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Undirected Erdős-Rényi graphs

Ĝ(N, p): N vertexes, every edge is connected with probability p completely
independent of other edges.

Denote by Âij = 1i∼j the adjacency matrices of the Erdős-Rényi graphs.

We consider the normalized matrix and its centering by

Â ..=
1√

Np(1− p)
Â , Ĥ ..= Â−

√
Np

1− p
|e〉〈e|

so that Var(Âij) = EĤ2
ij = N−1.

The largest eigenvalue of Â satisfies λ̂1 ≈
√

Np
1−p � 1. The key question is to

understand the second largest eigenvalue λ̂2.



Edge statistics

• [Erdős-Knowles-Yau-Yin, 2011], [Lee-Schnelli, 2016]
When p� N−2/3, the extreme eigenvalues of A satisfy Tracy-Widom
distribution

N2/3
(
λ̂2 − Eλ̂2

) d−→ TW1 .

• [Huang-Landon-Yau, 2017], [H.-Knowles 2020]
When N−1+ε 6 p� N−2/3, one has

λ̂2 − Eλ̂2√
2EĤ4

12

d−→ N (0, 1) .

The sparse contribution is on the scale√
EĤ4

12 �
1

N
√
p
� N−2/3

for p� N−2/3, and it origins from

1

N

(
Tr Ĥ2 −N

)
∝ Tr Â2 =

∑
i,j

ÂijÂji =
∑
i,j

Âij =
∑
i

di .



Edge universality

[Jaehun Lee, 2021] [Huang-Yau, 2022] For N−1+ε 6 p 6 1/2, we have

N2/3
(
λ̂2 − Eλ̂2 −X

) d−→ TW1 .

Here

Eλ̂2 = 2 + (Np)−1 − 5

4
(Np)−2 + . . . .

The first two orders of random term X are

1

N

(∑
ij

Ĥ2
ij −N

)
and

1

N

(∑
ij

Ĥ4
ij −

1

Np2

)
+

2

N

∑
ijk

Ĥ2
ij

(
Ĥ2
ik −

1

N

)
.

The third order terms of X contain e.g. the fluctuation of∑
ijkl

ĤijĤjkĤkl .
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+
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1
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∑
i
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ijkl

ĤijĤjkĤkl ∝
∑
jk

djÂjkdk .



Random regular graphs

d-regular graph: (undirected, simple) graphs on {1, . . . , N}, each vertex has d
neighbours.

Random d-regular graph: uniform probability measure on the set of d-regular
graphs. Adjacency matrix Ãij ..= 1i∼j .

The second largest eigenvalue of Ã satisfies

N2/3

(
λ̃2 + d/N√

(d− 1)(N − d)/N
− 2

)
d−→ TW1

• For N2/9 � d� N1/3 in [Bauerschmidt-Huang-Knowles-Yau, 2019]

• For Nε 6 d� N1/3 in [Huang-Yau, 2023]

• For d� N2/3 in [H., 2022].



Erdős-Rényi digraphs

G(N, p): N vertexes, every directed edge (i, j) is connected with probability p
completely independent of other edges.

The adjacency matrix A has i.i.d. entries with

Aij =

{
1 with probability p

0 with probability 1− p .

We normalize

A =
A√

Np(1− p)
.

Eigenvalues of A satisfies (global) circular law:

1

N

∑
i

δλi
−→ 1

π
1{z∈C:|z|61}

as N →∞.



Local eigenvalue statistics

For dense non-Hermitian matrices, we have

• [Tao-Vu, 2012]: Under four-moment matching condition, we have
universality of the local statistics in the bulk and near the edge.

Under two-moment matching

• [Bourgade-Yau-Yin, 2012]: Circular law on all mesoscopic scale.

• [Alt-Erdős-Krüger, 2016]: Spectral radius location.

• [Cipolloni-Erdős-Schröder, 2019]: Universality near the edge.

• [Cipolloni-Erdős-Xu, 2023]: Spectral radius distribution.

• [Maltsev-Osman, 2023; Dubova-Yang 2024]: Bulk universality.

There is no previous results on the local statistics of sparse non-Hermitian
matrices.



Main results

For a square matrix S ∈ CN×N with eigenvalues λS1 , ..., λ
S
N , we define its

k-point correlation function pSk through

∫
Ck

F (z1, ..., zk)p
S
k (z1, ..., zk)dz1 . . . dzk =

(
N

k

)−1
E

N∑∗

i1,...,ik=1

F (λSi1 , ..., λ
S
ik
) .

[H. 2023] (Edge Universality)
Fix k ∈ N+ and let w1, ..., wk ∈ T = {w ∈ C, |w| = 1}. For N−1+ε 6 p 6 1/2

lim
N→∞

∫
Ck

F (z1, ..., zk)

[
pAk

(
w1 +

z1
N1/2

, ..., wk +
zk
N1/2

)
− pWk

(
w1 +

z1
N1/2

, ..., wk +
zk
N1/2

)]
dz1...dzk = 0

Here W ∈ RN×N is the real Ginibre ensemble, i.e. it has i.i.d. Gaussian entries
with mean 0 and variance 1/N .



