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Quantum Chaos

Quantum chaos

Two-dimensional classical billiard:

(a) Integrable (b) Chaotic

The classical billiard is the high-energy limit of the quantum billiard:

−Δ𝜓 = 𝐸𝜓, 𝜓 |𝜕𝐵 = 0.

What is quantum chaos?

How does the quantum billiard behave if it corresponds to a chaotic (resp. integrable) classical billiard? In
other words, how can we tell if a quantum system is chaotic?
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Quantum Chaos

Integrable v.s. Chaotic

Figure: Rudnick: What is Quantum Chaos?

Berry-Tabor conjecture (1977)

The local energy level statistics of a generic integrable model follow a Poisson process (and the eigenvectors
are localized).

Bohigas-Giannoni-Schmit conjecture (1984)

The local energy level statistics of a generic chaotic model follow the random matrix statistics (GOE/GUE) of
the same symmetry (and the eigenvectors are delocalized).
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Quantum Chaos

QC transition of Anderson model

On Z𝑑 , consider the Anderson model (Anderson, 1958)

𝐻 = −Δ + _𝑉
−Δ: kinetic energy; 𝑉 : i.i.d. random potential for impurities.

Anderson localization/delocalization conjecture

Any _ > 0, 𝑑 = 1, 2 or large _, 𝑑 ≥ 3: Localization (Fröhlich-Spencer ’83, Aizenman and Molchanov
’93, etc.) + Poisson statistics (Minami ’96).

Small _, 𝑑 ≥ 3: Localization near the spectrum edges, and delocalization and random matrix statistics
inside the bulk. (No rigorous theory so far!)
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Quantum Chaos

QC transition of random band matrices

Random band matrices

An 𝑁 × 𝑁 band matrix 𝐻 = (ℎ𝑖 𝑗 ) has centered and independent entries up
to symmetry ℎ𝑖 𝑗 = ℎ 𝑗𝑖 :

ℎ𝑖 𝑗 = 0, |𝑖 − 𝑗 | > 𝑊 ; E |ℎ𝑥𝑦 |2 = (2𝑊 + 1)−1, |𝑖 − 𝑗 | ≤ 𝑊 ,

where band width 𝑊 � 𝑁 and the distance | · | is periodic.

Quantum chaos transition conjecture (Casati-Molinari-Izrailev ’90; Fyodorov-Mirlin ’91)

Localization+Poisson if 𝑊 �
√
𝐿; delocalization+GOE/GUE if 𝑊 �

√
𝐿.
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Figure: |𝑢𝑘 (𝑥) |2. 𝑑 = 1, 𝐿 = 2000, 𝑊 = 𝐿1/4, 𝑊 = 𝐿1/2 and 𝑊 = 𝐿3/4.
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A block random matrix model

Wigner matrices

A random diagonal matrix with i.i.d. entries is the simplest (random) integrable quantum system. What is the
canonical chaotic system?

Wigner matrices and GOE/GUE (Wigner 1955)

• A Wigner matrix 𝐻 is an 𝑁 ×𝑁 Hermitian random matrix with independent
entries 𝐻𝑖 𝑗 of mean 0 and variance 𝑁 −1.

• 𝐻 is called a GOE/GUE if it is real/complex Gaussian.

• The ESD of 𝐻 satisfies the famous semicircle law

𝜌𝑠𝑐 (𝑥) =
1

2𝜋

√︁
4 − 𝑥2.

Eigenvalues around ±2 are called edge eigen-
values, and those away from ±2 are called bulk
eigenvalues.
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A block random matrix model

Quantum chaos of Wigner matrices

Wigner’s universality hypothesis

The local spectral statistics of large complex quantum systems are universal, and given by the random
matrix statistics of the same symmetry (GOE for symmetric models or GUE for Hermitian models).

Wigner-Dyson-Gaudin-Mehta conjecture (Bourgade, Erdős, Knowles, Schlein, Tao, Vu, Yau, Yin, etc.)

