mu_{\underline{A} / \sqrt{n}}, \mu_{A / \sqrt{n}}\right) \leq \frac{1}{n} \operatorname{rk}(A-\underline{A})=\frac{1}{n} .
$$

$>$ Large deviations of $\mu_{\underline{A} / \sqrt{n}}$ and $\mu_{A / \sqrt{n}}$ are the same.
What about other spectral observables?

- (Guionnet-Husson) $\lambda_{\underline{A} / \sqrt{n}}$ satisfies a LDP
with speed n and rate function $J=J_{\text {GOE }}$.
- (A.) $\mu_{\underline{A} / \sqrt{n}}\left(x^{k}\right)$ satisfies a LDP with speed $n^{1+\frac{2}{k}}$ and rate function $L^{k}=L_{\mathrm{GOE}}^{k}$.

Some universality in large deviation behaviour Let $\underline{A}=A-\mathbb{E} A$. By Cauchy interlacing inequalities

$$
d_{\mathrm{KS}}\left(\mu_{\underline{A} / \sqrt{n}}, \mu_{A / \sqrt{n}}\right) \leq \frac{1}{n} \operatorname{rk}(A-\underline{A})=\frac{1}{n} .
$$

$>$ Large deviations of $\mu_{\underline{A} / \sqrt{n}}$ and $\mu_{A / \sqrt{n}}$ are the same.
What about other spectral observables?

- (Guionnet-Husson) $\lambda_{\underline{A} / \sqrt{n}}$ satisfies a LDP
with speed n and rate function $J=J_{\text {GOE }}$.
- (A.) $\mu_{\underline{A} / \sqrt{n}}\left(x^{k}\right)$ satisfies a LDP with speed $n^{1+\frac{2}{k}}$ and rate function $L^{k}=L_{\mathrm{GOE}}^{k}$.
> Universality is a manifestation of moderate deviation behaviour.

Sparsification as a relaxation of the problem

Take $p \ll 1$ and consider A the adjacency matrix of the Erdős-Rényi graph $G(n, p)$.

Sparsification as a relaxation of the problem

Take $p \ll 1$ and consider A the adjacency matrix of the Erdős-Rényi graph $G(n, p)$.

- vertices have all almost the same degrees
- connected w.h.p

The subcritical regime $n p=\lambda$

- Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

The subcritical regime $n p=\lambda$

> Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

$$
\text { (Abert-Thom-Virág) } \quad \mu_{A} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\lambda}, \quad \text { in probability }
$$

where μ_{λ} is the expected spectral measure of $\operatorname{GWT}(\operatorname{Poi}(\lambda))$.

The subcritical regime $n p=\lambda$

- Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

$$
\text { (Abert-Thom-Virág) } \quad \mu_{A} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\lambda}, \quad \text { in probability }
$$

where μ_{λ} is the expected spectral measure of $\operatorname{GWT}(\operatorname{Poi}(\lambda))$.

The subcritical regime $n p=\lambda$

> Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

$$
\text { (Abért-Thom-Virág) } \quad \mu_{A} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\lambda}, \quad \text { in probability }
$$

where μ_{λ} is the expected spectral measure of $\operatorname{GWT}(\operatorname{Poi}(\lambda))$.

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric

The subcritical regime $n p=\lambda$

> Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

$$
\text { (Abért-Thom-Virág) } \quad \mu_{A} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\lambda}, \quad \text { in probability }
$$

where μ_{λ} is the expected spectral measure of $\operatorname{GWT}(\operatorname{Poi}(\lambda))$.

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms

The subcritical regime $n p=\lambda$

> Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

$$
\text { (Abért-Thom-Virág) } \quad \mu_{A} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\lambda}, \quad \text { in probability }
$$

where μ_{λ} is the expected spectral measure of $\operatorname{GWT}(\operatorname{Poi}(\lambda))$.

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms
- (Bordenave-Sen-Virág): μ_{λ} is purely atomic iff $\lambda \leq 1$.

The subcritical regime $n p=\lambda$

> Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

$$
\text { (Abért-Thom-Virág) } \quad \mu_{A} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\lambda}, \quad \text { in probability }
$$

where μ_{λ} is the expected spectral measure of $\operatorname{GWT}(\operatorname{Poi}(\lambda))$.

