Eigenvectors of random perturbations non-normal Toeplitz matrices

Anirban Basak

International Centre for Theoretical Sciences (ICTS)
Tata Institute of Fundamental Research (TIFR)
May 07, 2024
Random Matrices and Related Topics in Jeju

Non-normal operator and its spectral instability

Normal operator/matrix: $N N^{\star}=N^{\star} N$;
Non-normal: $N N^{\star} \neq N^{\star} N$.

Non-normal operator and its spectral instability

For any bounded normal operator N

$$
\left\|(N-z)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \operatorname{Spec}(N))}, \quad z \notin \operatorname{Spec}(N)
$$

Non-normal operator and its spectral instability

For a non-normal operator N and $z \notin \operatorname{Sec}(N)$ one has either

$$
\left\|(N-z)^{-1}\right\| \asymp \frac{1}{\operatorname{dist}(z, \operatorname{Spec}(N))}
$$

(zone of spectral stability)
or

$$
\left\|(N-z)^{-1}\right\| \gg \frac{1}{\operatorname{dist}(z, \operatorname{Spec}(N))}
$$

(zone of spectral instability)
Example: Left shift operator on $\mathbb{C}^{N} /$ Jordan block

$$
J_{N}:=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
& 0 & 1 & & & \\
& & \ddots & \ddots & & \\
& & & 0 & 1 & \\
& & & & 0 & 1 \\
& & & & & 0
\end{array}\right], \quad \operatorname{Spec}\left(J_{N}\right)=\{0\}
$$

Non-normal operator and its spectral instability

$$
J_{N}-z:=\left[\begin{array}{cccccc}
-z & 1 & & & & \\
& -z & 1 & & & \\
& & \ddots & \ddots & & \\
& & & -z & 1 & \\
& & & & -z & 1 \\
& & & & & -z
\end{array}\right]
$$

Zone of spectral instability: For $z \in D(0,1):=\{w \in \mathbb{C}:|w|<1\}$

$$
\begin{gathered}
\left\|\left(J_{N}-z\right) v\right\|_{2}=|z|^{N} \Rightarrow\left\|\left(J_{N}-z\right)^{-1}\right\| \geqslant|z|^{-N} \\
v \\
:=\left(\begin{array}{lllll}
1 & z & z^{2} & \cdots & z^{N-1}
\end{array}\right)^{\top} \quad \Rightarrow \quad\|v\|_{2} \asymp 1 .
\end{gathered}
$$

Zone of spectral stability: For $z \in \mathbb{C} \backslash \overline{D(0,1)}$.

$$
\left\|\left(J_{N}-z\right)^{-1}\right\| \asymp 1 .
$$

Challenges with non-normal matrices

(i) The eigenvalue analysis in many applications turns out to be misleading.
(ii) The eigenvalues are sensitive to perturbations and thereby often yielding unreliable results.

Challenges with non-normal matrices

Example (Jordan Block). Simulate a uniformly random unitary matrix U_{N} and set $\widehat{J}_{N}:=U_{N} J_{N} U_{N}^{*}$.
$\operatorname{Spec}\left(J_{N}\right)=\operatorname{Spec}\left(\widehat{J}_{N}\right)=\{0\}$.
$J_{N}:=\left[\begin{array}{cccccc}0 & 1 & & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 & \\ & & & & 0 & 1 \\ & & & & & 0\end{array}\right]$

Figure: $N=1000$. Eigenvalues of \widehat{J}_{N} computed through Mathematica are plotted in blue and the unit circle \mathbb{S}^{1} on the complex plane is in black.

