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Bernoulli matrices
Let (Ai,j)1≤i≤j≤n be i.i.d. Ber(1/2).

A =



0 1 1 0 0 0 1
1 0 0 1 1 1 1
1 0 0 0 1 0 0
0 1 0 0 0 1 1
0 1 1 0 1 1 1
0 1 0 1 1 0 0
1 1 0 1 1 0 1



If µA/√n is the empirical spectral measure, then

(Wigner’s law) µA/
√
n =⇒
n→+∞

µsc in probability,

where µsc = (2/π)
√

(1− x2)+dx.

What is the large deviation behaviour of µA/√n ?
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Bernoulli matrices
• Large deviations of µA/√n turn out to be very difficult.

(LDP) logP(µA/√n ' ν) ?� e−vnI(ν), ν 6= µsc,

where vn is the speed and I the rate function.

• What do we know ? Not much...
• (Guionnet-Zeitouni): Speed of large deviation is n2

logP(d(µA/
√

n, µsc) > ε) ≤ −Cεn
2.

• If the rate function I exists, then

I(µ) = +∞, if µ(x2) > 1/4,

since n−2tr(A− EA)2 = 1/4 and EA rank 1.
• I cannot be universal: I 6= IGOE.

δ0 ∈ DI but δ0 /∈ DIGOE .
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Some universality in large deviation behaviour
Let A = A− EA. By Cauchy interlacing inequalities

dKS(µA/√n, µA/√n) ≤ 1
n

rk(A−A) = 1
n
.

ä Large deviations of µA/√n and µA/√n are the same.

What about other spectral observables?

• (Guionnet-Husson) λA/√n satisfies a LDP

with speed n and rate function J = JGOE.

• (A.) µA/√n(xk) satisfies a LDP

with speed n1+ 2
k and rate function Lk = LkGOE.

ä Universality is a manifestation of moderate deviation behaviour.
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Sparsification as a relaxation of the problem
Take p� 1 and consider A the adjacency matrix of the
Erdős-Rényi graph G(n, p).

0 nlog n

np . log n log n � np

Inhomogeneous graph:

• isolated vertices

• hubs

• leaves

Homogeneous graph:

• vertices have all almost the same degrees

• connected w.h.p
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The subcritical regime np = λ
ä Asymptotically, G(n, λn) looks like a Galton-Watson tree with
degree distribution Poi(λ).

(Abert-Thom-Virág) µA =⇒
n→+∞

µλ, in probability

where µλ is the expected spectral measure of GWT(Poi(λ)).

λ = 2 λ = 3co
ur

te
sy

of
S.

Co
st

e
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The subcritical regime np = λ

ä Asymptotically, G(n, λn) looks like a Galton-Watson tree with
degree distribution Poi(λ).

(Abért-Thom-Virág) µA =⇒
n→+∞

µλ, in probability

where µλ is the expected spectral measure of GWT(Poi(λ)).
• (Bordenave-Lelarge-Salez): µλ is symmetric

• (Salez): Dense set of atoms
• (Bordenave-Sen-Virág): µλ is purely atomic iff λ ≤ 1.
• (Arras-Bordenave): µλ,ac 6= 0 if λ large enough.

(Bordenave-Caputo) µA satisfies a LDP with speed n.
ä Obtained by contracting the LDP for G(n, λ/n) with respect to
the local weak topology.
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The supercritical regime np� log n

As soon as np� 1, Wigner’s law holds

µA/√np =⇒
n→+∞

µsc, in probability.

(A.) If logn� np� n, µA/√np satisfies a LDP

with speed n2p and good rate function I.

ä The rate function is the solution of a certain variational problem
• I(µ) = 0⇐⇒ µ = µsc.
• I(µ) = +∞ if µ is not symmetric.

ä The only possible deviations are around measures coming from
Quadratic Vector Equations.
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Quadratic Vector Equations
ä (Girko): Equations for the Stieltjes transform of limits of
empirical spectral measures of Wigner-type matrices.

Let W : [0, 1]2 → R+ be a Borel measurable symmetric kernel s.t.

sup
x∈[0,1]

∫ 1

0
W (x, y)dy < +∞,

i.e. W has a bounded degree function dW =
∫ 1

0 W (., y)dy.

The QVE associated with W is

− 1
m(z, x) = z +

∫ 1

0
W (x, y)m(z, y)dy, z ∈ H, x ∈ [0, 1],

where H = {z ∈ C : =z > 0}.

(Ajanki, Erdős, Krüger): Existence and uniqueness in B+, the
space of m : H× [0, 1]→ H s.t. m(z, .) is bounded for any z ∈ H.
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QVE measure of a kernel

If m = (m(z, x))z∈H,x∈[0,1] is the unique solution in B+ of the QVE

− 1
m(z, x) = z +

∫ 1

0
W (x, y)m(z, y)dy, z ∈ H,

then for any x ∈ [0, 1],

m(., x) is the Stieltjes transform of some υx ∈ P(R).

Define the QVE measure of the kernel W as υW =
∫ 1

0 υxdx.

(Ajanki, Erdős, Krüger):

υW is symmetric
supp(υW ) ⊂ [−2‖dW ‖1/2

∞ , 2‖dW ‖1/2
∞ ].
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m(z, x) = z +

∫ 1

0
W (x, y)m(z, y)dy, z ∈ H,

then for any x ∈ [0, 1],
m(., x) is the Stieltjes transform of some υx ∈ P(R).