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms
- (Bordenave-Sen-Virág): μ_{λ} is purely atomic iff $\lambda \leq 1$.
- (Arras-Bordenave): $\mu_{\lambda, \mathrm{ac}} \neq 0$ if λ large enough.

The subcritical regime $n p=\lambda$

- Asymptotically, $G\left(n, \frac{\lambda}{n}\right)$ looks like a Galton-Watson tree with degree distribution $\operatorname{Poi}(\lambda)$.

$$
\text { (Abért-Thom-Virág) } \quad \mu_{A} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\lambda}, \quad \text { in probability }
$$

where μ_{λ} is the expected spectral measure of $\operatorname{GWT}(\operatorname{Poi}(\lambda))$.

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms
- (Bordenave-Sen-Virág): μ_{λ} is purely atomic iff $\lambda \leq 1$.
- (Arras-Bordenave): $\mu_{\lambda, \mathrm{ac}} \neq 0$ if λ large enough.
(Bordenave-Caputo) μ_{A} satisfies a LDP with speed n.
> Obtained by contracting the LDP for $G(n, \lambda / n)$ with respect to the local weak topology.

The supercritical regime $n p \gg \log n$

The supercritical regime $n p \gg \log n$

As soon as $n p \gg 1$, Wigner's law holds

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}}, \text { in probability. }
$$

The supercritical regime $n p \gg \log n$

As soon as $n p \gg 1$, Wigner's law holds

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}}, \text { in probability. }
$$

(A.) If $\log n \ll n p \ll n, \mu_{A / \sqrt{n p}}$ satisfies a LDP
with speed $n^{2} p$ and good rate function I.

The supercritical regime $n p \gg \log n$

As soon as $n p \gg 1$, Wigner's law holds

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}}, \text { in probability. }
$$

(A.) If $\log n \ll n p \ll n, \mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and good rate function I.
$>$ The rate function is the solution of a certain variational problem

The supercritical regime $n p \gg \log n$

As soon as $n p \gg 1$, Wigner's law holds

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}}, \text { in probability. }
$$

(A.) If $\log n \ll n p \ll n, \mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and good rate function I.
$>$ The rate function is the solution of a certain variational problem

- $I(\mu)=0 \Longleftrightarrow \mu=\mu_{\mathrm{sc}}$.

The supercritical regime $n p \gg \log n$

As soon as $n p \gg 1$, Wigner's law holds

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}}, \text { in probability. }
$$

(A.) If $\log n \ll n p \ll n, \mu_{A / \sqrt{n p}}$ satisfies a LDP
with speed $n^{2} p$ and good rate function I.
$>$ The rate function is the solution of a certain variational problem

- $I(\mu)=0 \Longleftrightarrow \mu=\mu_{\mathrm{sc}}$.
- $I(\mu)=+\infty$ if μ is not symmetric.

The supercritical regime $n p \gg \log n$

As soon as $n p \gg 1$, Wigner's law holds

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} \mu_{\mathrm{sc}}, \text { in probability. }
$$

(A.) If $\log n \ll n p \ll n, \mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and good rate function I.
$>$ The rate function is the solution of a certain variational problem

- $I(\mu)=0 \Longleftrightarrow \mu=\mu_{\mathrm{sc}}$.
- $I(\mu)=+\infty$ if μ is not symmetric.
> The only possible deviations are around measures coming from Quadratic Vector Equations.

Quadratic Vector Equations

$>$ (Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

Quadratic Vector Equations

> (Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

Let $W:[0,1]^{2} \rightarrow \mathbb{R}_{+}$be a Borel measurable symmetric kernel s.t.

$$
\sup _{x \in[0,1]} \int_{0}^{1} W(x, y) d y<+\infty
$$

i.e. W has a bounded degree function $d_{W}=\int_{0}^{1} W(., y) d y$.

Quadratic Vector Equations

> (Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

Let $W:[0,1]^{2} \rightarrow \mathbb{R}_{+}$be a Borel measurable symmetric kernel s.t.

$$
\sup _{x \in[0,1]} \int_{0}^{1} W(x, y) d y<+\infty
$$

i.e. W has a bounded degree function $d_{W}=\int_{0}^{1} W(., y) d y$.

