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Undirected Erd6s-Rényi graphs

~

G(N,p): N vertexes, every edge is connected with probability p completely
independent of other edges.

Denote by .ﬁij = 1, ; the adjacency matrices of the Erdés-Rényi graphs.

We consider the normalized matrix and its centering by

~ 1 [N
A= A, Hi=A- /2L je)(e]
Np(1 —p) 1—p

so that Var(A,;) = Eﬁfj =N"1

The largest eigenvalue of A satisfies \; ~ f\% > 1. The key question is to

understand the second largest eigenvalue \s.



Edge statistics

e [Erdés-Knowles-Yau-Yin, 2011], [Lee-Schnelli, 2016]
When p > N~2/3, the extreme eigenvalues of A satisfy Tracy-Widom
distribution R oy,
N3 (XN —EXg) = TW; .
e [Huang-Landon-Yau, 2017], [H.-Knowles 2020]
When N='*¢ < p < N=2/3 one has
X2 — EX
BN a, oy,
SEHY,

The sparse contribution is on the scale

~ 1 .
VEHL, =< N> N—2/3

for p < N~2/3, and it origins from
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Edge universality
[Jaehun Lee, 2021] [Huang-Yau, 2022] For N1+ < p < 1/2, we have
N3 (N —EXy — X) -5 TW, .

Here 5
EXy =2+ (Np)~' — Z(Np)*“‘ o

The first two orders of random term X" are

1 772

N (2 -N)

ij
and 1 1 2 1
774 72 [ 172
N (2 - 5p) + DA (- )
ij ijk

The third order terms of X' contain e.g. the fluctuation of
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Edge universality
[Jaehun Lee, 2021] [Huang-Yau, 2022] For N1+ < p < 1/2, we have
N23(Rg —EXy — X) -5 TW, .
Here

5 —2

The first two orders of random term X are

%(Zﬁfj—N) Y d;
7 z

EX; =2+ (Np)~!

and
LS m - IV LAY (- ) S+ S
N(Z ij—prz)wZ a( ik—ﬁ) <y dit) d
ij ijk i i
The third order terms of X' contain e.g. the fluctuation of

Y HigHyuHy o< djAjydy, .

ikl ik



Random regular graphs

d-regular graph: (undirected, simple) graphs on {1,..., N}, each vertex has d
neighbours.

Random d-regular graph: uniform probability measure on the set of d-regular
graphs. Adjacency matrix A;; = 1;;.

The second largest eigenvalue of A satisfies

2/3( X2‘f'd/N
Vd-DN—d

e For N?/ < d < N'/3 in [Bauerschmidt-Huang-Knowles-Yau, 2019]
e For N* < d < N'/3 in [Huang-Yau, 2023]
e For d > N?/3in [H., 2022].
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Erdos-Rényi digraphs

G(N,p): N vertexes, every directed edge (i,7) is connected with probability p
completely independent of other edges.

The adjacency matrix A has i.i.d. entries with

A - 1 with probability p
Y0 with probability 1 —p.

We normalize

Eigenvalues of A satisfies (global) circular law:

1 1
N > 6, — —Lizenzi<1y

as N — oc.



Local eigenvalue statistics

For dense non-Hermitian matrices, we have

e [Tao-Vu, 2012]: Under four-moment matching condition, we have
universality of the local statistics in the bulk and near the edge.

Under two-moment matching

e [Bourgade-Yau-Yin, 2012]: Circular law on all mesoscopic scale.
o [Alt-Erdés-Kriiger, 2016]: Spectral radius location.

e [Cipolloni-Erdés-Schroder, 2019]: Universality near the edge.

e [Cipolloni-Erd8s-Xu, 2023]: Spectral radius distribution.

e [Maltsev-Osman, 2023; Dubova-Yang 2024]: Bulk universality.

There is no previous results on the local statistics of sparse non-Hermitian
matrices.



