Fermions in low dimensions and non-Hermitian random matrices

Gernot Akemann
(Bielefeld University \& University of Bristol)

Random Matrices and Related Topics in Jeju May 62024
with Sungsoo Byun, Markus Ebke and Grégory Schehr
[arXiv:2206.08815 $=$ J Stat Phys '23, arXiv2308.05519 $=$ J Phys A '23]

Outline

- Part I: Map to Random Matrix Theory (RMT)
- d-dimensional harmonic trap: GUE \& beyond
- 2d with magnetic field / rotating trap: complex Ginibre ensemble (GinUE)

Outline

- Part I: Map to Random Matrix Theory (RMT)
- d-dimensional harmonic trap: GUE \& beyond
- 2d with magnetic field / rotating trap: complex Ginibre ensemble (GinUE)
- Part II: Universality and holography in 2d
- variance of number of Fermions \mathcal{N}_{A} in A
$\operatorname{Var} \mathcal{N}_{A} \sim \partial A$ for a large class of non-Hermitian RMT
- entropy $S_{q}(N, A) \propto \operatorname{Var} \mathcal{N}_{A}$ in bulk scaling
- Summary and open questions

Fermions in a d-dimensional harmonic trap: $1 d=$ GUE

- N Fermions at $\vec{r}_{j} \in \mathbb{R}^{d}$, momenta $\vec{p}_{j}=-i \vec{\nabla}_{j}, j=1, \ldots, N$
- Harmonic oscillators in d-dimensions:
$\mathcal{H}=\sum_{j=1}^{N} \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right), \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right)=\frac{1}{2}\left(\vec{p}_{j}^{2}+\vec{r}_{j}^{2}\right)$ single particle, non-interacting

Fermions in a d-dimensional harmonic trap: $1 d=$ GUE

- N Fermions at $\vec{r}_{j} \in \mathbb{R}^{d}$, momenta $\vec{p}_{j}=-i \vec{\nabla}_{j}, j=1, \ldots, N$
- Harmonic oscillators in d-dimensions:
$\mathcal{H}=\sum_{j=1}^{N} \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right), \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right)=\frac{1}{2}\left(\vec{p}_{j}^{2}+\vec{r}_{j}^{2}\right)$ single particle, non-interacting
- example 1d: $\mathcal{H}_{j}(p, x) u_{n}(x)=E_{n} u_{n}(x)$

Hermite eigenfunctions $u_{n}(x) \sim H_{n}(x) e^{-\frac{1}{2} x^{2}}, n=0,1, \ldots$

Fermions in a d-dimensional harmonic trap: $1 d=$ GUE

- N Fermions at $\vec{r}_{j} \in \mathbb{R}^{d}$, momenta $\vec{p}_{j}=-i \vec{\nabla}_{j}, j=1, \ldots, N$
- Harmonic oscillators in d-dimensions:
$\mathcal{H}=\sum_{j=1}^{N} \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right), \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right)=\frac{1}{2}\left(\vec{p}_{j}^{2}+\vec{r}_{j}^{2}\right)$ single particle, non-interacting
- example 1d: $\mathcal{H}_{j}(p, x) u_{n}(x)=E_{n} u_{n}(x)$

Hermite eigenfunctions $u_{n}(x) \sim H_{n}(x) e^{-\frac{1}{2} x^{2}}, n=0,1, \ldots$

- N-particle Fermionic ground state: Slater determinant

$$
\Psi_{0}\left(x_{1}, \ldots, x_{N}\right) \sim \operatorname{det}\left[H_{j-1}\left(x_{i}\right) e^{-x_{i}^{2} / 2}\right]_{i, j=1}^{N} \sim e^{-\frac{1}{2} \sum_{i=1}^{N} x_{i}^{2}} \Delta_{N}(\{x\})
$$

- Vandermonde determinant $\Delta_{N}(\{x\})=\operatorname{det}\left[x_{i}^{j-1}\right]_{i, j=1}^{N}$