The QVE associated with W is

$$
-\frac{1}{m(z, x)}=z+\int_{0}^{1} W(x, y) m(z, y) d y, z \in \mathbb{H}, x \in[0,1]
$$

where $\mathbb{H}=\{z \in \mathbb{C}: \Im z>0\}$.

Quadratic Vector Equations

(Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

Let $W:[0,1]^{2} \rightarrow \mathbb{R}_{+}$be a Borel measurable symmetric kernel s.t.

$$
\sup _{x \in[0,1]} \int_{0}^{1} W(x, y) d y<+\infty
$$

i.e. W has a bounded degree function $d_{W}=\int_{0}^{1} W(., y) d y$.

The QVE associated with W is

$$
-\frac{1}{m(z, x)}=z+\int_{0}^{1} W(x, y) m(z, y) d y, z \in \mathbb{H}, x \in[0,1]
$$

where $\mathbb{H}=\{z \in \mathbb{C}: \Im z>0\}$.
(Ajanki, Erdős, Krüger): Existence and uniqueness in \mathcal{B}^{+}, the space of $m: \mathbb{H} \times[0,1] \rightarrow \mathbb{H}$ s.t. $m(z,$.$) is bounded for any z \in \mathbb{H}$.

QVE measure of a kernel

If $m=(m(z, x))_{z \in \mathbb{H}, x \in[0,1]}$ is the unique solution in \mathcal{B}^{+}of the QVE

$$
-\frac{1}{m(z, x)}=z+\int_{0}^{1} W(x, y) m(z, y) d y, z \in \mathbb{H}
$$

then for any $x \in[0,1]$, $m(., x)$ is the Stieltjes transform of some $v_{x} \in \mathcal{P}(\mathbb{R})$.

QVE measure of a kernel

If $m=(m(z, x))_{z \in \mathbb{H}, x \in[0,1]}$ is the unique solution in \mathcal{B}^{+}of the QVE

$$
-\frac{1}{m(z, x)}=z+\int_{0}^{1} W(x, y) m(z, y) d y, z \in \mathbb{H}
$$

then for any $x \in[0,1]$, $m(., x)$ is the Stieltjes transform of some $v_{x} \in \mathcal{P}(\mathbb{R})$.

Define the QVE measure of the kernel W as $v_{W}=\int_{0}^{1} v_{x} d x$.

QVE measure of a kernel

If $m=(m(z, x))_{z \in \mathbb{H}, x \in[0,1]}$ is the unique solution in \mathcal{B}^{+}of the QVE

$$
-\frac{1}{m(z, x)}=z+\int_{0}^{1} W(x, y) m(z, y) d y, z \in \mathbb{H}
$$

then for any $x \in[0,1]$, $m(., x)$ is the Stieltjes transform of some $v_{x} \in \mathcal{P}(\mathbb{R})$.

Define the QVE measure of the kernel W as $v_{W}=\int_{0}^{1} v_{x} d x$.

(Ajanki, Erdős, Krüger):
v_{W} is symmetric

$$
\operatorname{supp}\left(v_{W}\right) \subset\left[-2\left\|d_{W}\right\|_{\infty}^{1 / 2}, 2\left\|d_{W}\right\|_{\infty}^{1 / 2}\right]
$$

QVE measure of a kernel

If $m=(m(z, x))_{z \in \mathbb{H}, x \in[0,1]}$ is the unique solution in \mathcal{B}^{+}of the QVE

$$
-\frac{1}{m(z, x)}=z+\int_{0}^{1} W(x, y) m(z, y) d y, z \in \mathbb{H}
$$

then for any $x \in[0,1]$,

$$
m(., x) \text { is the Stieltjes transform of some } v_{x} \in \mathcal{P}(\mathbb{R}) .
$$

Define the QVE measure of the kernel W as

$$
v_{W}=\int_{0}^{1} v_{x} d x
$$

(Erdős-Mülhbacher), (Zhu): Moments are tree homomorphisms densities:

QVE measure of a kernel

If $m=(m(z, x))_{z \in \mathbb{H}, x \in[0,1]}$ is the unique solution in \mathcal{B}^{+}of the QVE

$$
-\frac{1}{m(z, x)}=z+\int_{0}^{1} W(x, y) m(z, y) d y, z \in \mathbb{H}
$$

then for any $x \in[0,1]$,
$m(., x)$ is the Stieltjes transform of some $v_{x} \in \mathcal{P}(\mathbb{R})$.
Define the QVE measure of the kernel W as

$$
v_{W}=\int_{0}^{1} v_{x} d x
$$

(Erdős-Mülhbacher), (Zhu): Moments are tree homomorphisms densities:

$$
v_{W}\left(\tau^{2 k}\right)=\sum_{(F, o) \in \mathcal{T}_{k}} t(F, W), k \in \mathbb{N}
$$

where \mathcal{T}_{k} is the set of unlabelled rooted planar trees with k edges

$$
t(F, W)=\int_{[0,1]^{k}} \prod_{i j \in E(F)} W\left(x_{i}, x_{j}\right) \prod_{\ell=1}^{k} d x_{\ell}
$$

Inhomogeous sparse Erdős-Rényi graphs

Inhomogeous sparse Erdős-Rényi graphs

Take W a kernel with bounded degree function and set

$$
W_{i j}=n^{2} \int_{\left(\frac{i-1}{n}, \frac{i}{n}\right] \times\left(\frac{j-1}{n}, \frac{j}{n}\right]} W(x, y) d x d y, \quad i, j=1, \ldots, n
$$

Inhomogeous sparse Erdős-Rényi graphs

Take W a kernel with bounded degree function and set

$$
W_{i j}=n^{2} \int_{\left(\frac{i-1}{n}, \frac{i}{n}\right] \times\left(\frac{j-1}{n}, \frac{j}{n}\right]} W(x, y) d x d y, \quad i, j=1, \ldots, n .
$$

Let $G(n, p W)$ be a graph on n vertices where the edge $\{i, j\}$ is present with probability $p W_{i j}$ independently of the others.

Inhomogeous sparse Erdős-Rényi graphs

Take W a kernel with bounded degree function and set

$$
W_{i j}=n^{2} \int_{\left(\frac{i-1}{n}, \frac{i}{n}\right] \times\left(\frac{j-1}{n}, \frac{j}{n}\right]} W(x, y) d x d y, \quad i, j=1, \ldots, n .
$$

Let $G(n, p W)$ be a graph on n vertices where the edge $\{i, j\}$ is present with probability $p W_{i j}$ independently of the others.
(Girko): If $n p \gg 1$,

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} v_{W}, \text { in probability }
$$

where A is the adjacency matrix of $G(n, p W)$ and v_{W} the QVE measure of W.

Inhomogeous sparse Erdős-Rényi graphs

Take W a kernel with bounded degree function and set

$$
W_{i j}=n^{2} \int_{\left(\frac{i-1}{n}, \frac{i}{n}\right] \times\left(\frac{j-1}{n}, \frac{j}{n}\right]} W(x, y) d x d y, \quad i, j=1, \ldots, n .
$$

Let $G(n, p W)$ be a graph on n vertices where the edge $\{i, j\}$ is present with probability $p W_{i j}$ independently of the others.
(Girko): If $n p \gg 1$,

$$
\mu_{A / \sqrt{n p}} \underset{n \rightarrow+\infty}{\Longrightarrow} v_{W}, \text { in probability }
$$

where A is the adjacency matrix of $G(n, p W)$ and v_{W} the QVE measure of W.
> The optimal large deviation strategies of $\mu_{A / \sqrt{n p}}$ correspond to changing $G(n, p)$ into one inhomogeous Erdős-Rényi graph $G(n, p W)$.

QVE measure of integrable kernels

QVE measure of integrable kernels

Extend the definition of the QVE measure to integrable kernels W :

$$
v_{W}=\lim _{C \rightarrow+\infty} v_{W^{(C)}}
$$

where $W^{(C)}$ is the degree truncated kernel

$$
W^{(C)}(x, y)=W(x, y) \mathbb{1}_{d_{W}(x) \leq C} \mathbb{1}_{d_{W}(y) \leq C},(x, y) \in[0,1]^{2}
$$

QVE measure of integrable kernels

Extend the definition of the QVE measure to integrable kernels W :

$$
v_{W}=\lim _{C \rightarrow+\infty} v_{W^{(C)}}
$$

where $W^{(C)}$ is the degree truncated kernel

$$
W^{(C)}(x, y)=W(x, y) \mathbb{1}_{d_{W}(x) \leq C} \mathbb{1}_{d_{W}(y) \leq C},(x, y) \in[0,1]^{2}
$$

