Sharp tail estimates for largest eigenvalues in β ensembles and some applications to last passage percolation

Riddhipratim Basu

International Centre for Theoretical Sciences

Tata Institute of Fundamental Research

Random matrices and related topics in Jeju
07 May, 2024

A classical result

- Let S_{n} denote a simple random walk, then by CLT $n^{-1 / 2} S_{n} \Rightarrow N(0,1)$ and

$$
\limsup \frac{S_{n}}{\sqrt{2 n \log \log n}}=1 ; \quad \liminf \frac{S_{n}}{\sqrt{2 n \log \log n}}=-1
$$

almost surely.

- The classical proof of this relies on showing that

$$
\mathbb{P}\left(S_{n} \geq t \sqrt{n}\right)=\exp \left(-\frac{t^{2}}{2}(1+o(1))\right)
$$

and there are $\log n$ many independent scales up to time n (i.e., the events $\left\{S_{n} \geq(1+\varepsilon) \sqrt{2 n \log \log n}\right\}$ are approximately independent for $n=\lambda^{k}$.)

A similar question

- One can ask similar questions for other coupled sequence of random variables converging to a different universal law, e.g. GUE /GOE/GSE Tracy-Widom distribution.
- Consider a sequence of random variables S_{n} in a common probability space that converge to the Tracy-Widom distribution.
- Find $g_{ \pm}(n)$ such that $\limsup S_{n} / g_{+}(n)$ and $\liminf S_{n} / g_{-}(n)$ has non-trivial constant limits.
- Inspired by a work of Paquette and Zeitounni (2017) which established a law of fractional logarithm for largest eigenvalues in GUE minor process, Ledoux asked the following question.

Exponential LPP on \mathbb{Z}^{2}

- For an up/right path γ define $T(\gamma)=\sum_{v \in \gamma} X_{v}$.
- Define
$T_{m, n}:=\max _{\gamma:(1,1) \rightarrow(m, n)} T(\gamma)$.
- Canonical exactly solvable model in the KPZ universality class.

\vdots					
\vdots				$X_{i j}$	
X_{41}					
X_{31}	\ldots				
X_{21}	X_{22}	X_{23}	\cdots		
X_{11}	X_{12}	X_{13}	X_{14}	\cdots	\cdots

$X_{i j} \sim$ i.i.d. $\operatorname{Exp}(1)$

Exponential LPP and Laguerre β ensemble

- For $n \in \mathbb{N}$ and $m>n-1$ and $\beta>0$, the Laguerre β ensemble $\left(L \beta E_{n, m}\right)$ is given by the joint density

$$
\frac{1}{Z_{n, m, \beta}} \prod_{i<j}\left|\lambda_{i}-\lambda_{j}\right|^{\beta} \prod_{i} \lambda^{\frac{\beta}{2}(m-n+1)-1} e^{-\beta \lambda_{i} / 2}
$$

- The cases $\beta=1,2,4$ are special.
- Johansson (1999) showed the remarkable distributional identity

$$
T_{m, n} \stackrel{d}{=} \lambda_{1}\left(L U E_{n, m}\right),
$$

the largest eigenvalue of Laguerre Unitary ensemble $(\beta=2)$.

- For $\beta=1$ and $\beta=4$, similar correspondence for point-to-line exponential LPP, and half space exponential LPP (with $X_{i, j}=0$ if $j>i)$ with the largest eigenvalues of LOE and LSE respectively.
- Implicit in works of Baik-Rains $(2000,2001)$.

Ledoux's question for exponential LPP

- It is known (Johansson (1999)) that

$$
\mathcal{T}_{n}:=\frac{T_{n, n}-4 n}{2^{4 / 3} n^{1 / 3}} \Rightarrow T W_{2}
$$

the GUE Tracy-Widom distribution.

- Question: Does there exist $g_{+}(n), g_{-}(n)$ and $c_{1}, c_{2} \in(0, \infty)$ such that

$$
\limsup \frac{\mathcal{T}_{n}}{g_{+}(n)}=c_{1} ; \quad \liminf \frac{\mathcal{T}_{n}}{g_{-}(n)}=-c_{2}
$$

almost surely?

- By analogy to classical LIL, to answer this one needs to understand (a) the tails of \mathcal{T}_{n} and (b) the number of "independent" scales.

Tail estimates in the limit: general β

- Ramirez-Rider-Virag (2011) showed

$$
\frac{\lambda_{1}\left(L \beta E_{n, n}\right)-4 n}{2^{4 / 3} n^{1 / 3}} \Rightarrow T W_{\beta} .
$$

- They also established the tails of Tracy-Widom β distribution.

Theorem (Ramirez-Rider-Virag (2011), Dumaz-Virag (2013))

$$
\begin{aligned}
& \mathbb{P}\left(T W_{\beta} \geq a\right)=\exp \left(-\frac{2 \beta}{3}(1+o(1)) a^{3 / 2}\right) \\
& \mathbb{P}\left(T W_{\beta} \leq-a\right)=\exp \left(-\frac{\beta}{24}(1+o(1)) a^{3}\right)
\end{aligned}
$$

- To answer Ledoux's question, we need the pre-limiting versions of these estimates.