Define the QVE measure of the kernel W as

υW =
∫ 1

0
υxdx.

(Erdős-Mülhbacher), (Zhu): Moments are tree homomorphisms
densities:

υW (τ2k) =
∑

(F,o)∈Tk

t(F,W ), k ∈ N

where Tk is the set of unlabelled rooted planar trees with k edges

t(F,W ) =
∫

[0,1]k

∏
ij∈E(F )

W (xi, xj)
k∏
`=1

dx`.
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Inhomogeous sparse Erdős-Rényi graphs

Take W a kernel with bounded degree function and set

Wij = n2
∫

( i−1
n
, i
n

]×( j−1
n
, j
n

]
W (x, y)dxdy, i, j = 1, . . . , n.

Let G(n, pW ) be a graph on n vertices where the edge {i, j} is
present with probability pWij independently of the others.
(Girko): If np� 1,

µA/√np =⇒
n→+∞

υW , in probability

where A is the adjacency matrix of G(n, pW ) and υW the QVE
measure of W .
ä The optimal large deviation strategies of µA/√np correspond to
changing G(n, p) into one inhomogeous Erdős-Rényi graph
G(n, pW ).
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QVE measure of integrable kernels

Extend the definition of the QVE measure to integrable kernels W :

υW = lim
C→+∞

υW (C) ,

where W (C) is the degree truncated kernel

W (C)(x, y) = W (x, y)1dW (x)≤C1dW (y)≤C , (x, y) ∈ [0, 1]2.

dW (x) > C

d
W
(y
)
>

C

W (x, y)

W (C)=

0 0

0
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W (C)(x, y) = W (x, y)1dW (x)≤C1dW (y)≤C , (x, y) ∈ [0, 1]2.

dW (x) > C

d
W
(y
)
>

C

W (x, y)

W (C)=

0 0

0

Since dW ∈ L1,

‖W (C) −W‖1 −→
C→+∞

0.

If U, V are kernels with
bounded degree functions

W2(υU , υV ) ≤ ‖U − V ‖1/2
1
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The rate function in the supercritical sparse case

Recall that A is the adjacency matrix of G(n, p).
(A.) If log� np� n, then µA/√np satisfies a LDP with speed
n2p and rate function I:

I(ν) = inf
{
H(W ) : υW = ν, W ∈ W

}
, ν ∈ P(R),

where W is the set of integrable kernels on [0, 1]2 and

H(W ) =
∫

[0,1]2
h(W (x, y))dxdy, W ∈ W,

with h(u) = u log u− u+ 1.
• H

(
G(n, pW ) | G(n, p)

)
' n2pH(W ).

• If I(ν) < +∞ then the infimum is achieved.
• Conditioned on a large deviation of its spectrum, G(n, p) is
expected to look like G(n, pW ) for some W ∈ W.
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Supercritical sparse Wigner matrices

Consider M a Wigner matrix with bounded entries,
A the adjacency matrix of G(n, p) independent of M .

Set:
X = M ◦A,

where ◦ denotes the Hadamard product.
ä neither A or A− EA are sparse Wigner matrices but:

(Tikhomirov-Youssef): A− εA′ is a sparse Wigner matrix
A′ij ∼ Ber(p/ε) and A′ ⊥⊥ A.

(A.) If logn� np� n, µX/√np satisfies a LDP with speed n2p

and rate function IL:

IL(ν) = inf
{
HL(W ) : υW = ν,W ∈ W

}
, ν ∈ P(R),

where HL(W ) =
∫

[0,1]2 hL(W (x, y))dxdy,

hL(u) = sup
θ∈R
{θu− L(θ)}, L(θ) = E(eθM

2
1,2)− 1, u, θ ∈ R.
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Why does sparsity help?

Starting point: Schur’s complement formula

− 1
Gii(z)

= z +
(i)∑
j,k

G
(i)
jk (z)XijXik, i ∈ {1, . . . , n}

where G, resp. G(i), is the resolvent of X, resp. X(i).
Thus, (Gii)1≤i≤n satisfies a perturbed QVE:

− 1
Gii(z)

= z +
∑
j

X2
ijGjj(z) + di(z), i ∈ {1, . . . , n}

where di(z) =
∑(i)
j (Gjj −G(i)

jj )X2
ij +

∑
j 6=kG

(i)
jkXijXik.

ä Claim: at the large deviation scale n2p,

#{i : |di(z)| > ε} = o(n),

for any ε > 0, z ∈ H.
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Why does sparsity help?
ä Claim: at the large deviation scale n2p,

Λn := #{i : |di(z)| > ε} = o(n),

for any ε > 0, z ∈ H.

I Resolvent identities:
∑(i)
j (Gjj −G(i)

jj )X2
ij = O(1/np) a.s.

I Conditioned on X(i),
∑
j 6=kG

(i)
jkXijXik is a “sparse” chaos of

order 2:

P(i)
(∣∣∑

j 6=k
G

(i)
jkXijXik| > ε

)
≤ 2e−cεnp

√
log(1/p),

Thus, E(Λn) . e−cεnp
√

log(1/p).
If the di’s were independent, then by Bennett’s inequality

P(Λn > δn) ≤ exp
(
− δn log δn

3E(Λn)
)
≤ e−Cδ,εn2p

√
log(1/p).

ä Develop a Bennett-type inequality for dependent variables.
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Thank you for your attention!
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