Challenges with non-normal matrices

Example. Simulate a Haar U_{N}. Compute the eigenvalues of $U_{N} H_{N} U_{N}^{*} . N=1000$.

$$
H_{N}:=J_{N}+D_{N}
$$

$D_{N}=\operatorname{diag}\left(\left\{X_{i}\right\}_{i=1}^{N}\right)$
$\left\{X_{i}\right\}$ i.i.d. Unif[-2,2]

Non-periodic one-way model - "limit" of Hatano-Nelson model (due to Brézin, Feinberg, and Zee)

Eigenvalues move to the 'Hatano-Nelson bubble'

```
\varepsilon-pseudospectrum ( }\varepsilon>0
```

(1). $\operatorname{Spec}_{\varepsilon}(A):=\operatorname{Spec}(A) \cup\left\{z \in \mathbb{C} \backslash \operatorname{Spec}(A):\left\|(A-z)^{-1}\right\| \geqslant \varepsilon^{-1}\right\}$

$$
\text { (2). } \operatorname{Spec}_{\varepsilon}(A)=\bigcup_{\|E\| \leqslant \varepsilon} \operatorname{Spec}(A+E)
$$

(3). $z \in \operatorname{Spec}_{\varepsilon}(A) \Leftrightarrow z \in \operatorname{Spec}(A)$ or $\exists v_{z}$ s.t. $\left\|(A-z) v_{z}\right\| \leqslant \varepsilon\left\|v_{z}\right\|$

$$
(1) \Leftrightarrow(2) \Leftrightarrow(3)
$$

[Varah '79], [Trefethen, Embree '05]

For any $A \in \mathbb{C}^{N \times N}$ and any $\varepsilon>0$

$$
\operatorname{Spec}_{\varepsilon}(A) \supset \operatorname{Spec}(A)+D(0, \varepsilon)
$$

If $\|\cdot\|=\|\cdot\|_{2}$ and $A \in \mathbb{C}^{N \times N}$ then

$$
A \text { normal } \Leftrightarrow \operatorname{Spec}_{\varepsilon}(A)=\operatorname{Spec}(A)+D(0, \varepsilon) \forall \varepsilon>0
$$

More generally, if $A=V \Lambda V^{-1}$ is diagonalizable then

$$
\operatorname{Spec}_{\varepsilon}(A) \subset \operatorname{Spec}(A)+D(0, \varepsilon \kappa(V)), \quad \kappa(V):=\frac{s_{\max }(V)}{s_{\min }(V)}
$$

Pseudospectrum

Jordan Block Example (revisited): For any $\delta=\delta_{N}>0$ let

$$
J_{N}^{(\delta)}:=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
& 0 & 1 & & & \\
& & \ddots & \ddots & & \\
& & & 0 & 1 & \\
& & & & 0 & 1 \\
\delta & & & & 0
\end{array}\right]
$$

Observe: Eigenvalues of $J_{N}^{(\delta)}=\left\{\delta^{1 / N} e^{2 \pi \mathrm{i} k / N}, k \in[0, N-1] \cap \mathbb{Z}\right\}$. Therefore

■ If $\delta=|z|^{N}$ for some $z \in D(0,1)$ then an exponentially small perturbation of J_{N} produces eigenvalues that are at a distance $|z|$ from $\operatorname{Spec}\left(J_{N}\right)$. Thus $\operatorname{Spec}_{r^{N}}\left(J_{N}\right) \supset D(0, r)$ for any $r \in(0,1)$.
■ If $\delta \asymp 1$ or if $\delta=O\left(N^{-\alpha}\right)$ for any $\alpha>0$ then eigenvalues of $J_{N}^{(\delta)}$ approaches $\mathbb{S}^{1}:=\partial D(0,1)$.

Pseudospectrum

Jordan Block Example (continued):

Figure: $N=50, \varepsilon=10^{-1}, 10^{-1.2}, \ldots, 10^{-2}$. Pseudospectral level lines: J_{N} on the left panel, $C_{N}:=J_{N}^{(1)}$ on the right panel.

