Large deviations of the spectrum of supercritical sparse Erdős-Rényi graphs

Fanny Augeri

Let $(A_{i,j})_{1 \le i \le j \le n}$ be i.i.d. Ber(1/2).

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Let $(A_{i,j})_{1 \le i \le j \le n}$ be i.i.d. Ber(1/2).

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

If $\mu_{A/\sqrt{n}}$ is the empirical spectral measure, then

(Wigner's law)
$$\mu_{A/\sqrt{n}} \underset{n \to +\infty}{\Longrightarrow} \mu_{sc}$$
 in probability,

where $\mu_{\rm sc} = (2/\pi) \sqrt{(1-x^2)_+} dx.$

Let $(A_{i,j})_{1 \le i \le j \le n}$ be i.i.d. Ber(1/2).

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

If $\mu_{A/\sqrt{n}}$ is the empirical spectral measure, then

(Wigner's law)
$$\mu_{A/\sqrt{n}} \underset{n \to +\infty}{\Longrightarrow} \mu_{sc}$$
 in probability,

where $\mu_{\rm sc} = (2/\pi) \sqrt{(1-x^2)_+} dx.$

What is the large deviation behaviour of $\mu_{A/\sqrt{n}}$?

- Large deviations of $\mu_{A/\sqrt{n}}$ turn out to be very difficult.

(LDP)
$$\log \mathbb{P}(\mu_{A/\sqrt{n}} \simeq \nu) \stackrel{?}{\asymp} e^{-v_n I(\nu)}, \ \nu \neq \mu_{sc},$$

where v_n is the speed and I the rate function.

• Large deviations of $\mu_{A/\sqrt{n}}$ turn out to be very difficult.

(LDP)
$$\log \mathbb{P}(\mu_{A/\sqrt{n}} \simeq \nu) \stackrel{?}{\asymp} e^{-v_n I(\nu)}, \ \nu \neq \mu_{sc},$$

where v_n is the speed and I the rate function.

• What do we know ? Not much...

• Large deviations of $\mu_{A/\sqrt{n}}$ turn out to be very difficult.

(LDP)
$$\log \mathbb{P}(\mu_{A/\sqrt{n}} \simeq \nu) \stackrel{?}{\asymp} e^{-v_n I(\nu)}, \ \nu \neq \mu_{sc},$$

where v_n is the speed and I the rate function.

- What do we know ? Not much...
 - (Guionnet-Zeitouni): Speed of large deviation is n^2

$$\log \mathbb{P}(d(\mu_{A/\sqrt{n}}, \mu_{\mathsf{sc}}) > \varepsilon) \le -C_{\varepsilon} n^2.$$

• Large deviations of $\mu_{A/\sqrt{n}}$ turn out to be very difficult.

(LDP)
$$\log \mathbb{P}(\mu_{A/\sqrt{n}} \simeq \nu) \stackrel{?}{\asymp} e^{-v_n I(\nu)}, \ \nu \neq \mu_{sc},$$

where v_n is the speed and I the rate function.

- What do we know ? Not much...
 - (Guionnet-Zeitouni): Speed of large deviation is n^2

$$\log \mathbb{P}(d(\mu_{A/\sqrt{n}}, \mu_{\mathsf{sc}}) > \varepsilon) \le -C_{\varepsilon} n^2.$$

• If the rate function I exists, then

$$I(\mu) = +\infty, \ \, \text{if} \ \mu(x^2) > 1/4,$$

since $n^{-2} \operatorname{tr}(A - \mathbb{E}A)^2 = 1/4$ and $\mathbb{E}A$ rank 1.

• Large deviations of $\mu_{A/\sqrt{n}}$ turn out to be very difficult.

(LDP)
$$\log \mathbb{P}(\mu_{A/\sqrt{n}} \simeq \nu) \stackrel{?}{\asymp} e^{-v_n I(\nu)}, \ \nu \neq \mu_{sc},$$

where v_n is the speed and I the rate function.

- What do we know ? Not much...
 - (Guionnet-Zeitouni): Speed of large deviation is n^2

$$\log \mathbb{P}(d(\mu_{A/\sqrt{n}}, \mu_{\mathsf{sc}}) > \varepsilon) \le -C_{\varepsilon} n^2.$$

• If the rate function I exists, then

$$I(\mu) = +\infty, \ \, \text{if} \ \mu(x^2) > 1/4,$$

since n^{-2} tr $(A - \mathbb{E}A)^2 = 1/4$ and $\mathbb{E}A$ rank 1.