Since $d_{W} \in L^{1}$,

$$
\left\|W^{(C)}-W\right\|_{1} \underset{C \rightarrow+\infty}{\longrightarrow} 0
$$

If U, V are kernels with bounded degree functions

$$
\mathscr{W}_{2}\left(v_{U}, v_{V}\right) \leq\|U-V\|_{1}^{1 / 2}
$$

The rate function in the supercritical sparse case

The rate function in the supercritical sparse case

Recall that A is the adjacency matrix of $G(n, p)$.
(A.) If $\log \ll n p \ll n$, then $\mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and rate function I :

The rate function in the supercritical sparse case

Recall that A is the adjacency matrix of $G(n, p)$.
(A.) If $\log \ll n p \ll n$, then $\mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and rate function I :

$$
I(\nu)=\inf \left\{H(W): v_{W}=\nu, W \in \mathcal{W}\right\}, \nu \in \mathcal{P}(\mathbb{R})
$$

where \mathcal{W} is the set of integrable kernels on $[0,1]^{2}$ and

$$
H(W)=\int_{[0,1]^{2}} h(W(x, y)) d x d y, W \in \mathcal{W}
$$

with $h(u)=u \log u-u+1$.

The rate function in the supercritical sparse case

Recall that A is the adjacency matrix of $G(n, p)$.
(A.) If $\log \ll n p \ll n$, then $\mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and rate function I :

$$
I(\nu)=\inf \left\{H(W): v_{W}=\nu, W \in \mathcal{W}\right\}, \nu \in \mathcal{P}(\mathbb{R})
$$

where \mathcal{W} is the set of integrable kernels on $[0,1]^{2}$ and

$$
H(W)=\int_{[0,1]^{2}} h(W(x, y)) d x d y, W \in \mathcal{W}
$$

with $h(u)=u \log u-u+1$.

- $H(G(n, p W) \mid G(n, p)) \simeq n^{2} p H(W)$.

The rate function in the supercritical sparse case
Recall that A is the adjacency matrix of $G(n, p)$.
(A.) If $\log \ll n p \ll n$, then $\mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and rate function I :

$$
I(\nu)=\inf \left\{H(W): v_{W}=\nu, W \in \mathcal{W}\right\}, \nu \in \mathcal{P}(\mathbb{R})
$$

where \mathcal{W} is the set of integrable kernels on $[0,1]^{2}$ and

$$
H(W)=\int_{[0,1]^{2}} h(W(x, y)) d x d y, W \in \mathcal{W}
$$

with $h(u)=u \log u-u+1$.

- $H(G(n, p W) \mid G(n, p)) \simeq n^{2} p H(W)$.
- If $I(\nu)<+\infty$ then the infimum is achieved.

The rate function in the supercritical sparse case
Recall that A is the adjacency matrix of $G(n, p)$.
(A.) If $\log \ll n p \ll n$, then $\mu_{A / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and rate function I :

$$
I(\nu)=\inf \left\{H(W): v_{W}=\nu, W \in \mathcal{W}\right\}, \nu \in \mathcal{P}(\mathbb{R})
$$

where \mathcal{W} is the set of integrable kernels on $[0,1]^{2}$ and

$$
H(W)=\int_{[0,1]^{2}} h(W(x, y)) d x d y, W \in \mathcal{W}
$$

with $h(u)=u \log u-u+1$.

- $H(G(n, p W) \mid G(n, p)) \simeq n^{2} p H(W)$.
- If $I(\nu)<+\infty$ then the infimum is achieved.
- Conditioned on a large deviation of its spectrum, $G(n, p)$ is expected to look like $G(n, p W)$ for some $W \in \mathcal{W}$.

Supercritical sparse Wigner matrices

Supercritical sparse Wigner matrices

Consider M a Wigner matrix with bounded entries, A the adjacency matrix of $G(n, p)$ independent of M.
Set:

$$
X=M \circ A,
$$

where \circ denotes the Hadamard product.