Move from pseudospectrum to random perturbation

- Pseudospectra are generally harder to characterize and computationally more expensive - random perturbation is an efficient model
■ Natural to study spectral features of disordered perturbations (typical perturbation) of a non-normal operators/matrices, compared to the pseudospectrum (worst-case perturbation).
■ If the simulated $U_{N}=\mathcal{U}_{N}+\Delta_{N}$, where \mathcal{U}_{N} is a 'true' unitary and Δ_{N} captures the machine/rounding error then the spectrum of $\widehat{A}_{N}:=U_{N} A_{N} U_{N}^{\star}$ is same as that of $A_{N}+\widehat{\Delta}_{N}$.
■ Non-Hermitian analog of Rosensweig-Porter model.
■ Rosensweig-Porter model: $D_{N}+\sqrt{t} W_{N}$. [Benigni '20], [Landon, Yau '17], [Lee, Schnelli '13]
[Lee, Schnelli, Stelter, Yau '16], [von Soosten, Warzel '18]

Random perturbations of non-normal Toeplitz matrices

Banded Toeplitz matrix with a given symbol:
For $\boldsymbol{a}(\xi):=\sum_{i=-d_{-}}^{d_{+}} a_{i} \xi^{i}$, with $\xi \in \mathbb{S}^{1}$, set

$$
T_{N}(\boldsymbol{a}):=\sum_{i \geqslant 0} a_{i} J_{N}^{i}+\sum_{i<0} a_{i}\left(J_{N}^{\star}\right)^{i} .
$$

For $\boldsymbol{a}(\xi)=2 \xi^{-3}-\xi^{-2}+2 \iota \xi^{-1}-4 \xi-2 \iota \xi^{2}$

$$
T_{N}(\boldsymbol{a}):=\left[\begin{array}{cccccccc}
0 & -4 & -2 \iota & & & & & \\
2 \iota & 0 & -4 & -2 \iota & & & & \\
-1 & 2 \iota & 0 & -4 & -2 \iota & & & \\
2 & -1 & 2 \iota & 0 & -4 & -2 \iota & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
& & & & & 0 & -4 & -2 \iota \\
& & & 2 & -1 & 2 \iota & 0 & -4 \\
& & & & 2 & -1 & 2 \iota & 0
\end{array}\right] .
$$

Random perturbations of non-normal Toeplitz matrices

Figure: $N=1000$. Eigenvalues of $U_{N} A_{N} U_{N}^{\star}, U_{N}$ a simulated Haar unitary, computed through Mathematica are in blue. Eigenvalues of $A_{N}+N^{-2} G_{N}$ are in red, where G_{N} is the random matrix with i.i.d. standard complex Gaussian entries. Left panel: $A_{N}=J_{N}$, and right panel: $A_{N}=T_{N}(\boldsymbol{a})$. Symbol curves \mathbb{S}^{1} (left panel) and $a\left(\mathbb{S}^{1}\right)$ (right panel) in black.

Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any $\gamma>\frac{1}{2}$, if E_{N} satisfies Assumption (A) then the empirical distribution of the eigenvalues of $T_{N}(\boldsymbol{a})+N^{-\gamma} E_{N}$ converges weakly, in probability, to the law of $a(U)$ where $U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right)$.
[Hager, Davies '09], [Guionnet, Wood, Zeitouni '14]

[B., Paquette, Zeitouni '19, '20], [Sjöstrand, Vogel '21a, '21b]
[O'Rourke, Wood '22]

Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any $\gamma>\frac{1}{2}$, if E_{N} satisfies Assumption (A) then the empirical distribution of the eigenvalues of $T_{N}(\boldsymbol{a})+N^{-\gamma} E_{N}$ converges weakly, in probability, to the law of $a(U)$ where $U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right)$.

Examples.

$$
\begin{gathered}
T_{N}=J_{N}, \boldsymbol{a}(\xi)=\xi . L_{N} \Rightarrow \text { law of } U, \text { where } U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right) . \\
T_{N}=J_{N}+J_{N}^{2}, \boldsymbol{a}(\xi)=\xi+\xi^{2} . L_{N} \Rightarrow \text { law of } U+U^{2}
\end{gathered}
$$

Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any $\gamma>\frac{1}{2}$, if E_{N} satisfies Assumption (A) then the empirical distribution of the eigenvalues of $T_{N}(\boldsymbol{a})+N^{-\gamma} E_{N}$ converges weakly, in probability, to the law of $a(U)$ where $U \sim \operatorname{Unif}\left(\mathbb{S}^{1}\right)$.

