Edge universality of sparse Erdős-Rényi directed graphs

Yukun He
City University of Hong Kong

Random Matrices and Related Topics, Jeju, May 2024

Undirected Erdős-Rényi graphs

$\widehat{\mathcal{G}}(N, p)$: N vertexes, every edge is connected with probability p completely independent of other edges.

Denote by $\widehat{\mathcal{A}}_{i j}=\mathbf{1}_{i \sim j}$ the adjacency matrices of the Erdős-Rényi graphs.
We consider the normalized matrix and its centering by

$$
\widehat{A}:=\frac{1}{\sqrt{N p(1-p)}} \widehat{\mathcal{A}}, \quad \widehat{H}:=\widehat{A}-\sqrt{\frac{N p}{1-p}}|\mathbf{e}\rangle\langle\mathbf{e}|
$$

so that $\operatorname{Var}\left(\widehat{A}_{i j}\right)=\mathbb{E} \widehat{H}_{i j}^{2}=N^{-1}$.
The largest eigenvalue of \widehat{A} satisfies $\widehat{\lambda}_{1} \approx \sqrt{\frac{N p}{1-p}} \gg 1$. The key question is to understand the second largest eigenvalue $\widehat{\lambda}_{2}$.

Edge statistics

- [Erdős-Knowles-Yau-Yin, 2011], [Lee-Schnelli, 2016] When $p \gg N^{-2 / 3}$, the extreme eigenvalues of A satisfy Tracy-Widom distribution

$$
N^{2 / 3}\left(\widehat{\lambda}_{2}-\mathbb{E} \widehat{\lambda}_{2}\right) \xrightarrow{d} \mathrm{TW}_{1} .
$$

- [Huang-Landon-Yau, 2017], [H.-Knowles 2020] When $N^{-1+\varepsilon} \leqslant p \ll N^{-2 / 3}$, one has

$$
\frac{\widehat{\lambda}_{2}-\mathbb{E} \widehat{\lambda}_{2}}{\sqrt{2 \mathbb{E} \widehat{H}_{12}^{4}}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

The sparse contribution is on the scale

$$
\sqrt{\mathbb{E} \hat{H}_{12}^{4}} \asymp \frac{1}{N \sqrt{p}} \gg N^{-2 / 3}
$$

for $p \ll N^{-2 / 3}$, and it origins from

$$
\frac{1}{N}\left(\operatorname{Tr} \widehat{H}^{2}-N\right) \propto \operatorname{Tr} \widehat{\mathcal{A}}^{2}=\sum_{i, j} \widehat{\mathcal{A}}_{i j} \widehat{\mathcal{A}}_{j i}=\sum_{i, j} \widehat{\mathcal{A}}_{i j}=\sum_{i} d_{i} .
$$

Edge universality

[Jaehun Lee, 2021] [Huang-Yau, 2022] For $N^{-1+\varepsilon} \leqslant p \leqslant 1 / 2$, we have

$$
N^{2 / 3}\left(\widehat{\lambda}_{2}-\mathbb{E} \widehat{\lambda}_{2}-\mathcal{X}\right) \xrightarrow{d} \mathrm{TW}_{1} .
$$

Here

$$
\mathbb{E} \widehat{\lambda}_{2}=2+(N p)^{-1}-\frac{5}{4}(N p)^{-2}+\ldots .
$$

The first two orders of random term \mathcal{X} are

$$
\frac{1}{N}\left(\sum_{i j} \widehat{H}_{i j}^{2}-N\right)
$$

and

$$
\frac{1}{N}\left(\sum_{i j} \widehat{H}_{i j}^{4}-\frac{1}{N p^{2}}\right)+\frac{2}{N} \sum_{i j k} \widehat{H}_{i j}^{2}\left(\widehat{H}_{i k}^{2}-\frac{1}{N}\right) .
$$

The third order terms of \mathcal{X} contain e.g. the fluctuation of

$$
\sum_{i j k l} \widehat{H}_{i j} \widehat{H}_{j k} \widehat{H}_{k l} .
$$

Edge universality

[Jaehun Lee, 2021] [Huang-Yau, 2022] For $N^{-1+\varepsilon} \leqslant p \leqslant 1 / 2$, we have

$$
N^{2 / 3}\left(\widehat{\lambda}_{2}-\mathbb{E} \widehat{\lambda}_{2}-\mathcal{X}\right) \xrightarrow{d} \mathrm{TW}_{1} .
$$

