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A classical result

Let Sn denote a simple random walk, then by CLT
n−1/2Sn ⇒ N(0, 1) and

lim sup
Sn√

2n log log n
= 1; lim inf

Sn√
2n log logn

= −1

almost surely. Khinchine (1924)

The classical proof of this relies on showing that

P(Sn ≥ t
√
n) = exp(− t2

2
(1 + o(1)))

and there are log n many independent scales up to time n (i.e., the
events {Sn ≥ (1 + ε)

√
2n log logn} are approximately independent

for n = λk.)
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A similar question

One can ask similar questions for other coupled sequence of
random variables converging to a different universal law, e.g. GUE
/GOE/GSE Tracy-Widom distribution.

Consider a sequence of random variables Sn in a common
probability space that converge to the Tracy-Widom distribution.

Find g±(n) such that lim supSn/g+(n) and lim inf Sn/g−(n) has
non-trivial constant limits.

Inspired by a work of Paquette and Zeitounni (2017) which
established a law of fractional logarithm for largest eigenvalues in
GUE minor process, Ledoux asked the following question.

Riddhipratim Basu (ICTS) β-Ensembles 16/04/24 3 / 14



Exponential LPP on Z2

For an up/right path γ define
T (γ) =

∑
v∈γ Xv.

Define
Tm,n := maxγ:(1,1)→(m,n) T (γ).

Canonical exactly solvable
model in the KPZ universality
class. X11 X12 X13 X14 · · · · · ·

X21

X31

X41

X22

...

...

X23 · · ·

· · ·

Xij

Xij ∼ i.i.d. Exp(1)
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Exponential LPP and Laguerre β ensemble

For n ∈ N and m > n− 1 and β > 0, the Laguerre β ensemble
(LβEn,m) is given by the joint density

1

Zn,m,β

∏
i<j

|λi − λj |β
∏
i

λ
β
2
(m−n+1)−1e−βλi/2.

The cases β = 1, 2, 4 are special.

Johansson (1999) showed the remarkable distributional identity

Tm,n
d
= λ1(LUEn,m),

the largest eigenvalue of Laguerre Unitary ensemble (β = 2).

For β = 1 and β = 4, similar correspondence for point-to-line
exponential LPP, and half space exponential LPP (with Xi,j = 0 if
j > i) with the largest eigenvalues of LOE and LSE respectively.

Implicit in works of Baik-Rains (2000,2001).
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Ledoux’s question for exponential LPP

It is known (Johansson (1999)) that

Tn :=
Tn,n − 4n

24/3n1/3
⇒ TW2,

the GUE Tracy-Widom distribution.

Question: Does there exist g+(n), g−(n) and c1, c2 ∈ (0,∞) such
that

lim sup
Tn

g+(n)
= c1; lim inf

Tn
g−(n)

= −c2

almost surely?

By analogy to classical LIL, to answer this one needs to
understand (a) the tails of Tn and (b) the number of
”independent” scales.
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Tail estimates in the limit: general β

Ramirez-Rider-Virag (2011) showed

λ1(LβEn,n)− 4n

24/3n1/3
⇒ TWβ.

They also established the tails of Tracy-Widom β distribution.

Theorem (Ramirez-Rider-Virag (2011), Dumaz-Virag (2013))

P(TWβ ≥ a) = exp(−2β

3
(1 + o(1))a3/2).

P(TWβ ≤ −a) = exp(− β

24
(1 + o(1))a3).

To answer Ledoux’s question, we need the pre-limiting versions of
these estimates.
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Tail estimates at the matrix level: general β

Estimates without the correct constants in front of the exponent
were known.

For β ≥ 1 and 1 ≪ a ≪ n2/3

exp(−c′a3/2) ≤ P(λ1(LβEn,n) ≥ 4n+ an1/3) ≤ exp(−ca3/2).

exp(−c′a3) ≤ P(λ1(LβEn,n) ≤ 4n− an1/3) ≤ exp(−ca3).

Ledoux-Rider (2010)

B.-Ganguly-Hegde-Krishnapur (2021)

Similar results are known for GβEn and LβEn,m for m/n bounded.
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Tail estimates for the matrix level: β = 1, 2

For the special case β = 2 (which is determinantal) upper tail is
well understood by analysing a Fredholm determinant formula cf.
Borodin-Ferrari-Sasamoto (2008).

Right tail for GOEn, GUEn has also been dealt with in
Paquette-Zeitouni (2017), Erdős-Xu (2023).

Lower tail is in general more difficult.

Riemann-Hilbert analysis has been used in a few related problems
(Geometric and Poissonian LPP): Lowe-Merkl (2001),
Lowe-Merkl-Rolles (2002), Baik-Deift-McLaughlin-Miller-Zhou
(2001).
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Back to the LIL problem

Recall

Tn :=
Tn,n − 4n

24/3n1/3
⇒ TW2.

Question: Does there exist g+(n), g−(n) and c1, c2 ∈ (0,∞) such
that

lim sup
Tn

g+(n)
= c1; lim inf

Tn
g−(n)

= −c2

almost surely?

Using the non-sharp moderate deviation results one can show

g+(n) := (log log n)2/3, g−(n) := (log log n)1/3

Ledoux (2018)

B.-Ganguly-Hegde-Krishnapur (2021)

Constants were obtained for KPZ equation and KPZ fixed point:
Das-Ghosal (2023), Das-Ghosal-Lin (2022).
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Our results: moderate deviations

Theorem (Baslingker, B., Bhattacharjee, Krishnapur (2024+))

For β ≥ 1, 1 ≪ a ≪ nδ and n large

P
(
λ1(LβEn,n)− 4n

24/3n1/3
≥ a

)
= exp(−2β

3
(1 + o(1))a3/2).

P
(
λ1(LβEn,n)− 4n

24/3n1/3
≤ −a

)
= exp(− β

24
(1 + o(1))a3).

Similar result holds for λ1(LβEm,n) for
m
n bounded.

Similar result holds for GβEn.

Proofs use the tridiagonal matrix model for β ensembles:
Dumitriu-Edelman (2002), ideas from Ramirez-Rider-Virag (2011).
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Our results: LIL for exponential LPP

Theorem (Baslingker, B., Bhattacharjee, Krishnapur (2024+))

Almost surely,

lim sup
Tn

(log log n)2/3
= (

3

4
)2/3; lim inf

Tn
(log log n)1/3

= −(12)1/3.

Similar results for point-to-line, and half space (point-to-point)
LPP.

Using the sharp tail estimates, proof of the limsup result is almost
same as the proof of classical LIL.

The lower tail is substantially more complicated: old and new
results about understanding the geometry of geodesics in LPP.

Riddhipratim Basu (ICTS) β-Ensembles 16/04/24 12 / 14



Other applications of sharp deviation estimates

Exact rate for decay of correlations in the Airy1 process:
B.-Busani-Ferrari (2022). This only required the upper tail upper
bound in β = 1 and β = 2 cases which were available before.

Limit theorems for maxima and minima of Airy1 and Airy2
processes, extending a result of Pu (2023) for maxima of Airy1
process: B.-Bhattacharjee (2024+).

Endpoint distribution in point-to-line geodesic (or midpoint
distribution in point-to-point geodesic) in exponential LPP:
Agarwal-B. (2024+). Stronger results in directed landscape by
Das-Dauvergne-Virag (2024+).
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Thank You

Questions?
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