Fermions in a d-dimensional harmonic trap: $1 d=$ GUE

- N Fermions at $\vec{r}_{j} \in \mathbb{R}^{d}$, momenta $\vec{p}_{j}=-i \vec{\nabla}_{j}, j=1, \ldots, N$
- Harmonic oscillators in d-dimensions:
$\mathcal{H}=\sum_{j=1}^{N} \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right), \mathcal{H}_{j}\left(\vec{p}_{j}, \vec{r}_{j}\right)=\frac{1}{2}\left(\vec{p}_{j}^{2}+\vec{r}_{j}^{2}\right)$ single particle, non-interacting
- example 1d: $\mathcal{H}_{j}(p, x) u_{n}(x)=E_{n} u_{n}(x)$

Hermite eigenfunctions $u_{n}(x) \sim H_{n}(x) e^{-\frac{1}{2} x^{2}}, n=0,1, \ldots$

- N-particle Fermionic ground state: Slater determinant

$$
\Psi_{0}\left(x_{1}, \ldots, x_{N}\right) \sim \operatorname{det}\left[H_{j-1}\left(x_{i}\right) e^{-x_{i}^{2} / 2}\right]_{i, j=1}^{N} \sim e^{-\frac{1}{2} \sum_{i=1}^{N} x_{i}^{2}} \Delta_{N}(\{x\})
$$

- Vandermonde determinant $\Delta_{N}(\{x\})=\operatorname{det}\left[x_{i}^{j-1}\right]_{i, j=1}^{N}$
- amplitude $\left|\Psi_{0}\right|^{2} \sim\left|\Delta_{N}(\{x\})\right|^{2} e^{-\sum_{i=1}^{N} x_{i}^{2}}=$ GUE joint eigenvalue density, determinantal point process

Fermions in a d-dimensional harmonic trap

- $\mathcal{H}_{j}(\vec{p}, \vec{r})=\frac{1}{2} \sum_{l=1}^{d}\left(p_{l}^{2}+r_{l}^{2}\right)$ single particle in d dimensions with eigenfunction:

$$
\Psi_{\{n\}}(\vec{r})=\prod_{l=1}^{d} u_{n_{l}}\left(r_{l}\right), \vec{r}=\left(r_{1}, \ldots, r_{N}\right)
$$

- example 2d: $\Psi_{n_{1}, n_{2}}(\vec{r}=(x, y)) \sim e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} H_{n_{1}}(x) H_{n_{2}}(y)$

Fermions in a d-dimensional harmonic trap

- $\mathcal{H}_{j}(\vec{p}, \vec{r})=\frac{1}{2} \sum_{l=1}^{d}\left(p_{l}^{2}+r_{l}^{2}\right)$ single particle in d dimensions with eigenfunction:

$$
\Psi_{\{n\}}(\vec{r})=\prod_{l=1}^{d} u_{n_{l}}\left(r_{l}\right), \vec{r}=\left(r_{1}, \ldots, r_{N}\right)
$$

- example 2d: $\Psi_{n_{1}, n_{2}}(\vec{r}=(x, y)) \sim e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} H_{n_{1}}(x) H_{n_{2}}(y)$
- N-particle ground state wave function:

$$
\Psi_{0}\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \sim \operatorname{det}\left[\Psi_{\left\{n_{j}\right\}}\left(\vec{r}_{i}\right)\right]_{i, j=1}^{N}
$$

Fermions in a d-dimensional harmonic trap

- $\mathcal{H}_{j}(\vec{p}, \vec{r})=\frac{1}{2} \sum_{l=1}^{d}\left(p_{l}^{2}+r_{l}^{2}\right)$ single particle in d dimensions with eigenfunction:

$$
\Psi_{\{n\}}(\vec{r})=\prod_{l=1}^{d} u_{n_{l}}\left(r_{l}\right), \vec{r}=\left(r_{1}, \ldots, r_{N}\right)
$$

- example 2d: $\Psi_{n_{1}, n_{2}}(\vec{r}=(x, y)) \sim e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} H_{n_{1}}(x) H_{n_{2}}(y)$
- N-particle ground state wave function:

$$
\Psi_{0}\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \sim \operatorname{det}\left[\Psi_{\left\{n_{j}\right\}}\left(\vec{r}_{i}\right)\right]_{i, j=1}^{N}
$$