Here

$$
\mathbb{E} \widehat{\lambda}_{2}=2+(N p)^{-1}-\frac{5}{4}(N p)^{-2}+\ldots
$$

The first two orders of random term \mathcal{X} are

$$
\frac{1}{N}\left(\sum_{i j} \widehat{H}_{i j}^{2}-N\right) \propto \sum_{i} d_{i}
$$

and

$$
\frac{1}{N}\left(\sum_{i j} \widehat{H}_{i j}^{4}-\frac{1}{N p^{2}}\right)+\frac{2}{N} \sum_{i j k} \widehat{H}_{i j}^{2}\left(\widehat{H}_{i k}^{2}-\frac{1}{N}\right) \propto \sum_{i} d_{i}+\sum_{i} d_{i}^{2} .
$$

The third order terms of \mathcal{X} contain e.g. the fluctuation of

$$
\sum_{i j k l} \widehat{H}_{i j} \widehat{H}_{j k} \widehat{H}_{k l} \propto \sum_{j k} d_{j} \widehat{\mathcal{A}}_{j k} d_{k}
$$

Random regular graphs

d-regular graph: (undirected, simple) graphs on $\{1, \ldots, N\}$, each vertex has d neighbours.

Random d-regular graph: uniform probability measure on the set of d-regular graphs. Adjacency matrix $\mathcal{A}_{i j}:=\mathbf{1}_{i \sim j}$.

The second largest eigenvalue of $\widetilde{\mathcal{A}}$ satisfies

$$
N^{2 / 3}\left(\frac{\widetilde{\lambda}_{2}+d / N}{\sqrt{(d-1)(N-d) / N}}-2\right) \xrightarrow{d} \mathrm{TW}_{1}
$$

- For $N^{2 / 9} \ll d \ll N^{1 / 3}$ in [Bauerschmidt-Huang-Knowles-Yau, 2019]
- For $N^{\varepsilon} \leqslant d \ll N^{1 / 3}$ in [Huang-Yau, 2023]
- For $d \gg N^{2 / 3}$ in [H., 2022].

Erdős-Rényi digraphs

$\mathcal{G}(N, p)$: N vertexes, every directed edge (i, j) is connected with probability p completely independent of other edges.

The adjacency matrix \mathcal{A} has i.i.d. entries with

$$
\mathcal{A}_{i j}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

We normalize

$$
A=\frac{\mathcal{A}}{\sqrt{N p(1-p)}} .
$$

Eigenvalues of A satisfies (global) circular law:

$$
\frac{1}{N} \sum_{i} \delta_{\lambda_{i}} \longrightarrow \frac{1}{\pi} \mathbf{1}_{\{z \in \mathbb{C}:|z| \leqslant 1\}}
$$

as $N \rightarrow \infty$.

Local eigenvalue statistics

For dense non-Hermitian matrices, we have

- [Tao-Vu, 2012]: Under four-moment matching condition, we have universality of the local statistics in the bulk and near the edge.

Under two-moment matching

- [Bourgade-Yau-Yin, 2012]: Circular law on all mesoscopic scale.
- [Alt-Erdős-Krüger, 2016]: Spectral radius location.
- [Cipolloni-Erdős-Schröder, 2019]: Universality near the edge.
- [Cipolloni-Erdős-Xu, 2023]: Spectral radius distribution.
- [Maltsev-Osman, 2023; Dubova-Yang 2024]: Bulk universality.

There is no previous results on the local statistics of sparse non-Hermitian matrices.