• I cannot be universal: $I \neq I_{GOE}$.

$$\delta_0 \in \mathcal{D}_I$$
 but $\delta_0 \notin \mathcal{D}_{I_{\mathsf{GOE}}}$.

$$d_{\mathrm{KS}}(\mu_{\underline{A}/\sqrt{n}}, \mu_{A/\sqrt{n}}) \leq \frac{1}{n} \mathrm{rk}(A - \underline{A}) = \frac{1}{n}.$$

> Large deviations of $\mu_{\underline{A}/\sqrt{n}}$ and $\mu_{A/\sqrt{n}}$ are the same.

$$d_{\mathrm{KS}}(\mu_{\underline{A}/\sqrt{n}},\mu_{A/\sqrt{n}}) \leq \frac{1}{n} \mathrm{rk}(A-\underline{A}) = \frac{1}{n}$$

► Large deviations of $\mu_{\underline{A}/\sqrt{n}}$ and $\mu_{A/\sqrt{n}}$ are the same.

What about other spectral observables?

$$d_{\mathrm{KS}}(\mu_{\underline{A}/\sqrt{n}},\mu_{A/\sqrt{n}}) \leq \frac{1}{n} \mathrm{rk}(A-\underline{A}) = \frac{1}{n}$$

 \blacktriangleright Large deviations of $\mu_{\underline{A}/\sqrt{n}}$ and $\mu_{A/\sqrt{n}}$ are the same.

What about other spectral observables?

• (Guionnet-Husson) $\lambda_{A/\sqrt{n}}$ satisfies a LDP

with speed n and rate function $J = J_{\text{GOE}}$.

$$d_{\mathrm{KS}}(\mu_{\underline{A}/\sqrt{n}}, \mu_{A/\sqrt{n}}) \leq \frac{1}{n} \mathrm{rk}(A - \underline{A}) = \frac{1}{n}$$

► Large deviations of $\mu_{\underline{A}/\sqrt{n}}$ and $\mu_{A/\sqrt{n}}$ are the same. What about other spectral observables?

• (Guionnet-Husson) $\lambda_{A/\sqrt{n}}$ satisfies a LDP

with speed n and rate function $J = J_{\text{GOE}}$.

• (A.)
$$\mu_{\underline{A}/\sqrt{n}}(x^k)$$
 satisfies a LDP
with speed $n^{1+\frac{2}{k}}$ and rate function $L^k = L^k_{GOE}$.

$$d_{\mathrm{KS}}(\mu_{\underline{A}/\sqrt{n}}, \mu_{A/\sqrt{n}}) \leq \frac{1}{n} \mathrm{rk}(A - \underline{A}) = \frac{1}{n}$$

> Large deviations of $\mu_{\underline{A}/\sqrt{n}}$ and $\mu_{A/\sqrt{n}}$ are the same.

What about other spectral observables?

• (Guionnet-Husson) $\lambda_{\underline{A}/\sqrt{n}}$ satisfies a LDP

with speed n and rate function $J = J_{\text{GOE}}$.

• (A.)
$$\mu_{\underline{A}/\sqrt{n}}(x^k)$$
 satisfies a LDP
with speed $n^{1+\frac{2}{k}}$ and rate function $L^k = L^k_{\rm GOE}$.

Universality is a manifestation of moderate deviation behaviour.

Sparsification as a relaxation of the problem Take $p \ll 1$ and consider A the adjacency matrix of the Erdős-Rényi graph G(n,p).

Sparsification as a relaxation of the problem Take $p \ll 1$ and consider A the adjacency matrix of the Erdős-Rényi graph G(n, p).

► Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

> Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

(Abert-Thom-Virág)
$$\mu_A \underset{n \to +\infty}{\Longrightarrow} \mu_{\lambda}$$
, in probability

► Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

(Abert-Thom-Virág)
$$\mu_A \underset{n \to +\infty}{\Longrightarrow} \mu_\lambda$$
, in probability

> Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

(Abért-Thom-Virág)
$$\mu_A \underset{n \to +\infty}{\Longrightarrow} \mu_{\lambda}$$
, in probability

where μ_{λ} is the expected spectral measure of $\text{GWT}(\text{Poi}(\lambda))$.