- determinental point process in d-dimensions

$$
\begin{aligned}
& \left|\Psi_{0}\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right|^{2} \sim \operatorname{det}\left[\mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{1}, \vec{r}_{2}\right)\right]_{i, j=1}^{N} \text { joint density } \\
& R_{k}\left(\vec{r}_{1}, \ldots, \vec{r}_{k}\right)=\operatorname{det}\left[\mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{i}, \vec{r}_{j}\right)\right]_{i, j=1}^{k} k \text {-point function }
\end{aligned}
$$

$$
\mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\sum_{0 \leq j_{1}+\ldots+j_{d} \leq n-1} \Psi_{\left\{j_{l}\right\}}\left(\vec{r}_{1}\right) \Psi_{\left\{j_{l}\right\}}\left(\vec{r}_{2}\right) \text { kernel }
$$

Fermions in a d-dimensional harmonic trap

- $\mathcal{H}_{j}(\vec{p}, \vec{r})=\frac{1}{2} \sum_{l=1}^{d}\left(p_{l}^{2}+r_{l}^{2}\right)$ single particle in d dimensions with eigenfunction:

$$
\Psi_{\{n\}}(\vec{r})=\prod_{l=1}^{d} u_{n_{l}}\left(r_{l}\right), \vec{r}=\left(r_{1}, \ldots, r_{N}\right)
$$

- example 2d: $\Psi_{n_{1}, n_{2}}(\vec{r}=(x, y)) \sim e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)} H_{n_{1}}(x) H_{n_{2}}(y)$
- N-particle ground state wave function:

$$
\Psi_{0}\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \sim \operatorname{det}\left[\Psi_{\left\{n_{j}\right\}}\left(\vec{r}_{i}\right)\right]_{i, j=1}^{N}
$$

- determinental point process in d-dimensions $\left|\Psi_{0}\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right|^{2} \sim \operatorname{det}\left[\mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{1}, \vec{r}_{2}\right)\right]_{i, j=1}^{N}$ joint density $R_{k}\left(\vec{r}_{1}, \ldots, \vec{r}_{k}\right)=\operatorname{det}\left[\mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{i}, \vec{r}_{j}\right)\right]_{i, j=1}^{k} k$-point function
$\mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\sum_{0 \leq j_{1}+\ldots+j_{d} \leq n-1} \Psi_{\left\{j_{i}\right\}}\left(\vec{r}_{1}\right) \Psi_{\left\{j_{j}\right\}}\left(\vec{r}_{2}\right)$ kernel
- does not correspond to eigenvalues of RMT for $d>1$, but same techniques apply

Results in d dimensions [Dean, Le Doussal, Mauumdar, Schenr' 19]

- global density: $1 d$ semi-circle (left) vs. $2 d$ cup (right)

$$
\frac{1}{N^{d / 2}} \mathcal{K}_{N}^{\text {Fermi }}(\sqrt{N} \vec{r}, \sqrt{N} \vec{r}) \sim\left(2-|\vec{r}|^{2}\right)^{d / 2} \equiv \rho(|\vec{r}|)
$$

Results in d dimensions [Dean, Le Doussal, Maiumdar, Schent' '9]

- global density: $1 d$ semi-circle (left) vs. $2 d$ cup (right)

$$
\frac{1}{N^{d / 2}} \mathcal{K}_{N}^{\text {Fermi }}(\sqrt{N} \vec{r}, \sqrt{N} \vec{r}) \sim\left(2-|\vec{r}|^{2}\right)^{d / 2} \equiv \rho(|\vec{r}|)
$$

- local correlations: bulk kernel at \vec{r}_{0}

$$
\frac{1}{\rho\left(\vec{r}_{0}\right) N} \mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{0}+\frac{\vec{u}}{N \rho\left(\vec{r}_{0}\right)^{\frac{1}{d}}}, \vec{r}_{0}+\frac{\vec{v}}{N \rho\left(\vec{r}_{0}\right)^{\frac{1}{d}}}\right) \sim \frac{J_{d / 2}(2|\vec{u}-\vec{v}|)}{(|\vec{u}-\vec{v}|)^{d / 2}}
$$

e.g. 1d: ~ sine-kernel

Results in dimensions [Dean, Le Doussal, Majumdar, Schehr' 19]