Main results

For a square matrix $S \in \mathbb{C}^{N \times N}$ with eigenvalues $\lambda_{1}^{S}, \ldots, \lambda_{N}^{S}$, we define its k-point correlation function p_{k}^{S} through

$$
\int_{\mathbb{C}^{k}} F\left(z_{1}, \ldots, z_{k}\right) p_{k}^{S}\left(z_{1}, \ldots, z_{k}\right) \mathrm{d} z_{1} \ldots \mathrm{~d} z_{k}=\binom{N}{k}^{-1} \mathbb{E} \sum_{i_{1}, \ldots, i_{k}=1}^{N} F\left(\lambda_{i_{1}}^{S}, \ldots, \lambda_{i_{k}}^{S}\right) .
$$

[H. 2023] (Edge Universality)
Fix $k \in \mathbb{N}_{+}$and let $w_{1}, \ldots, w_{k} \in \mathbb{T}=\{w \in \mathbb{C},|w|=1\}$. For $N^{-1+\varepsilon} \leqslant p \leqslant 1 / 2$

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \int_{\mathbb{C}^{k}} F\left(z_{1}, \ldots, z_{k}\right)[& p_{k}^{A}\left(w_{1}+\frac{z_{1}}{N^{1 / 2}}, \ldots, w_{k}+\frac{z_{k}}{N^{1 / 2}}\right) \\
& \left.-p_{k}^{W}\left(w_{1}+\frac{z_{1}}{N^{1 / 2}}, \ldots, w_{k}+\frac{z_{k}}{N^{1 / 2}}\right)\right] \mathrm{d} z_{1} \ldots \mathrm{~d} z_{k}=0
\end{aligned}
$$

Here $W \in \mathbb{R}^{N \times N}$ is the real Ginibre ensemble, i.e. it has i.i.d. Gaussian entries with mean 0 and variance $1 / N$.

Main results (Cont)

[H. 2023] Assume $N^{-1+\varepsilon} \leqslant p \leqslant 1 / 2$ and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ be the eigenvalues of A with $\left|\lambda_{1}\right|=\max _{i}\left|\lambda_{i}\right| \approx \sqrt{\frac{N p}{1-p}} \gg 1$.

1. (Spectral radius) We have

$$
\begin{equation*}
\max _{2 \leqslant i \leqslant N}\left|\lambda_{i}\right|=1+O\left(N^{-1 / 2+\varepsilon}\right) \tag{1}
\end{equation*}
$$

with very high probability.
2. (Delocalization) Suppose $\mathbf{u} \in \mathbb{C}^{N}$ satisfies $A \mathbf{u}=\lambda \mathbf{u}$ for some $\lambda \in \mathbb{C}$ with $|\lambda| \leqslant 2$. Then

$$
\|\mathbf{u}\|_{\infty}=O\left(N^{-1 / 2+\varepsilon}\|\mathbf{u}\|\right)
$$

with very high probability.

Observation. No phase transition! The edge statistics of non-Hermitian random matrices are more robust than those of Hermitian random matrices.

Simple explanation: the sparse contribution is on the scale

$$
\sqrt{\mathbb{E} \widehat{H}_{12}^{4}} \asymp \sqrt{\mathbb{E}\left(A_{12}-\mathbb{E} A_{12}\right)^{4}} \asymp \frac{1}{N \sqrt{p}}
$$

for both cases, while Tracy-Widom is on scale $N^{-2 / 3}$, and the extreme eigenvalues of A fluctuates on scale $N^{-1 / 2}$.

Detailed explanation: proof outline.

Proof outline

Girko's Hermitization

$$
\frac{1}{N} \sum_{i} f\left(\sqrt{N}\left(\lambda_{i}-w_{*}\right)\right)=\frac{\mathrm{i}}{4 \pi N} \int_{\mathbb{C}} \int_{0}^{\infty} \nabla_{w}^{2} f\left(\sqrt{N}\left(w-w_{*}\right)\right) \operatorname{Tr}\left(H_{w}-\mathrm{i} \eta\right)^{-1} \mathrm{~d} \eta \mathrm{~d}^{2} w
$$

with $\left|w_{*}\right|=1$, and

$$
H_{w}:=\left(\begin{array}{cc}
0 & A-w \\
A^{*}-\bar{w} & 0
\end{array}\right) \in \mathbb{C}^{2 N \times 2 N} .
$$

The key is to study $g(w, i \eta):=\frac{1}{2 N} \operatorname{Tr}\left(H_{w}-\mathrm{i} \eta\right)^{-1}$. It is close to a deterministic $m \equiv m(w$, i $\eta)$, which solves

$$
P(m):=m^{3}+2 \mathrm{i} \eta m^{2}+\left(1-\eta^{2}-|w|^{2}\right) m+\mathrm{i} \eta=0
$$