• (Bordenave-Lelarge-Salez): μ_{λ} is symmetric

> Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

(Abért-Thom-Virág)
$$\mu_A \underset{n \to +\infty}{\Longrightarrow} \mu_{\lambda}$$
, in probability

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms

> Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

(Abért-Thom-Virág)
$$\mu_A \underset{n \to +\infty}{\Longrightarrow} \mu_{\lambda}$$
, in probability

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms
- (Bordenave-Sen-Virág): μ_{λ} is purely atomic iff $\lambda \leq 1$.

> Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

(Abért-Thom-Virág)
$$\mu_A \underset{n \to +\infty}{\Longrightarrow} \mu_{\lambda}$$
, in probability

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms
- (Bordenave-Sen-Virág): μ_{λ} is purely atomic iff $\lambda \leq 1$.
- (Arras-Bordenave): $\mu_{\lambda,ac} \neq 0$ if λ large enough.

> Asymptotically, $G(n, \frac{\lambda}{n})$ looks like a Galton-Watson tree with degree distribution $Poi(\lambda)$.

(Abért-Thom-Virág)
$$\mu_A \underset{n \to +\infty}{\Longrightarrow} \mu_{\lambda}$$
, in probability

where μ_{λ} is the expected spectral measure of $\text{GWT}(\text{Poi}(\lambda))$.

- (Bordenave-Lelarge-Salez): μ_{λ} is symmetric
- (Salez): Dense set of atoms
- (Bordenave-Sen-Virág): μ_{λ} is purely atomic iff $\lambda \leq 1$.
- (Arras-Bordenave): $\mu_{\lambda,ac} \neq 0$ if λ large enough.

(Bordenave-Caputo) μ_A satisfies a LDP with speed n.

> Obtained by contracting the LDP for $G(n, \lambda/n)$ with respect to the local weak topology.

As soon as $np \gg 1$, Wigner's law holds

$$\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} \mu_{sc}$$
, in probability.

As soon as $np \gg 1$, Wigner's law holds

$$\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} \mu_{sc}$$
, in probability.

(A.) If $\log n \ll np \ll n$, $\mu_{A/\sqrt{np}}$ satisfies a LDP

with speed n^2p and good rate function I.

As soon as $np \gg 1$, Wigner's law holds

 $\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} \mu_{sc}$, in probability.

(A.) If $\log n \ll np \ll n$, $\mu_{A/\sqrt{np}}$ satisfies a LDP

with speed n^2p and good rate function I.

> The rate function is the solution of a certain variational problem

As soon as $np \gg 1$, Wigner's law holds

$$\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} \mu_{\rm sc}$$
, in probability.

(A.) If $\log n \ll np \ll n$, $\mu_{A/\sqrt{np}}$ satisfies a LDP

with speed n^2p and good rate function I.

The rate function is the solution of a certain variational problem

•
$$I(\mu) = 0 \iff \mu = \mu_{sc}$$
.

As soon as $np \gg 1$, Wigner's law holds

$$\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} \mu_{\rm sc}$$
, in probability.

(A.) If $\log n \ll np \ll n$, $\mu_{A/\sqrt{np}}$ satisfies a LDP

with speed n^2p and good rate function I.

The rate function is the solution of a certain variational problem

•
$$I(\mu) = 0 \iff \mu = \mu_{sc}$$

• $I(\mu) = +\infty$ if μ is not symmetric.

As soon as $np \gg 1$, Wigner's law holds

$$\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} \mu_{\rm sc}$$
, in probability.

(A.) If $\log n \ll np \ll n$, $\mu_{A/\sqrt{np}}$ satisfies a LDP

with speed n^2p and good rate function I.

> The rate function is the solution of a certain variational problem

•
$$I(\mu) = 0 \iff \mu = \mu_{sc}$$

• $I(\mu) = +\infty$ if μ is not symmetric.

➤ The only possible deviations are around measures coming from Quadratic Vector Equations.

► (Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

➤ (Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

Let $W: [0,1]^2 \to \mathbb{R}_+$ be a Borel measurable symmetric kernel s.t.

$$\sup_{x\in[0,1]}\int_0^1 W(x,y)dy < +\infty,$$

i.e. W has a bounded degree function $d_W = \int_0^1 W(., y) dy$.