Supercritical sparse Wigner matrices

Consider M a Wigner matrix with bounded entries, A the adjacency matrix of $G(n, p)$ independent of M.
Set:

$$
X=M \circ A,
$$

where \circ denotes the Hadamard product.
$>$ neither A or $A-\mathbb{E} A$ are sparse Wigner matrices but:

Supercritical sparse Wigner matrices

Consider M a Wigner matrix with bounded entries, A the adjacency matrix of $G(n, p)$ independent of M.
Set:

$$
X=M \circ A,
$$

where \circ denotes the Hadamard product.
$>$ neither A or $A-\mathbb{E} A$ are sparse Wigner matrices but:
(Tikhomirov-Youssef): $A-\varepsilon A^{\prime}$ is a sparse Wigner matrix

$$
A_{i j}^{\prime} \sim \operatorname{Ber}(p / \varepsilon) \text { and } A^{\prime} \Perp A
$$

Supercritical sparse Wigner matrices

Consider M a Wigner matrix with bounded entries, A the adjacency matrix of $G(n, p)$ independent of M.
Set:

$$
X=M \circ A,
$$

where \circ denotes the Hadamard product.
$>$ neither A or $A-\mathbb{E} A$ are sparse Wigner matrices but:
(Tikhomirov-Youssef): $A-\varepsilon A^{\prime}$ is a sparse Wigner matrix

$$
A_{i j}^{\prime} \sim \operatorname{Ber}(p / \varepsilon) \text { and } A^{\prime} \Perp A
$$

(A.) If $\log n \ll n p \ll n, \mu_{X / \sqrt{n p}}$ satisfies a LDP with speed $n^{2} p$ and rate function I_{L} :

$$
I_{L}(\nu)=\inf \left\{H_{L}(W): v_{W}=\nu, W \in \mathcal{W}\right\}, \nu \in \mathcal{P}(\mathbb{R})
$$

where $H_{L}(W)=\int_{[0,1]^{2}} h_{L}(W(x, y)) d x d y$,

$$
h_{L}(u)=\sup _{\theta \in \mathbb{R}}\{\theta u-L(\theta)\}, \quad L(\theta)=\mathbb{E}\left(e^{\theta M_{1,2}^{2}}\right)-1, u, \theta \in \mathbb{R} .
$$

Why does sparsity help?

Why does sparsity help?

Starting point: Schur's complement formula

$$
-\frac{1}{G_{i i}(z)}=z+\sum_{j, k}^{(i)} G_{j k}^{(i)}(z) X_{i j} X_{i k}, \quad i \in\{1, \ldots, n\}
$$

where G, resp. $G^{(i)}$, is the resolvent of X, resp. $X^{(i)}$.

Why does sparsity help?

Starting point: Schur's complement formula

$$
-\frac{1}{G_{i i}(z)}=z+\sum_{j, k}^{(i)} G_{j k}^{(i)}(z) X_{i j} X_{i k}, \quad i \in\{1, \ldots, n\}
$$

where G, resp. $G^{(i)}$, is the resolvent of X, resp. $X^{(i)}$.
Thus, $\left(G_{i i}\right)_{1 \leq i \leq n}$ satisfies a perturbed QVE:

$$
-\frac{1}{G_{i i}(z)}=z+\sum_{j} X_{i j}^{2} G_{j j}(z)+d_{i}(z), \quad i \in\{1, \ldots, n\}
$$

where $d_{i}(z)=\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}+\sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}$.

Why does sparsity help?

Starting point: Schur's complement formula

$$
-\frac{1}{G_{i i}(z)}=z+\sum_{j, k}^{(i)} G_{j k}^{(i)}(z) X_{i j} X_{i k}, \quad i \in\{1, \ldots, n\}
$$

where G, resp. $G^{(i)}$, is the resolvent of X, resp. $X^{(i)}$.
Thus, $\left(G_{i i}\right)_{1 \leq i \leq n}$ satisfies a perturbed QVE:

$$
-\frac{1}{G_{i i}(z)}=z+\sum_{j} X_{i j}^{2} G_{j j}(z)+d_{i}(z), \quad i \in\{1, \ldots, n\}
$$

where $d_{i}(z)=\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}+\sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}$.

- Claim: at the large deviation scale $n^{2} p$,

$$
\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n)
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

Why does sparsity help?

$>$ Claim: at the large deviation scale $n^{2} p$,

$$
\Lambda_{n}:=\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n),
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

Why does sparsity help?