Assumption (A)
(1)

$$
\mathbb{E}\left[\left\|E_{N}\right\|_{\mathrm{HS}}^{2}\right]=\mathbb{E}\left[\sum_{i, j}\left|e_{i, j}\right|^{2}\right]=O\left(N^{2}\right)
$$

(2) For every $\alpha>0 \exists \beta \in(0, \infty)$, such that for any M_{N} with $\left\|M_{N}\right\|=O\left(N^{\alpha}\right)$,

$$
\mathbb{P}\left(s_{\min }\left(M_{N}+E_{N}\right) \leqslant N^{-\beta}\right)=o(1)
$$

Regions of no outliers

Theorem (B., Zeitouni '20)

The entries of E_{N} are independent entries with zero mean and unit variance. Then for any $\gamma>\frac{1}{2}$, with probability $\rightarrow 1$, there are no outliers in any open set

$$
U \subsetneq \mathcal{R}_{0}:=\left\{z \in \mathbb{C} \backslash \boldsymbol{a}\left(\mathbb{S}^{1}\right): \operatorname{wind}_{\boldsymbol{a}}(z)=0\right\} .
$$

Limit of outliers

Theorem (B., Zeitouni '20)

Additionally assume that E_{N} be a random matrix with i.i.d. entries having zero mean and unit variance and satisfying some anti-concentration bound (e.g. bounded density). Then for any $\gamma>\frac{1}{2}$, the point processes induced by the outlier eigenvalues converge to the zero set of some non-universal (w.r.t. the distribution of the entries of E_{N}) random analytic function.

Definition of the limiting random analytic function involves skew semistandard Young Tableaux
$T_{N}=J_{N}$, entries of E_{N} are standard complex Gaussian
Limiting random analytic function is a hyperbolic Gaussian analytic function:

$$
F(z)=\sum_{\ell=0}^{\infty} g_{\ell} z^{\ell} \sqrt{\ell+1}
$$

$\left\{g_{\ell}\right\}$ i.i.d. standard complex Gaussian

Localization/delocalization of eigenvectors

Figure: Moduli of the entries of an eigenvector of $J_{N}+N^{-\gamma} E_{N}: N=1000$; top left: $\gamma=2$, top right: $\gamma=1.5$, bottom: $\gamma=1$.

Localization/delocalization of eigenvectors

Figure: Moduli of the entries of an eigenvector of $J_{N}+N^{-\gamma} E_{N}: N=1000$; top left: $\gamma=0.9$, top right: $\gamma=0.75$, bottom: $\gamma=0.4$.

Localization of eigenvectors for $\gamma>1$

Figure: Eigenvectors (left panel) and eigenvalues (right panel) of $J_{N}+J_{N}^{2}+N^{-\gamma} E_{N}$ for $N=4000, \gamma=1.2$. Plotted are the moduli of the entries of the eigenvector that corresponds to the eigenvalue marked with a red \times.

Localization of eigenvectors for $\gamma>1$

Theorem (B., Vogel, Zeitouni '23)

For most (right)-eigenvectors v, with probability $\rightarrow 1$, as $N \rightarrow \infty$, (under some assumptions on E_{N}) the followings hold:

- Localization at scale $N / \log N$: For any $\ell \in[1, N] \cap \mathbb{Z}$

$$
\|v\|_{\ell^{2}([1, N-\ell])} \wedge\|v\|_{\ell^{2}([\ell, N])} \lesssim \exp (-c \ell \log N / N)+N^{-c^{\prime}}
$$

■ Eigenvectors spread out at scale $N / \log N$:

$$
\begin{gathered}
|\operatorname{Supp}(v)| \gtrsim N / \log N \\
|\operatorname{Supp}(v)|:=\min \left\{|I|:\|v\|_{\ell^{2}(I)} \gtrsim 1\right\}
\end{gathered}
$$

Delocalization of eigenvectors for $\gamma<1$

■ Long-range correlation: u_{z} is the right eigenvector corresponding to $z \in \mathbb{C}$.

$$
\sum_{i} u_{z}(i) u_{z}(i+L) \rightarrow \begin{cases}1 & \text { if } L \ll N^{2 \gamma-1} \\ 0 & \text { if } L \gg N^{2 \gamma-1}\end{cases}
$$

- u_{z} is approximated by $N^{2(1-\gamma)}$ many \sin and cos curves and $O(1)$ localized vectors.