Spectral statistics of Wigner ensembles do not depend on the matrix law.
Bulk universality. Local statistics of eigenvalues {𝑁 (_𝑖 − 𝐸) } around a bulk energy 𝐸 ∈ (−2, 2) are
universal, i.e., they match those of GOE/GUE.

QUE. For any subset 𝐼 so that |𝐼 | � 1, with high probability,∑︁
𝑥∈𝐼

(
𝑁 |u𝑘 (𝑥) |2 − 1

)
� |𝐼 |.

In particular, the eigenvectors are completely delocalized.

Quantum unique ergodicity (Rudnick-Sarnak)

For generic strongly chaotic Hamiltonians, the high energy eigenstates become equidistributed:∫
𝑓 (𝑥) |𝜓𝑗 (𝑥) |2dV𝑜𝑙 (𝑥) →

∫
𝑓 (𝑥)dV𝑜𝑙 (𝑥) .
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A block random matrix model

A random matrix model

We consider the block random matrix model 𝐻 = 𝑉 + Λ.
𝑉 : random diagonal block matrix consisting of 𝐷 independent 𝑁 × 𝑁 Wigner matrices.

Λ: interactions between neighboring subsystems, independent of 𝑉 .

𝑉 =

©«

𝐻1 0 0 · · · 0 0
0 𝐻2 0 · · · 0 0
0 0 𝐻3 · · · 0 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 0 0 · · · 𝐻𝐷−1 0
0 0 0 · · · 0 𝐻𝐷

ª®®®®®®®®¬
, Λ =

©«

0 𝐴 0 · · · 0 𝐴∗

𝐴∗ 0 𝐴 · · · 0 0
0 𝐴∗ 0 · · · 0 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 0 0 · · · 0 𝐴

𝐴 0 0 · · · 𝐴∗ 0

ª®®®®®®®®¬
.

𝑉 models a union of 𝐷 independent complicated systems lying on a circle. On the block level, we consider it
an integrable model:

Every eigenvector is “localized" in only one block.

Letting 𝑁 →∞ and 𝐷 →∞, for any 𝐸 in the bulk, the local eigenvalue statistics {𝐷𝑁 (_𝑖 − 𝐸) }
converge to a Poisson process.

The perturbation Λ introduces interactions and brings into chaos.

Key questions

Q: Can we get a chaotic system when 𝐴 increases? When the quantum chaos transition occurs?
A: It occurs at ‖Λ‖𝐻𝑆 = 1.
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A block random matrix model

Connection with quantum billiard

Consider the Sinai billiard on the rectangle [0, 𝜋/𝑎] × [0, 𝜋/𝑏].

The eigenstates of −Δ on the rectangle is

|𝑛, 𝑚〉 (𝑥, 𝑦) = sin(𝑛𝑎𝑥) sin(𝑚𝑏𝑦) ,
with eigenvalue 𝑛2𝑎2 +𝑚2𝑏2. In the basis { |𝑛, 𝑚〉 }, the eigenstates are
localized. For high energy 𝐸 →∞, the eigenvalues approximately follow a
Poisson distribution if 𝑎 and 𝑏 are sufficiently incommensurable.

When there is a potential _𝜙:

𝜙𝑛𝑛′ (𝑚, 𝑚′) = 〈𝑛, 𝑚 |𝜙 |𝑛′, 𝑚′〉 =
x

𝜙 (𝑥, 𝑦) sin(𝑛𝑎𝑥) sin(𝑛′𝑎𝑥) sin(𝑚𝑏𝑦) sin(𝑚′𝑏𝑦)d𝑥d𝑦.

Consider 𝑚 and 𝑛 with 𝑛2𝑎2 +𝑚2𝑏2 ∼ 𝐸 . We form a block matrix where each block is labeled by a fixed
momentum in the 𝑥 direction.

𝜙𝑛𝑛′ decreases as |𝑛 − 𝑛′ | increases, so we approximate it with nearest-neighbor interactions.