Estimate g through

$$
g-m=O\left(\frac{P(g)}{P^{\prime}(m)}\right),
$$

and near the edge it is greatly affected by the cusp singularity

$$
P^{\prime}(m)=3 m^{2}+4 \mathrm{i} \eta m+\left(1-\eta^{2}-|w|^{2}\right) \asymp|1-|w||+\eta^{2 / 3} .
$$

It origins from the smallness of m

$$
m=\mathrm{i} \operatorname{Im} m=O\left(|1-|w||^{1 / 2}+\eta^{1 / 3}\right) .
$$

This requires very precise estimates of $P(g)$.

Observation: cusp singularity is an advantage on estimating higher order terms in the sparse regime. For instance

$$
\mathbb{E} P(g)=O\left(\frac{\mathbb{E} g^{3}}{N p}+\frac{\mathbb{E} g^{5}}{N^{2} p^{2}}+\ldots\right)
$$

Due to the smallness of m

$$
\frac{\mathbb{E} g^{3}}{N p} \approx \frac{m^{3}}{N p}=O\left(\frac{|1-|w||^{3 / 2}+\eta}{N p}\right)=O\left(P^{\prime}(m) \frac{|1-|w||^{1 / 2}+\eta^{1 / 3}}{N p}\right)
$$

Sparsity does not affect the estimate!

Observation: cusp singularity is an advantage on estimating higher order terms in the sparse regime. For instance

$$
\mathbb{E} P(g)=O\left(\frac{\mathbb{E} g^{3}}{N p}+\frac{\mathbb{E} g^{5}}{N^{2} p^{2}}+\ldots\right)
$$

Due to the smallness of m

$$
\frac{\mathbb{E} g^{3}}{N p} \approx \frac{m^{3}}{N p}=O\left(\frac{|1-|w||^{3 / 2}+\eta}{N p}\right)=O\left(P^{\prime}(m) \frac{|1-|w||^{1 / 2}+\eta^{1 / 3}}{N p}\right) .
$$

Sparsity does not affect the estimate!
In the Hermitian case, $\widehat{g}=N^{-1} \operatorname{Tr}(\widehat{A}-z)^{-1}$ is close to the solution of $1+z \widehat{m}+\widehat{m}^{2}=0$, while

$$
\mathbb{E}\left(1+z \widehat{g}+\widehat{g}^{2}\right)=O\left(\frac{\mathbb{E} \widehat{g}^{4}}{N p}+\frac{\mathbb{E} \widehat{g}^{6}}{N^{2} p^{2}}+\ldots\right)
$$

and

$$
\frac{\mathbb{E} \widehat{g}^{4}}{N p} \approx \frac{\widehat{m}^{4}}{N p}=O\left(\frac{1}{N p}\right), \quad \text { as }|\widehat{m}| \approx 1!
$$

We can prove that

$$
\begin{equation*}
|g-m| \lesssim \frac{1}{N \eta}+\frac{\eta^{1 / 3}}{N p} \tag{*}
\end{equation*}
$$

with very high probability. For $\eta \leqslant N^{-3 / 4}$, we get $|g-m| \lesssim \frac{1}{N \eta}$.
In Hermitization

$$
\frac{1}{N} \sum_{i} f\left(\sqrt{N}\left(\lambda_{i}-w_{*}\right)\right)=\frac{\mathrm{i}}{2 \pi} \int_{\mathbb{C}} \int_{0}^{\infty} \nabla_{w}^{2} f\left(\sqrt{N}\left(w-w_{*}\right)\right) g(w, \mathrm{i} \eta) \mathrm{d} \eta \mathrm{~d}^{2} w
$$

we still need to treat

$$
\frac{\mathrm{i}}{2 \pi} \int_{\mathbb{C}} \int_{N^{-3 / 4}}^{\infty} \nabla_{w}^{2} f\left(\sqrt{N}\left(w-w_{*}\right)\right) g(w, \mathrm{i} \eta) \mathrm{d} \eta \mathrm{~d}^{2} w
$$

while $\left(^{*}\right)$ is unimprovable.