➤ (Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

Let $W: [0,1]^2 \to \mathbb{R}_+$ be a Borel measurable symmetric kernel s.t.

$$\sup_{x\in[0,1]}\int_0^1 W(x,y)dy < +\infty,$$

i.e. W has a bounded degree function $d_W = \int_0^1 W(.,y) dy$.

The QVE associated with W is

$$-\frac{1}{m(z,x)} = z + \int_0^1 W(x,y)m(z,y)dy, \ z \in \mathbb{H}, x \in [0,1],$$

where $\mathbb{H} = \{ z \in \mathbb{C} : \Im z > 0 \}.$

➤ (Girko): Equations for the Stieltjes transform of limits of empirical spectral measures of Wigner-type matrices.

Let $W: [0,1]^2 \to \mathbb{R}_+$ be a Borel measurable symmetric kernel s.t.

$$\sup_{x\in[0,1]}\int_0^1 W(x,y)dy<+\infty,$$

i.e. W has a bounded degree function $d_W = \int_0^1 W(.,y) dy$.

The QVE associated with W is

$$-\frac{1}{m(z,x)} = z + \int_0^1 W(x,y)m(z,y)dy, \ z \in \mathbb{H}, x \in [0,1],$$

where $\mathbb{H} = \{ z \in \mathbb{C} : \Im z > 0 \}.$

(Ajanki, Erdős, Krüger): Existence and uniqueness in \mathcal{B}^+ , the space of $m : \mathbb{H} \times [0, 1] \to \mathbb{H}$ s.t. m(z, .) is bounded for any $z \in \mathbb{H}$.

If $m = (m(z,x))_{z \in \mathbb{H}, x \in [0,1]}$ is the unique solution in \mathcal{B}^+ of the QVE

$$-\frac{1}{m(z,x)} = z + \int_0^1 W(x,y)m(z,y)dy, \ z \in \mathbb{H},$$

then for any $x\in[0,1]$,

m(.,x) is the Stieltjes transform of some $v_x \in \mathcal{P}(\mathbb{R})$.

If $m = (m(z, x))_{z \in \mathbb{H}, x \in [0, 1]}$ is the unique solution in \mathcal{B}^+ of the QVE

$$-\frac{1}{m(z,x)} = z + \int_0^1 W(x,y)m(z,y)dy, \ z \in \mathbb{H},$$

then for any $x \in [0,1]$,

m(.,x) is the Stieltjes transform of some $v_x \in \mathcal{P}(\mathbb{R})$.

Define the QVE measure of the kernel W as $v_W = \int_0^1 v_x dx$.

If $m = (m(z, x))_{z \in \mathbb{H}, x \in [0, 1]}$ is the unique solution in \mathcal{B}^+ of the QVE

$$-\frac{1}{m(z,x)} = z + \int_0^1 W(x,y)m(z,y)dy, \ z \in \mathbb{H},$$

then for any $x \in [0,1]$,

m(.,x) is the Stieltjes transform of some $v_x \in \mathcal{P}(\mathbb{R})$.

Define the QVE measure of the kernel W as $v_W = \int_0^1 v_x dx$. (Ajanki, Erdős, Krüger): v_W is symmetric $\operatorname{supp}(v_W) \subset [-2 \| d_W \|_{\infty}^{1/2}, 2 \| d_W \|_{\infty}^{1/2}].$

If $m = (m(z,x))_{z \in \mathbb{H}, x \in [0,1]}$ is the unique solution in \mathcal{B}^+ of the QVE

$$-\frac{1}{m(z,x)} = z + \int_0^1 W(x,y)m(z,y)dy, \ z \in \mathbb{H},$$

then for any $x\in [0,1]$,

m(.,x) is the Stieltjes transform of some $v_x \in \mathcal{P}(\mathbb{R})$.

Define the QVE measure of the kernel \boldsymbol{W} as

$$v_W = \int_0^1 v_x dx.$$

(Erdős-Mülhbacher), (Zhu): Moments are tree homomorphisms densities:

If $m = (m(z, x))_{z \in \mathbb{H}, x \in [0, 1]}$ is the unique solution in \mathcal{B}^+ of the QVE

$$-\frac{1}{m(z,x)} = z + \int_0^1 W(x,y)m(z,y)dy, \ z \in \mathbb{H},$$

then for any $x\in [0,1]$,

m(.,x) is the Stieltjes transform of some $v_x \in \mathcal{P}(\mathbb{R})$.