𝜙𝑛𝑛 are matrices with complicated phases. We model them with random matrices.
When does quantum chaos happen as _ increases?
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Quantum chaos transition

Main results: Integrable regime

Theorem (Stone-Y’-Yin 2023+)

Suppose 𝐷 is fixed while 𝑁 →∞. 𝐴 is an arbitrary deterministic matrix satisfying ‖𝐴‖𝐻𝑆 ≤ 𝑁 −Y . Then:
(Localized eigenvector) Let 𝐸𝑎 be the identity matrix restricted to the 𝑎-th block:

(𝐸𝑎)𝑥𝑦 = 1(𝑥 = 𝑦 ∈ [𝑎𝑁 + 1, (𝑎 + 1)𝑁 ]) .
The bulk eigenvectors v𝑘 satisfy

P

(
𝐷max
𝑎=1
‖𝐸𝑎v𝑘 ‖22 ≥ 1 − 𝑁 −𝑐

)
≥ 1 − 𝑁 −𝑐 .

(Perturbation of eigenvalues) The bulk eigenvalues _𝑘 of 𝐻 are small perturbations of those of 𝑉 :

P
(
|_𝑘 (𝐻 ) − _𝑘 (𝑉 ) | ≤ 𝑁 −1−𝑐

)
≥ 1 − 𝑁 −𝑐 .

This theorem shows the non-chaotic behavior of 𝐻 when ‖𝐴‖𝐻𝑆 is small.

If we let 𝑁 →∞ followed by 𝐷 →∞, the bulk eigenvalue statistics {𝐷𝑁 (_𝑖 − 𝐸) } converge to a
Poisson process for any 𝐸 ∈ (−2 + 𝜖 , 2 − 𝜖 ) .

Fan Yang (Tsinghua) RMT towards Quantum chaos transition 2024-5-7 10 / 20
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Quantum chaos transition

Main results: Chaotic regime

Theorem (Stone-Y’-Yin 2023+)

Suppose 𝐷 is fixed while 𝑁 →∞. Assume that ‖𝐴‖𝐻𝑆 ≥ 𝑁 Y and ‖𝐴‖ ≤ 𝑁 −Y . Then:
(QUE) The bulk eigenvectors v𝑘 satisfy

P

(
𝐷max
𝑎=1
|v∗𝑘𝐸𝑎v𝑘 − 𝐷−1 | ≤ 𝑁 −𝑐

)
≥ 1 − 𝑁 −𝑐 .

(Bulk universality) The bulk eigenvalues statistics {𝐷𝑁 (_𝑖 − 𝐸) } match those of 𝐷𝑁 × 𝐷𝑁

GOE/GUE for any 𝐸 ∈ (−2 + 𝜖 , 2 − 𝜖 ) .

About the condition ‖𝐴‖ ≤ 𝑁 −Y :
It simplifies the proof: the spectrum of 𝐻 is a small perturbation of that of 𝑉 (i.e., semicircle law).

It is necessary: the result does not hold if 𝐴 has only a few large eigenvalues.

It is not “essential": we conjecture that the same results still hold when ‖𝐴‖ & 1 as long as 𝐴 has
“large" rank. (Currently, rank(𝐴) ≥ 𝑁 4Y .)
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It simplifies the proof: the spectrum of 𝐻 is a small perturbation of that of 𝑉 (i.e., semicircle law).

It is necessary: the result does not hold if 𝐴 has only a few large eigenvalues.

It is not “essential": we conjecture that the same results still hold when ‖𝐴‖ & 1 as long as 𝐴 has
“large" rank. (Currently, rank(𝐴) ≥ 𝑁 4Y .)
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Quantum chaos transition

Simulations: eigenvectors

Choose 𝐷 = 10, 𝑁 = 200, 𝐷 independent 𝑁 × 𝑁 GOE, and 𝐴 = _𝐼 .
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Figure: The entries |v(𝑘) |2 for the (𝐷𝑁 /2)-th eigenvector v.
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Quantum chaos transition

Simulations: eigenvalues

Choose 𝐷 = 10, 𝑁 = 200, 𝐷 independent 𝑁 × 𝑁 GOE, and 𝐴 = _𝐼 .
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Figure: The bulk eigenvalue gap distributions for 𝐷𝑁𝜌𝑠𝑐 (_𝑘 ) (_𝑘+1 − _𝑘 ) ; 𝜌𝑠𝑐 is the semicircle density.