Main results (Cont)

[H. 2023] Assume N−1+ε 6 p 6 1/2 and let λ1, λ2, ..., λN be the eigenvalues

of A with |λ1| = maxi |λi| ≈
√

Np
1−p � 1.

1. (Spectral radius) We have

max
26i6N

|λi| = 1 +O(N−1/2+ε) (1)

with very high probability.

2. (Delocalization) Suppose u ∈ CN satisfies Au = λu for some λ ∈ C with
|λ| 6 2. Then

‖u‖∞ = O(N−1/2+ε‖u‖)

with very high probability.



Observation. No phase transition! The edge statistics of non-Hermitian random
matrices are more robust than those of Hermitian random matrices.

Simple explanation: the sparse contribution is on the scale√
EĤ4

12 �
√
E(A12 − EA12)4 �

1

N
√
p

for both cases, while Tracy-Widom is on scale N−2/3, and the extreme
eigenvalues of A fluctuates on scale N−1/2.

Detailed explanation: proof outline.



Proof outline

Girko’s Hermitization

1

N

∑
i

f(
√
N(λi−w∗)) =

i

4πN

∫
C

∫ ∞
0

∇2
wf(
√
N(w−w∗)) Tr(Hw−iη)−1dη d2w

with |w∗| = 1, and

Hw
..=

(
0 A− w

A∗ − w 0

)
∈ C2N×2N .

The key is to study g(w, iη) ..= 1
2N Tr(Hw − iη)−1. It is close to a deterministic

m ≡ m(w, iη), which solves

P (m) ..= m3 + 2iηm2 + (1− η2 − |w|2)m+ iη = 0 .



Estimate g through

g −m = O

(
P (g)

P ′(m)

)
,

and near the edge it is greatly affected by the cusp singularity

P ′(m) = 3m2 + 4iηm+ (1− η2 − |w|2) � |1− |w||+ η2/3 .

It origins from the smallness of m

m = i Imm = O
(
|1− |w||1/2 + η1/3

)
.

This requires very precise estimates of P (g).



Observation: cusp singularity is an advantage on estimating higher order terms
in the sparse regime. For instance

EP (g) = O
(Eg3
Np

+
Eg5

N2p2
+ . . .

)
Due to the smallness of m

Eg3

Np
≈ m3

Np
= O

(
|1− |w||3/2 + η

Np

)
= O

(
P ′(m)

|1− |w||1/2 + η1/3

Np

)
.

Sparsity does not affect the estimate!

In the Hermitian case, ĝ = N−1 Tr(Â− z)−1 is close to the solution of
1 + zm̂+ m̂2 = 0, while

E(1 + zĝ + ĝ2) = O
(Eĝ4
Np

+
Eĝ6

N2p2
+ . . .

)
and

Eĝ4

Np
≈ m̂4

Np
= O

( 1

Np

)
, as |m̂| ≈ 1!
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Eĝ6
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+ . . .
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Np
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Np
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( 1

Np
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We can prove that

|g −m| . 1

Nη
+
η1/3

Np
(*)

with very high probability. For η 6 N−3/4, we get |g −m| . 1
Nη .

In Hermitization

1

N

∑
i

f(
√
N(λi − w∗)) =

i

2π

∫
C

∫ ∞
0

∇2
wf(
√
N(w − w∗)) g(w, iη) dη d2w ,

we still need to treat

i

2π

∫
C

∫ ∞
N−3/4

∇2
wf(
√
N(w − w∗)) g(w, iη)dη d2w ,

while (*) is unimprovable.



Idea: Integration by-parts for the shift.∫
C

∫ ∞
N−3/4

∇2
wf(
√
N(w − w∗)) g(w, iη) dηd2w

= − 4

∫
C

∫ ∞
N−3/4

∂w̄f(
√
N(w − w∗)) ∂wg(w, iη) dηd2w

= − 2i

N

∫
C

∫ ∞
N−3/4

∂w̄f(
√
N(w − w∗))

N∑
i=1

(G2)i+N,i dηd
2w G ..= (Hw − iη)−1

=
2i

N

∫
C
∂w̄fw∗

N∑
i=1

Gi+N,i(iN
−3/4) d2w .

From ∇2
wf(
√
N(w − w∗))g(w, iη) to ∂w̄f(

√
N(w − w∗)) 1

N

∑N
i=1(G

2)i+N,i, the
(naive) scale change is

1√
N
× 1

η
= N1/4 for η = N−3/4.

However, we can show that

1

N

∑
i

Gi+N,i +
1 +m2

w
.

1

N2η2

(
instead of g −m .

1

Nη

)
.

Hence the actual scale change is

1√
N
× 1

η
× 1

Nη
= 1 for η = N−3/4.
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Thank you!