- Claim: at the large deviation scale $n^{2} p$,

$$
\Lambda_{n}:=\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n),
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

- Resolvent identities: $\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}=O(1 / n p)$ a.s.

Why does sparsity help?

- Claim: at the large deviation scale $n^{2} p$,

$$
\Lambda_{n}:=\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n)
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

- Resolvent identities: $\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}=O(1 / n p)$ a.s.
- Conditioned on $X^{(i)}, \sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}$ is a "sparse" chaos of order 2:

Why does sparsity help?

$>$ Claim: at the large deviation scale $n^{2} p$,

$$
\Lambda_{n}:=\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n),
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

- Resolvent identities: $\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}=O(1 / n p)$ a.s.
- Conditioned on $X^{(i)}, \sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}$ is a "sparse" chaos of order 2:

$$
\mathbb{P}^{(i)}\left(\left|\sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}\right|>\varepsilon\right) \leq 2 e^{-c_{\varepsilon} n p \sqrt{\log (1 / p)}}
$$

Why does sparsity help?

$>$ Claim: at the large deviation scale $n^{2} p$,

$$
\Lambda_{n}:=\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n),
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

- Resolvent identities: $\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}=O(1 / n p)$ a.s.
- Conditioned on $X^{(i)}, \sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}$ is a "sparse" chaos of order 2:

$$
\mathbb{P}^{(i)}\left(\left|\sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}\right|>\varepsilon\right) \leq 2 e^{-c_{\varepsilon} n p \sqrt{\log (1 / p)}}
$$

Thus, $\mathbb{E}\left(\Lambda_{n}\right) \lesssim e^{-c_{\varepsilon} n p \sqrt{\log (1 / p)}}$.

Why does sparsity help?

$>$ Claim: at the large deviation scale $n^{2} p$,

$$
\Lambda_{n}:=\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n),
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

- Resolvent identities: $\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}=O(1 / n p)$ a.s.
- Conditioned on $X^{(i)}, \sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}$ is a "sparse" chaos of order 2:

$$
\mathbb{P}^{(i)}\left(\left|\sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}\right|>\varepsilon\right) \leq 2 e^{-c_{\varepsilon} n p \sqrt{\log (1 / p)}}
$$

Thus, $\mathbb{E}\left(\Lambda_{n}\right) \lesssim e^{-c_{\varepsilon} n p \sqrt{\log (1 / p)}}$.
If the d_{i} 's were independent, then by Bennett's inequality

$$
\mathbb{P}\left(\Lambda_{n}>\delta n\right) \leq \exp \left(-\delta n \log \frac{\delta n}{3 \mathbb{E}\left(\Lambda_{n}\right)}\right) \leq e^{-C_{\delta, \varepsilon} n^{2} p \sqrt{\log (1 / p)}}
$$

Why does sparsity help?

$>$ Claim: at the large deviation scale $n^{2} p$,

$$
\Lambda_{n}:=\#\left\{i:\left|d_{i}(z)\right|>\varepsilon\right\}=o(n),
$$

for any $\varepsilon>0, z \in \mathbb{H}$.

- Resolvent identities: $\sum_{j}^{(i)}\left(G_{j j}-G_{j j}^{(i)}\right) X_{i j}^{2}=O(1 / n p)$ a.s.
- Conditioned on $X^{(i)}, \sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}$ is a "sparse" chaos of order 2:

$$
\mathbb{P}^{(i)}\left(\left|\sum_{j \neq k} G_{j k}^{(i)} X_{i j} X_{i k}\right|>\varepsilon\right) \leq 2 e^{-c_{\varepsilon} n p \sqrt{\log (1 / p)}}
$$

Thus, $\mathbb{E}\left(\Lambda_{n}\right) \lesssim e^{-c_{\varepsilon} n p \sqrt{\log (1 / p)}}$.
If the d_{i} 's were independent, then by Bennett's inequality

$$
\mathbb{P}\left(\Lambda_{n}>\delta n\right) \leq \exp \left(-\delta n \log \frac{\delta n}{3 \mathbb{E}\left(\Lambda_{n}\right)}\right) \leq e^{-C_{\delta, \varepsilon} n^{2} p \sqrt{\log (1 / p)}}
$$

> Develop a Bennett-type inequality for dependent variables.

Thank you for your attention!