In (a) and (b), the red curves plot the PDF 𝑓 (𝑥) = 𝑒−𝑥 . In (c) and (d), the red curves plot the Wigner surmise.

Fan Yang (Tsinghua) RMT towards Quantum chaos transition 2024-5-7 13 / 20



Proof ideas

Green’s function

Our proof is based on an investigation of the Green’s function (or resolvent):

𝐺 (𝑧) = (𝐻 − 𝑧)−1 =
∑︁
𝑘

v𝑘v∗
𝑘

_𝑘 − 𝐸 − i[
, 𝑧 = 𝐸 + i[.

Im 〈𝐺 (𝑧) 〉 = 1
𝐷𝑁

∑︁
𝑘

[

(_𝑘 − 𝐸)2 + [2 , 〈𝐺 (𝑧) 〉 :=
1

𝐷𝑁
Tr𝐺 (𝑧) .

Im 〈𝐺 (𝑧) 〉 contains info of eigenvalues in a window of scale [ (the spectral resolution) around 𝐸 , and
Im 〈𝐺 (𝑧)𝐸𝑎 〉 contains info of v∗

𝑘
𝐸𝑎v𝑘 .
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Proof ideas

Local law

In RMT literature, the following local law has been proved for 𝐺 (𝑧) :

Theorem (Ajanki-Erdős-Krüger 2019; Erdős-Krüger-Schröder 2019; He-Knowles-Rosenthal 2018)

For all 𝐸 ∈ (−2 + Y, 2 − Y) , [ � 𝑁 −1+Y and any deterministic unit vectors u, v, with high probability,��u∗ [𝐺 (𝑧) −𝑀 (𝑧) ] v
�� ≤ 𝑁 𝑐 (𝑁 [)−1/2

for any small constant 𝑐 > 0.

Define 𝑚(𝑧) as the unique solution to the equation

𝑚(𝑧) = 1
𝐷𝑁

Tr
1

Λ − 𝑧 −𝑚(𝑧) , with Im𝑚(𝑧) > 0.

𝑚(𝑧) is actually the Stieltjes transform of the free convolution of the empirical measure of Λ and the
semicircle law.

Then, we define 𝑀 (𝑧) = [Λ − 𝑧 −𝑚(𝑧) ]−1 . It is a deterministic matrix with ‖𝑀 (𝑧) ‖ ∼ 1.
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Proof ideas

Integrable regime: eigenvalue

In the integrable regime, the estimate on eigenvalues follows from a simple perturbation approach. Define the
interpolating matrices

𝐻 (\) = 𝑉 + \Λ, \ ∈ [0, 1], with 𝐻 (0) = 𝑉 , 𝐻 (1) = 𝐻.

Then, by the perturbation theory of eigenvalues,

_𝑘 (1) − _𝑘 (0) =
∫ 1

0

d
d\

_𝑘 (\)d\ =

∫ 1

0
v𝑘 (\)∗Λv𝑘 (\)d\,

from which we derive that

E |_𝑘 (𝐻 ) − _𝑘 (𝑉 ) | ≤
∫ 1

0
E
��v𝑘 (\)∗Λv𝑘 (\)

�� d\ ≤ ∫ 1

0

(
E
��v𝑘 (\)∗Λv𝑘 (\)

��2)1/2
d\.