Define the QVE measure of the kernel W as

$$\upsilon_W = \int_0^1 \upsilon_x dx.$$

(Erdős-Mülhbacher), (Zhu): Moments are tree homomorphisms densities:

$$\upsilon_W(\tau^{2k}) = \sum_{(F,o)\in\mathcal{T}_k} t(F,W), \ k\in\mathbb{N}$$

where \mathcal{T}_k is the set of unlabelled rooted planar trees with k edges

$$t(F,W) = \int_{[0,1]^k} \prod_{ij \in E(F)} W(x_i, x_j) \prod_{\ell=1}^k dx_\ell.$$

11/19

Take W a kernel with bounded degree function and set

$$W_{ij} = n^2 \int_{(\frac{i-1}{n}, \frac{i}{n}] \times (\frac{j-1}{n}, \frac{j}{n}]} W(x, y) dx dy, \quad i, j = 1, \dots, n.$$

Take W a kernel with bounded degree function and set

$$W_{ij} = n^2 \int_{(\frac{i-1}{n}, \frac{i}{n}] \times (\frac{j-1}{n}, \frac{j}{n}]} W(x, y) dx dy, \quad i, j = 1, \dots, n.$$

Let G(n, pW) be a graph on n vertices where the edge $\{i, j\}$ is present with probability pW_{ij} independently of the others.

Take W a kernel with bounded degree function and set

$$W_{ij} = n^2 \int_{(\frac{i-1}{n}, \frac{i}{n}] \times (\frac{j-1}{n}, \frac{j}{n}]} W(x, y) dx dy, \quad i, j = 1, \dots, n.$$

Let G(n, pW) be a graph on n vertices where the edge $\{i, j\}$ is present with probability pW_{ij} independently of the others. (Girko): If $np \gg 1$,

$$\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} v_W$$
, in probability

where A is the adjacency matrix of G(n,pW) and υ_W the QVE measure of W.

Take W a kernel with bounded degree function and set

$$W_{ij} = n^2 \int_{(\frac{i-1}{n}, \frac{i}{n}] \times (\frac{j-1}{n}, \frac{j}{n}]} W(x, y) dx dy, \quad i, j = 1, \dots, n.$$

Let G(n, pW) be a graph on n vertices where the edge $\{i, j\}$ is present with probability pW_{ij} independently of the others. (Girko): If $np \gg 1$,

$$\mu_{A/\sqrt{np}} \underset{n \to +\infty}{\Longrightarrow} v_W$$
, in probability

where A is the adjacency matrix of G(n,pW) and υ_W the QVE measure of W.

> The optimal large deviation strategies of $\mu_{A/\sqrt{np}}$ correspond to changing G(n,p) into one inhomogeous Erdős-Rényi graph G(n,pW).

QVE measure of integrable kernels

QVE measure of integrable kernels

Extend the definition of the QVE measure to integrable kernels W:

$$v_W = \lim_{C \to +\infty} v_{W^{(C)}},$$

where $W^{(C)}$ is the degree truncated kernel

 $W^{(C)}(x,y) = W(x,y) \mathbb{1}_{d_W(x) \le C} \mathbb{1}_{d_W(y) \le C}, \ (x,y) \in [0,1]^2.$

QVE measure of integrable kernels

Extend the definition of the QVE measure to integrable kernels W:

$$v_W = \lim_{C \to +\infty} v_{W^{(C)}},$$

where $W^{(C)}$ is the degree truncated kernel

 $W^{(C)}(x,y) = W(x,y) \mathbb{1}_{d_W(x) \le C} \mathbb{1}_{d_W(y) \le C}, \ (x,y) \in [0,1]^2.$

Since
$$d_W \in L^1$$
,
 $\|W^{(C)} - W\|_1 \xrightarrow[C \to +\infty]{} 0$

If U, V are kernels with bounded degree functions

$$\mathscr{W}_2(v_U, v_V) \le \|U - V\|_1^{1/2}$$

Recall that A is the adjacency matrix of G(n, p). (A.) If $\log \ll np \ll n$, then $\mu_{A/\sqrt{np}}$ satisfies a LDP with speed n^2p and rate function I:

Recall that A is the adjacency matrix of G(n, p). (A.) If $\log \ll np \ll n$, then $\mu_{A/\sqrt{np}}$ satisfies a LDP with speed n^2p and rate function I:

$$I(\nu) = \inf \{ H(W) : \upsilon_W = \nu, \ W \in \mathcal{W} \}, \ \nu \in \mathcal{P}(\mathbb{R}),$$

where $\mathcal W$ is the set of integrable kernels on $[0,1]^2$ and

$$H(W) = \int_{[0,1]^2} h(W(x,y)) dx dy, \ W \in \mathcal{W},$$

with $h(u) = u \log u - u + 1$.

Recall that A is the adjacency matrix of G(n, p). (A.) If $\log \ll np \ll n$, then $\mu_{A/\sqrt{np}}$ satisfies a LDP with speed n^2p and rate function I:

$$I(\nu) = \inf \{ H(W) : \upsilon_W = \nu, \ W \in \mathcal{W} \}, \ \nu \in \mathcal{P}(\mathbb{R}),$$

where ${\mathcal W}$ is the set of integrable kernels on $[0,1]^2$ and

$$H(W) = \int_{[0,1]^2} h(W(x,y)) dx dy, \ W \in \mathcal{W},$$

with $h(u) = u \log u - u + 1$.

• $H(G(n, pW) \mid G(n, p)) \simeq n^2 p H(W).$

Recall that A is the adjacency matrix of G(n, p). (A.) If $\log \ll np \ll n$, then $\mu_{A/\sqrt{np}}$ satisfies a LDP with speed n^2p and rate function I:

$$I(\nu) = \inf \{ H(W) : \upsilon_W = \nu, \ W \in \mathcal{W} \}, \ \nu \in \mathcal{P}(\mathbb{R}),$$

where ${\mathcal W}$ is the set of integrable kernels on $[0,1]^2$ and

$$H(W)=\int_{[0,1]^2}h(W(x,y))dxdy,\ W\in\mathcal{W},$$

with $h(u) = u \log u - u + 1$.

- $H(G(n, pW) \mid G(n, p)) \simeq n^2 p H(W).$
- If $I(\nu) < +\infty$ then the infimum is achieved.

Recall that A is the adjacency matrix of G(n, p). (A.) If $\log \ll np \ll n$, then $\mu_{A/\sqrt{np}}$ satisfies a LDP with speed n^2p and rate function I:

$$I(\nu) = \inf \{ H(W) : v_W = \nu, \ W \in \mathcal{W} \}, \ \nu \in \mathcal{P}(\mathbb{R}),$$

where ${\mathcal W}$ is the set of integrable kernels on $[0,1]^2$ and

$$H(W)=\int_{[0,1]^2}h(W(x,y))dxdy,\ W\in\mathcal{W},$$

with $h(u) = u \log u - u + 1$.

- $H(G(n, pW) \mid G(n, p)) \simeq n^2 p H(W).$
- If $I(\nu) < +\infty$ then the infimum is achieved.
- Conditioned on a large deviation of its spectrum, G(n, p) is expected to look like G(n, pW) for some $W \in W$.

Supercritical sparse Wigner matrices

 $\begin{array}{c} \mbox{Supercritical sparse Wigner matrices}\\ \mbox{Consider M a Wigner matrix with bounded entries,}\\ A the adjacency matrix of $G(n,p)$ independent of M.}\\ \mbox{Set:} \end{array}$

$$X = M \circ A,$$

where \circ denotes the Hadamard product.

 $\begin{array}{c} \mbox{Supercritical sparse Wigner matrices}\\ \mbox{Consider M a Wigner matrix with bounded entries,}\\ A the adjacency matrix of $G(n,p)$ independent of M.} \end{array}$

$$X = M \circ A,$$

where \circ denotes the Hadamard product.

▶ neither A or $A - \mathbb{E}A$ are sparse Wigner matrices but:

Supercritical sparse Wigner matrices Consider M a Wigner matrix with bounded entries, A the adjacency matrix of G(n,p) independent of M. Set:

$$X = M \circ A,$$

where \circ denotes the Hadamard product.