Idea: Integration by-parts for the shift.

$$
\begin{aligned}
& \int_{\mathbb{C}} \int_{N^{-3 / 4}}^{\infty} \nabla_{w}^{2} f\left(\sqrt{N}\left(w-w_{*}\right)\right) g(w, \mathrm{i} \eta) \mathrm{d} \eta \mathrm{~d}^{2} w \\
&=-4 \int_{\mathbb{C}} \int_{N^{-3 / 4}}^{\infty} \partial_{\bar{w}} f\left(\sqrt{N}\left(w-w_{*}\right)\right) \partial_{w} g(w, \mathrm{i} \eta){\mathrm{d} \eta \mathrm{~d}^{2} w}^{=} \\
&=-\frac{2 \mathrm{i}}{N} \int_{\mathbb{C}} \int_{N^{-3 / 4}}^{\infty} \partial_{\bar{w}} f\left(\sqrt{N}\left(w-w_{*}\right)\right) \sum_{i=1}^{N}\left(G^{2}\right)_{i+N, i} \mathrm{~d} \eta \mathrm{~d}^{2} w \quad G:=\left(H_{w}-\mathrm{i} \eta\right)^{-1} \\
&= \frac{2 \mathrm{i}}{N} \int_{\mathbb{C}} \partial_{\bar{w}} f_{w_{*}} \sum_{i=1}^{N} G_{i+N, i}\left(\mathrm{i} N^{-3 / 4}\right) \mathrm{d}^{2} w .
\end{aligned}
$$

Idea: Integration by-parts for the shift.

$$
\begin{aligned}
& \int_{\mathbb{C}} \int_{N^{-3 / 4}}^{\infty} \nabla_{w}^{2} f\left(\sqrt{N}\left(w-w_{*}\right)\right) g(w, \mathrm{i} \eta) \mathrm{d} \eta \mathrm{~d}^{2} w \\
= & -4 \int_{\mathbb{C}} \int_{N^{-3 / 4}}^{\infty} \partial_{\bar{w}} f\left(\sqrt{N}\left(w-w_{*}\right)\right) \partial_{w} g(w, \mathrm{i} \eta) \mathrm{d} \eta \mathrm{~d}^{2} w \\
= & -\frac{2 \mathrm{i}}{N} \int_{\mathbb{C}} \int_{N^{-3 / 4}}^{\infty} \partial_{\bar{w}} f\left(\sqrt{N}\left(w-w_{*}\right)\right) \sum_{i=1}^{N}\left(G^{2}\right)_{i+N, i}{\mathrm{~d} \eta \mathrm{~d}^{2} w \quad G:=\left(H_{w}-\mathrm{i} \eta\right)^{-1}}_{=} \frac{2 \mathrm{i}}{N} \int_{\mathbb{C}} \partial_{\bar{w}} f_{w_{*}} \sum_{i=1}^{N} G_{i+N, i}\left(\mathrm{i} N^{-3 / 4}\right) \mathrm{d}^{2} w .
\end{aligned}
$$

From $\nabla_{w}^{2} f\left(\sqrt{N}\left(w-w_{*}\right)\right) g(w$, i $\eta)$ to $\partial_{\bar{w}} f\left(\sqrt{N}\left(w-w_{*}\right)\right) \frac{1}{N} \sum_{i=1}^{N}\left(G^{2}\right)_{i+N, i}$, the (naive) scale change is

$$
\frac{1}{\sqrt{N}} \times \frac{1}{\eta}=N^{1 / 4} \quad \text { for } \eta=N^{-3 / 4}
$$

However, we can show that

$$
\frac{1}{N} \sum_{i} G_{i+N, i}+\frac{1+m^{2}}{w} \lesssim \frac{1}{N^{2} \eta^{2}}\left(\text { instead of } g-m \lesssim \frac{1}{N \eta}\right) .
$$

Hence the actual scale change is

$$
\frac{1}{\sqrt{N}} \times \frac{1}{\eta} \times \frac{1}{N \eta}=1 \quad \text { for } \eta=N^{-3 / 4}
$$

Thank you!