With the spectral decomposition of Im𝐺 (\) ,

Tr [ (Im𝐺)Λ(Im𝐺)Λ] =
∑︁
𝑘,𝑙

[2 ��v∗
𝑘
Λv𝑙

��2
|𝑧 − _𝑘 |2 |𝑧 − _𝑙 |2

, 𝑧 = 𝐸 + i[,

if we let 𝐸 = _𝑘 and [ = 𝑁 −1+𝑐 , then

E |v∗𝑘Λv𝑘 |2 ≤ [2ETr [ (Im𝐺)Λ(Im𝐺)Λ] .

Need to show ETr [ (Im𝐺)Λ(Im𝐺)Λ] ≤ 𝑁 𝑐 ‖𝐴‖2
𝐻𝑆
≤ 𝑁 −2Y+𝑐 ← a crucial technical part!
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Proof ideas

Integrable regime: eigenvectors

For simplicity, we suppose 𝐷 = 2. Then,

𝐻

(
u𝑘

w𝑘

)
=

(
𝐻1 𝐴

𝐴∗ 𝐻2

) (
u𝑘

w𝑘

)
= _𝑘

(
u𝑘

w𝑘

)
⇒ w𝑘 = −𝐺2 (_𝑘 )𝐴∗u𝑘 , u𝑘 = −𝐺1 (_𝑘 )𝐴w𝑘

where 𝐺1 (𝑧) := (𝐻1 − 𝑧)−1, 𝐺2 (𝑧) := (𝐻2 − 𝑧)−1.

We know dist(_𝑘 , spec(𝐻1)) ≤ 𝑁 −1−𝑐 or dist(_𝑘 , spec(𝐻2)) ≤ 𝑁 −1−𝑐 with probability 1 − 𝑜 (1) . But, by
bulk universality of Wigner matrices (Bourgade-Erdős-Yau-Yin 2016),

dist(spec(𝐻1) , spec(𝐻2)) ≥ 𝑁 −1−𝑐/2 with probability 1 − 𝑜 (1) .

We claim that if dist(_𝑘 , spec(𝐻1)) ≥ 𝑁 −1−𝑐/2, then ‖u𝑘 ‖ = ‖𝐺1 (_𝑘 )𝐴w𝑘 ‖ is small.

With the spectral decompositions of Im𝐺 and Im𝐺1, if we let 𝑧 = _𝑘 + i[ with [ = 𝑁 −1+𝑐 , then

‖𝐺1 (_𝑘 )𝐴w𝑘 ‖2 ≤
(

[

dist(_𝑘 , spec(𝐻1))

)2
ETr

[(
0 0
0 𝐴∗Im𝐺1 (𝑧)𝐴

)
Im𝐺 (𝑧)

]
≤ 𝑁 3𝑐ETr [ (Im𝐺\=0 (𝑧))Λ(Im𝐺 (𝑧))Λ]

Need to show ETr [ (Im𝐺\=0 (𝑧))Λ(Im𝐺 (𝑧))Λ] ≤ 𝑁 𝑐 ‖𝐴‖2
𝐻𝑆
← a similar bound as before!
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Proof ideas

Chaotic regime: QUE

By the spectral decompositions of Im𝐺, we have

Tr [Im𝐺 (𝑧) (𝐸𝑎 − 𝐷−1𝐼 )Im𝐺 (𝑧) (𝐸𝑎 − 𝐷−1𝐼 ) ] = [2
∑︁
𝑖, 𝑗

|v∗
𝑖
(𝐸𝑎 − 𝐷−1)v 𝑗 |2

|_𝑖 − 𝑧 |2 |_ 𝑗 − 𝑧 |2
.

Choosing 𝑧 = _𝑘 + i[ with [ = 𝑁 −1+𝑐 , we get

E |v∗𝑘 (𝐸𝑎 − 𝐷−1)v𝑘 |2 ≤ [2ETr [Im𝐺 (𝑧) (𝐸𝑎 − 𝐷−1𝐼 )Im𝐺 (𝑧) (𝐸𝑎 − 𝐷−1𝐼 ) ].