- global density: $1 d$ semi-circle (left) vs. $2 d$ cup (right)

$$
\frac{1}{N^{d / 2}} \mathcal{K}_{N}^{\text {Fermi }}(\sqrt{N} \vec{r}, \sqrt{N} \vec{r}) \sim\left(2-|\vec{r}|^{2}\right)^{d / 2} \equiv \rho(|\vec{r}|)
$$

- local correlations: bulk kernel at \vec{r}_{0}

$$
\frac{1}{\rho\left(\vec{r}_{0}\right) N} \mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{0}+\frac{\vec{u}}{N \rho\left(\vec{r}_{0}\right)^{\frac{1}{d}}}, \vec{r}_{0}+\frac{\vec{v}}{N \rho\left(\vec{r}_{0}\right)^{\frac{1}{d}}}\right) \sim \frac{J_{d / 2}(2|\vec{u}-\vec{v}|)}{(|\vec{u}-\vec{v}|)^{d / 2}}
$$

e.g. 1d: ~ sine-kernel

- similarly edge kernel: Airy, local density approx (phys.) breaks down, only from RMT!

Results in dimensions [Dean, Le Doussal, Majumdar, Schehr' 19]

- global density: $1 d$ semi-circle (left) vs. $2 d$ cup (right)

$$
\frac{1}{N^{d / 2}} \mathcal{K}_{N}^{\text {Fermi }}(\sqrt{N} \vec{r}, \sqrt{N} \vec{r}) \sim\left(2-|\vec{r}|^{2}\right)^{d / 2} \equiv \rho(|\vec{r}|)
$$

- local correlations: bulk kernel at \vec{r}_{0}

$$
\frac{1}{\rho\left(\vec{r}_{0}\right) N} \mathcal{K}_{N}^{\text {Fermi }}\left(\vec{r}_{0}+\frac{\vec{u}}{N \rho\left(\vec{r}_{0}\right)^{\frac{1}{d}}}, \vec{r}_{0}+\frac{\vec{v}}{N \rho\left(\vec{r}_{0}\right)^{\frac{1}{d}}}\right) \sim \frac{J_{d / 2}(2|\vec{u}-\vec{v}|)}{(|\vec{u}-\vec{v}|)^{d / 2}}
$$

e.g. 1d: ~ sine-kernel

- similarly edge kernel: Airy, local density approx (phys.) breaks down, only from RMT!

Fermions in $2 d$ rotating trap / in \vec{B}-field

- rotating trap with harmonic potential ($3 d$ confined to $2 d$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m} \vec{p}^{2}+\frac{1}{2} m \omega^{2} \vec{r}^{2}-\Omega \vec{e}_{3} \cdot \vec{r} \times \vec{p}, \vec{p}_{j}=-i \hbar \vec{\nabla}_{j}
$$

in rotating frame $\sim \Omega L_{3}$ angular momentum

Fermions in $2 d$ rotating trap / in \vec{B}-field

- rotating trap with harmonic potential (3d confined to $2 d$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m} \vec{p}^{2}+\frac{1}{2} m \omega^{2} \vec{r}^{2}-\Omega \vec{e}_{3} \cdot \vec{r} \times \vec{p}, \vec{p}_{j}=-i \hbar \vec{\nabla}_{j}
$$

in rotating frame $\sim \Omega L_{3}$ angular momentum
\Leftrightarrow free e^{-}in magnetic field $B=m \omega / q$ (Landau: $\omega=\Omega$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m}\left(\vec{p}-m \omega \vec{e}_{3} \times \vec{r}\right)^{2}+(\omega-\Omega) \vec{e}_{3} \cdot \vec{r} \times \vec{p}
$$