Main results

For a square matrix S € CV*V with eigenvalues A7, ..., A3, we define its
k-point correlation function pf through

_ N
N\ .
F(zl,...,zk)pf(zh...,zk)dzl...dzk: < ) E Z F()\fl,. ,/\i).
Ck k ‘

[H. 2023] (Edge Universality)
Fix k € Ny and let wy,...,w, € T={w € C, |w|=1}. For N~ <p < 1/2

. z z
lim F(z1y .. 21) [p,?(wl—l—Nll/z,...,wk—i—le/Q)

N—=oco (Ck

—py (w1+ wk+N1/2):|d21 dz, =0

Nz

Here W € RV*N js the real Ginibre ensemble, i.e.it has i.i.d. Gaussian entries
with mean 0 and variance 1/N.



Main results (Cont)

[H. 2023] Assume N 17 < p < 1/2 and let \j, A2, ..., \y be the eigenvalues
of A with [A\] = max; |\;| ~ 1NTI;) > 1

1. (Spectral radius) We have

’ ] — —1/2+4¢
Jmax [Ai| =14+ O(N ) (1)

with very high probability.

2. (Delocalization) Suppose u € C¥ satisfies Au = \u for some A € C with
[A| < 2. Then

[ulloc = ON~Y24[ul])
with very high probability.



Observation. No phase transition! The edge statistics of non-Hermitian random
matrices are more robust than those of Hermitian random matrices.

Simple explanation: the sparse contribution is on the scale

[~ 1
EHfQ = \/E(Alg — EA12)4 = N\/i)

for both cases, while Tracy-Widom is on scale N—2/3 and the extreme
eigenvalues of A fluctuates on scale N~1/2.

Detailed explanation: proof outline.



Proof outline

Girko's Hermitization

%Zf(\/]v()\i—w*))z : /(C/Owvaf(\/N(w—w*))Tr(Hw—in)1d77d2w

4t N

with |w.| =1, and

o 0 A—w 2N X2N

The key is to study g(w,in) := 5% Tr(H,, —in)~'. Itis close to a deterministic
m = m(w,in), which solves

P(m) = m® + 2igm? + (1 n* — [w])m + in = 0.



Estimate ¢ through

1=m=0( 05

and near the edge it is greatly affected by the cusp singularity
P'(m) = 3m? + dinm + (1 — n* — |w|?) < [1 — |w|| +7n*/3.
It origins from the smallness of m
m=ilmm = O(|]1 — w2 +771/3) .

This requires very precise estimates of P(g).



Observation: cusp singularity is an advantage on estimating higher order terms
in the sparse regime. For instance

Eg® Eg®
EP(g) = (— )
(9)=0 Np + N2p? +

Due to the smallness of m

Eq3 3 1_ 3/2 1 1/2 1/3
Bg” o1 o=l A o prpy Lol 0
Np  Np Np Np

Sparsity does not affect the estimate!
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In the Hermitian case, § = N~ Tr(A — z)~! is close to the solution of
1+ zm + m2 =0, while

P Eg*  Egb
E(1 ?) = 0(-L + )
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We can prove that

7]1/3

Np

with very high probability. For n < N=3/%, we get [g — m| < Nn

In Hermitization

1 i <
Nﬁfﬁ/ﬁw—w*)):%/cfo V2 4(VN (w

we still need to treat

% /(C /]\[73//1 V2 f(VN(w — w,)) g(w,in)dnd?w,

while (*) is unimprovable.
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Idea: Integration by-parts for the shift.
[ T/ w = w)) glw,in) dnd’u
CcJN—3/4
— [ [T s (VN w = w.)) dugw.in) dnd*
cJN—3/4
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From V2, f(V/N(w — w.))g(w,in) to s f(VN(w — w.)) % Y1 (G*)itn,i, the
(naive) scale change is

X 1 = N4 forn:N73/4.
n

-

However, we can show that

1 14 m? I 1
-~ i+Ni S fg—m< —) .
N % GiynN,i + w N2 (mstead of g—m < N

Hence the actual scale change is
1 1

1
X X —
VN n  Nn



Thank you!