Using Im𝐺 =
𝐺 (𝑧)−𝐺 ( �̄�)

2i and 𝐼 =
∑

𝑏 𝐸𝑏 , the RHS can be written as a linear combination of

L𝑎𝑎 (𝑧1, 𝑧2) −
2
𝐷

𝐷∑︁
𝑏=1
L𝑎𝑏 (𝑧1, 𝑧2) +

1
𝐷2

𝐷∑︁
𝑏,𝑏′=1

L𝑏𝑏′ (𝑧1, 𝑧2) ,

where 𝑧1, 𝑧2 ∈ {𝑧, �̄� } and L𝑎𝑏 (𝑧1, 𝑧2) = ETr [𝐺 (𝑧1)𝐸𝑎𝐺 (𝑧2)𝐸𝑏 ].

Theorem (Multi-resolvent local law, Stone-Y’-Yin 2023+)

There exists a constant 𝑐𝐴 depending on Y such that with high probability,
𝐷max

𝑎,𝑏,𝑎′,𝑏′=1
|L𝑎𝑏 − L𝑎′𝑏′ | ≤ 𝑁 −𝑐𝐴[−2.

In other words, the matrix L is flat. This is the most technical part of the paper.
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Proof ideas

Chaotic regime: QUE⇒ bulk universality

Need to show the invariance of the joint moments of Im 〈𝐺 (𝐸 + 𝑥𝑖
𝑁
+ i[) 〉, 𝑖 = 1, . . . , 𝑘, for some

[ � 𝑁 −1.

The three-step strategy (Bourgade, Erdős, Schlein, Yau, Yin, etc. 2009-2015)
1 A local law on the Green’s function down to [ ≥ [∗ = 𝑁 −1+𝑐 .
2 Short-time relaxation of Dyson Brownian Motion (DBM):

d𝐻𝑡 = −
1
2
𝐻𝑡d𝑡 +

1
√
𝑁

d𝐵𝑡 , 𝐵𝑡 := symmetric independent BM

𝐻𝑡
d
= 𝑒−𝑡/2𝐻 +

√
1 − 𝑒−𝑡GUE

Dyson Brownian Motion: d_𝑘 =
1
√
𝑁

d𝐵𝑘 +
1
𝑁

∑︁
𝑙≠𝑘

1
_𝑘 − _𝑙

d𝑡 − _𝑘d𝑡

Theorem (Optimal relaxation of DBM to equilibrium, Landon-Yau 2017; Landon-Sosoe-Yau 2019)

The local spectral statistics of 𝐻𝑡 in the bulk match those of GOE/GUE if 𝑡 � [∗.

3 Green’s function comparison: the law of Im 〈𝐺𝑡 〉 is unchanged from 𝑡 = 0 to 𝑡 = [∗:

E
d
d𝑡

Im 〈𝐺𝑡 〉 ≤ 𝑁 −𝑐[−1
∗ .

This part uses Itô’s formula and depends on the QUE of eigenvectors!
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Concluding remarks

Some remarks

1 We only assume some high moment conditions for the distribution of the random entries. For the
investigation of quantum chaos, it is desirable to extend Wigner matrices to “quasi-random matrices"
(seems to be challenging!).

2 Our proof uses the block translation invariance of Λ. It can extend to non-nearest-neighbor interactions
as long as the translation symmetry is maintained.

3 For the translation symmetry, we only need the interactions in different block to have (almost) the same
distribution. Specifically, 𝐴 can be replaced by i.i.d. random matrices. When the off-diagonal blocks are
lower triangular random matrices, we obtain the random band matrices.

4 We have considered the small 𝐷 case. But, it is important to extend the theory to large 𝐷 cases. In
particular, the most relevant case is when 𝐷 ∼ 𝑁 (corresponding to 𝑛2𝑎2 +𝑚2𝑏2 ∼ 𝐸), which also
corresponds to critical random band matrices with 𝑊 ∼ 𝑁 1/2.

5 Similar to the Anderson model, one can further consider the higher dimensional cases, i.e., the
subsystems lie on Z𝑑 lattices instead of a cycle.

Thank you!
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