▶ neither A or $A - \mathbb{E}A$ are sparse Wigner matrices but:

(Tikhomirov-Youssef): $A - \varepsilon A'$ is a sparse Wigner matrix $A'_{ij} \sim \text{Ber}(p/\varepsilon)$ and $A' \perp \!\!\!\perp A$.

Supercritical sparse Wigner matrices Consider M a Wigner matrix with bounded entries, A the adjacency matrix of G(n,p) independent of M. Set:

$$X = M \circ A,$$

where \circ denotes the Hadamard product.

> neither A or $A - \mathbb{E}A$ are sparse Wigner matrices but:

 $\begin{array}{ll} \mbox{(Tikhomirov-Youssef):} & A - \varepsilon A' \mbox{ is a sparse Wigner matrix} \\ & A'_{ij} \sim {\rm Ber}(p/\varepsilon) \mbox{ and } & A' \perp A. \end{array}$

(A.) If $\log n \ll np \ll n$, $\mu_{X/\sqrt{np}}$ satisfies a LDP with speed n^2p and rate function I_L :

 $I_L(\nu) = \inf \{ H_L(W) : \nu_W = \nu, W \in \mathcal{W} \}, \ \nu \in \mathcal{P}(\mathbb{R}),$

where $H_L(W) = \int_{[0,1]^2} h_L(W(x,y)) dx dy$,

$$h_L(u) = \sup_{\theta \in \mathbb{R}} \{\theta u - L(\theta)\}, \quad L(\theta) = \mathbb{E}(e^{\theta M_{1,2}^2}) - 1, \ u, \theta \in \mathbb{R}.$$

Why does sparsity help? Starting point: Schur's complement formula

$$-\frac{1}{G_{ii}(z)} = z + \sum_{j,k}^{(i)} G_{jk}^{(i)}(z) X_{ij} X_{ik}, \quad i \in \{1, \dots, n\}$$

where G, resp. $G^{(i)}$, is the resolvent of X, resp. $X^{(i)}$.

Why does sparsity help? Starting point: Schur's complement formula

$$-\frac{1}{G_{ii}(z)} = z + \sum_{j,k}^{(i)} G_{jk}^{(i)}(z) X_{ij} X_{ik}, \quad i \in \{1, \dots, n\}$$

where G, resp. $G^{(i)}$, is the resolvent of X, resp. $X^{(i)}$. Thus, $(G_{ii})_{1 \le i \le n}$ satisfies a perturbed QVE:

$$-\frac{1}{G_{ii}(z)} = z + \sum_{j} X_{ij}^2 G_{jj}(z) + d_i(z), \quad i \in \{1, \dots, n\}$$

where $d_i(z) = \sum_{j=1}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 + \sum_{j \neq k} G_{jk}^{(i)} X_{ij} X_{ik}.$

Why does sparsity help? Starting point: Schur's complement formula

$$-\frac{1}{G_{ii}(z)} = z + \sum_{j,k}^{(i)} G_{jk}^{(i)}(z) X_{ij} X_{ik}, \quad i \in \{1, \dots, n\}$$

where G, resp. $G^{(i)}$, is the resolvent of X, resp. $X^{(i)}$. Thus, $(G_{ii})_{1 \le i \le n}$ satisfies a perturbed QVE:

$$-\frac{1}{G_{ii}(z)} = z + \sum_{j} X_{ij}^2 G_{jj}(z) + d_i(z), \quad i \in \{1, \dots, n\}$$

where $d_i(z) = \sum_{j}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 + \sum_{j \neq k} G_{jk}^{(i)} X_{ij} X_{ik}$. \blacktriangleright Claim: at the large deviation scale $n^2 p$,

$$#\{i: |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

Why does sparsity help? \blacktriangleright Claim: at the large deviation scale n^2p ,

$$\Lambda_n := \#\{i : |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

> <u>Claim</u>: at the large deviation scale n^2p ,

$$\Lambda_n := \#\{i : |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

▶ Resolvent identities: $\sum_{j}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 = O(1/np)$ a.s.

> <u>Claim</u>: at the large deviation scale n^2p ,

$$\Lambda_n := \#\{i : |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

▶ Resolvent identities: $\sum_{j}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 = O(1/np)$ a.s.