Tail estimates at the matrix level: general β

- Estimates without the correct constants in front of the exponent were known.

For $\beta \geq 1$ and $1 \ll a \ll n^{2 / 3}$

$$
\begin{aligned}
\exp \left(-c^{\prime} a^{3 / 2}\right) & \leq \mathbb{P}\left(\lambda_{1}\left(L \beta E_{n, n}\right) \geq 4 n+a n^{1 / 3}\right) \leq \exp \left(-c a^{3 / 2}\right) . \\
\exp \left(-c^{\prime} a^{3}\right) & \leq \mathbb{P}\left(\lambda_{1}\left(L \beta E_{n, n}\right) \leq 4 n-a n^{1 / 3}\right) \leq \exp \left(-c a^{3}\right)
\end{aligned}
$$

Ledoux-Rider (2010)
B.-Ganguly-Hegde-Krishnapur (2021)

- Similar results are known for $G \beta E_{n}$ and $L \beta E_{n, m}$ for m / n bounded.

Tail estimates for the matrix level: $\beta=1,2$

- For the special case $\beta=2$ (which is determinantal) upper tail is well understood by analysing a Fredholm determinant formula cf. Borodin-Ferrari-Sasamoto (2008).
- Right tail for $G O E_{n}, G U E_{n}$ has also been dealt with in Paquette-Zeitouni (2017), Erdős-Xu (2023).
- Lower tail is in general more difficult.
- Riemann-Hilbert analysis has been used in a few related problems (Geometric and Poissonian LPP): Lowe-Merkl (2001), Lowe-Merkl-Rolles (2002), Baik-Deift-McLaughlin-Miller-Zhou (2001).

Back to the LIL problem

- Recall

$$
\mathcal{T}_{n}:=\frac{T_{n, n}-4 n}{2^{4 / 3} n^{1 / 3}} \Rightarrow T W_{2}
$$

- Question: Does there exist $g_{+}(n), g_{-}(n)$ and $c_{1}, c_{2} \in(0, \infty)$ such that

$$
\limsup \frac{\mathcal{T}_{n}}{g_{+}(n)}=c_{1} ; \quad \liminf \frac{\mathcal{T}_{n}}{g_{-}(n)}=-c_{2}
$$

almost surely?

- Using the non-sharp moderate deviation results one can show

$$
g_{+}(n):=(\log \log n)^{2 / 3}, g_{-}(n):=(\log \log n)^{1 / 3}
$$

Ledoux (2018)
B.-Ganguly-Hegde-Krishnapur (2021)

- Constants were obtained for KPZ equation and KPZ fixed point: Das-Ghosal (2023), Das-Ghosal-Lin (2022).

Our results: moderate deviations

Theorem (Baslingker, B., Bhattacharjee, Krishnapur (2024+))
For $\beta \geq 1,1 \ll a \ll n^{\delta}$ and n large

$$
\begin{aligned}
& \mathbb{P}\left(\frac{\lambda_{1}\left(L \beta E_{n, n}\right)-4 n}{2^{4 / 3} n^{1 / 3}} \geq a\right)=\exp \left(-\frac{2 \beta}{3}(1+o(1)) a^{3 / 2}\right) \\
& \mathbb{P}\left(\frac{\lambda_{1}\left(L \beta E_{n, n}\right)-4 n}{2^{4 / 3} n^{1 / 3}} \leq-a\right)=\exp \left(-\frac{\beta}{24}(1+o(1)) a^{3}\right)
\end{aligned}
$$

- Similar result holds for $\lambda_{1}\left(L \beta E_{m, n}\right)$ for $\frac{m}{n}$ bounded.
- Similar result holds for $G \beta E_{n}$.
- Proofs use the tridiagonal matrix model for β ensembles:

Dumitriu-Edelman (2002), ideas from Ramirez-Rider-Virag (2011).

Our results: LIL for exponential LPP

Theorem (Baslingker, B., Bhattacharjee, Krishnapur (2024+))

Almost surely,

$$
\limsup \frac{\mathcal{T}_{n}}{(\log \log n)^{2 / 3}}=\left(\frac{3}{4}\right)^{2 / 3} ; \quad \liminf \frac{\mathcal{T}_{n}}{(\log \log n)^{1 / 3}}=-(12)^{1 / 3} .
$$

- Similar results for point-to-line, and half space (point-to-point) LPP.
- Using the sharp tail estimates, proof of the limsup result is almost same as the proof of classical LIL.
- The lower tail is substantially more complicated: old and new results about understanding the geometry of geodesics in LPP.

Other applications of sharp deviation estimates

- Exact rate for decay of correlations in the Airy ${ }_{1}$ process: B.-Busani-Ferrari (2022). This only required the upper tail upper bound in $\beta=1$ and $\beta=2$ cases which were available before.
- Limit theorems for maxima and minima of Airy ${ }_{1}$ and Airy ${ }_{2}$ processes, extending a result of Pu (2023) for maxima of Airy ${ }_{1}$ process: B.-Bhattacharjee (2024+).
- Endpoint distribution in point-to-line geodesic (or midpoint distribution in point-to-point geodesic) in exponential LPP: Agarwal-B. (2024+). Stronger results in directed landscape by Das-Dauvergne-Virag (2024+).

Thank You

Questions?