Work in progress with Vogel and Zeitouni.

Figure: $T_{N}=J_{N}+J_{N}^{2}, N=4000, \gamma=0.8$.

■ $z \in \mathbb{C}$ an eigenvalue of $J_{N}^{\gamma}:=J_{N}+N^{-\gamma} E_{N}$ with its right-eigenvector u_{z}.

- $\left\{e_{i}(z)\right\}_{i=1}^{N}$ right singular vectors of $J_{N}-z$.

$$
u_{z}=\sum_{i=1}^{m}\left\langle u_{z}, e_{i}(z)\right\rangle e_{i}(z)+\sum_{i=m+1}^{N}\left\langle u_{z}, e_{i}(z)\right\rangle e_{i}(z) .
$$

■ Strategy: For $\gamma>1$ for a typical eigenvalue z, the projection of u_{z} on $\operatorname{Span}\left(e_{i}(z), i \geqslant 2\right)$ is negligible, and $e_{1}(z)$ is localized.

Proof ideas: localization of eigenvectors - the Jordan block

■ Schur complement formula/Grushin problem:

$$
\left\|\sum_{i=m+1}^{N}\left\langle u_{z}, e_{i}(z)\right\rangle e_{i}(z)\right\| \lesssim N^{-(\gamma-1 / 2)}\left\|E(z)\left(I+N^{-\gamma} E_{N} E(z)\right)^{-1}\right\|
$$

$$
m=1 \text { for } J_{N}
$$

■ $\|E(z)\|=1$ / second smallest singular value of $J_{N}-z$.

- Observe for $z \in D(0,1)$

$$
\begin{gathered}
\left\|\left(J_{N}-z\right) v_{z}\right\|=|z|^{N}, \quad\left\|v_{z}\right\| \asymp(1-|z|)^{-1 / 2} \\
v_{z}^{\top}:=\left(\begin{array}{lllll}
1 & z & z^{2} & \cdots & z^{N-1}
\end{array}\right)
\end{gathered}
$$

■ For $z \in \mathbb{C}$ with $\operatorname{dist}\left(z, \mathbb{S}^{1}\right) \gtrsim \log N / N$

$$
\left\|v_{z} /\right\| v_{z}\left\|-e_{1}(z)\right\|=o(1)
$$

- Most eigenvalues reside in the domain

$$
\left\{\lambda \in \mathbb{C}: \operatorname{dist}\left(\lambda, \mathbb{S}^{1}\right) \in((\gamma-1) \log N / N, C \log N / N]\right\}
$$

Proof ideas: localization of eigenvectors - the general case

For z an eigenvalue with v_{z} being its eigenvector
■ $\exists v_{z} \in \operatorname{Span}\left(e_{j}(z), j,=1,2, \ldots,|d(z)|\right)$ such that $\left\|v_{z}-u_{z}\right\|=o(1)$.

$$
d(z)=\operatorname{wind}_{a}(z)
$$

■ Most eigenvalues reside in the domain

$$
\left\{\lambda \in \mathbb{C}: \operatorname{dist}\left(\lambda, \boldsymbol{a}\left(\mathbb{S}^{1}\right)\right) \in\left(c_{\gamma-1} \log N / N, C \log N / N\right]\right\}
$$

■ Vectors approximating $e_{j}(z$'s decay exponentially at a speed $r \asymp 1$ for $j<|d(z)|$ and the last one decays at speed $r_{N} \asymp \log N / N$.
(gives the upper bound)
■ Show that v_{z} have a non-negligible projection onto the subspace spanned by the vector approximating $e_{|d(z)|}(z)$.
(gives the lower bound)

Thank you!