► Conditioned on X⁽ⁱ⁾, ∑_{j≠k} G⁽ⁱ⁾_{jk}X_{ij}X_{ik} is a "sparse" chaos of order 2:

> <u>Claim</u>: at the large deviation scale n^2p ,

$$\Lambda_n := \#\{i : |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

▶ Resolvent identities: $\sum_{j}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 = O(1/np)$ a.s.

Conditioned on X⁽ⁱ⁾, ∑_{j≠k} G⁽ⁱ⁾_{jk}X_{ij}X_{ik} is a "sparse" chaos of order 2:

$$\mathbb{P}^{(i)}\Big(\big|\sum_{j\neq k} G_{jk}^{(i)} X_{ij} X_{ik}\big| > \varepsilon\Big) \le 2e^{-c_{\varepsilon} np\sqrt{\log(1/p)}},$$

> <u>Claim</u>: at the large deviation scale n^2p ,

$$\Lambda_n := \#\{i : |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

▶ Resolvent identities: $\sum_{j}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 = O(1/np)$ a.s.

► Conditioned on X⁽ⁱ⁾, ∑_{j≠k} G⁽ⁱ⁾_{jk}X_{ij}X_{ik} is a "sparse" chaos of order 2:

$$\mathbb{P}^{(i)}\Big(\big|\sum_{j\neq k} G_{jk}^{(i)} X_{ij} X_{ik}\big| > \varepsilon\Big) \le 2e^{-c_{\varepsilon} np\sqrt{\log(1/p)}}$$

Thus, $\mathbb{E}(\Lambda_n) \lesssim e^{-c_{\varepsilon} n p \sqrt{\log(1/p)}}$.

> <u>Claim</u>: at the large deviation scale n^2p ,

$$\Lambda_n := \#\{i : |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

▶ Resolvent identities: $\sum_{j}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 = O(1/np)$ a.s.

► Conditioned on X⁽ⁱ⁾, ∑_{j≠k} G⁽ⁱ⁾_{jk}X_{ij}X_{ik} is a "sparse" chaos of order 2:

$$\mathbb{P}^{(i)}\Big(\big|\sum_{j\neq k} G_{jk}^{(i)} X_{ij} X_{ik}\big| > \varepsilon\Big) \le 2e^{-c_{\varepsilon} np\sqrt{\log(1/p)}}$$

Thus, $\mathbb{E}(\Lambda_n) \lesssim e^{-c_{\varepsilon} np \sqrt{\log(1/p)}}$. If the d_i 's were independent, then by Bennett's inequality

$$\mathbb{P}(\Lambda_n > \delta n) \le \exp\left(-\delta n \log \frac{\delta n}{3\mathbb{E}(\Lambda_n)}\right) \le e^{-C_{\delta,\varepsilon} n^2 p \sqrt{\log(1/p)}}.$$

> <u>Claim</u>: at the large deviation scale n^2p ,

$$\Lambda_n := \#\{i : |d_i(z)| > \varepsilon\} = o(n),$$

for any $\varepsilon > 0, z \in \mathbb{H}$.

▶ Resolvent identities: $\sum_{j}^{(i)} (G_{jj} - G_{jj}^{(i)}) X_{ij}^2 = O(1/np)$ a.s.

► Conditioned on X⁽ⁱ⁾, ∑_{j≠k} G⁽ⁱ⁾_{jk}X_{ij}X_{ik} is a "sparse" chaos of order 2:

$$\mathbb{P}^{(i)}\Big(\big|\sum_{j\neq k} G_{jk}^{(i)} X_{ij} X_{ik}\big| > \varepsilon\Big) \le 2e^{-c_{\varepsilon} np\sqrt{\log(1/p)}}$$

Thus, $\mathbb{E}(\Lambda_n) \lesssim e^{-c_{\varepsilon}np\sqrt{\log(1/p)}}$. If the d_i 's were independent, then by Bennett's inequality

$$\mathbb{P}(\Lambda_n > \delta n) \le \exp\left(-\delta n \log \frac{\delta n}{3\mathbb{E}(\Lambda_n)}\right) \le e^{-C_{\delta,\varepsilon} n^2 p \sqrt{\log(1/p)}}.$$

Develop a Bennett-type inequality for dependent variables.

Thank you for your attention!