(lowest) Landau levels (L)LL

Fermions in $2 d$ rotating trap / in \vec{B}-field

- rotating trap with harmonic potential (3d confined to $2 d$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m} \vec{p}^{2}+\frac{1}{2} m \omega^{2} \vec{r}^{2}-\Omega \vec{e}_{3} \cdot \vec{r} \times \vec{p}, \vec{p}_{j}=-i \hbar \vec{\nabla}_{j}
$$

in rotating frame $\sim \Omega L_{3}$ angular momentum
\Leftrightarrow free e^{-}in magnetic field $B=m \omega / q$ (Landau: $\omega=\Omega$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m}\left(\vec{p}-m \omega \vec{e}_{3} \times \vec{r}\right)^{2}+(\omega-\Omega) \vec{e}_{3} \cdot \vec{r} \times \vec{p}
$$

(lowest) Landau levels (L)LL

- eigenvalues $E_{n_{1}, n_{2}}=\hbar \omega+\hbar(\omega-\Omega) n_{1}+\hbar(\omega+\Omega) n_{2}$ $n_{1}, n_{2} \in \mathbb{N}$, here $n_{2}=0$ LLL

Fermions in $2 d$ rotating trap / in \vec{B}-field

- rotating trap with harmonic potential (3d confined to $2 d$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m} \vec{p}^{2}+\frac{1}{2} m \omega^{2} \vec{r}^{2}-\Omega \vec{e}_{3} \cdot \vec{r} \times \vec{p}, \vec{p}_{j}=-i \hbar \vec{\nabla}_{j}
$$

in rotating frame $\sim \Omega L_{3}$ angular momentum
\Leftrightarrow free e^{-}in magnetic field $B=m \omega / q$ (Landau: $\omega=\Omega$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m}\left(\vec{p}-m \omega \vec{e}_{3} \times \vec{r}\right)^{2}+(\omega-\Omega) \vec{e}_{3} \cdot \vec{r} \times \vec{p}
$$

(lowest) Landau levels (L)LL

- eigenvalues $E_{n_{1}, n_{2}}=\hbar \omega+\hbar(\omega-\Omega) n_{1}+\hbar(\omega+\Omega) n_{2}$ $n_{1}, n_{2} \in \mathbb{N}$, here $n_{2}=0$ LLL
- 2d complex coordinates $z=x+i y$: eigenfunctions $(m=\omega=\hbar=1)$

$$
\Phi_{n_{1}, n_{2}}(x, y) \sim e^{|z|^{2} / 2} \bar{\partial}_{z}^{n_{1}} \partial_{z}^{n_{2}} e^{-|z|^{2}}
$$

Fermions in $2 d$ rotating trap / in \vec{B}-field

- rotating trap with harmonic potential ($3 d$ confined to $2 d$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m} \vec{p}^{2}+\frac{1}{2} m \omega^{2} \vec{r}^{2}-\Omega \vec{e}_{3} \cdot \vec{r} \times \vec{p}, \vec{p}_{j}=-i \hbar \vec{\nabla}_{j}
$$

in rotating frame $\sim \Omega L_{3}$ angular momentum
\Leftrightarrow free e^{-}in magnetic field $B=m \omega / q$ (Landau: $\omega=\Omega$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m}\left(\vec{p}-m \omega \vec{e}_{3} \times \vec{r}\right)^{2}+(\omega-\Omega) \vec{e}_{3} \cdot \vec{r} \times \vec{p}
$$

(lowest) Landau levels (L)LL

- eigenvalues $E_{n_{1}, n_{2}}=\hbar \omega+\hbar(\omega-\Omega) n_{1}+\hbar(\omega+\Omega) n_{2}$ $n_{1}, n_{2} \in \mathbb{N}$, here $n_{2}=0$ LLL
- $2 d$ complex coordinates $z=x+i y$: eigenfunctions ($m=\omega=\hbar=1$)

$$
\Phi_{n_{1}, n_{2}}(x, y) \sim e^{|z|^{2} / 2} \bar{\partial}_{z}^{n_{1}} \partial_{z}^{n_{2}} e^{-|z|^{2}}, \text { for } n_{2}=0 \rightarrow \text { RMT }
$$

Fermions in $2 d$ rotating trap / in \vec{B}-field

- rotating trap with harmonic potential (3d confined to $2 d$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m} \vec{p}^{2}+\frac{1}{2} m \omega^{2} \vec{r}^{2}-\Omega \vec{e}_{3} \cdot \vec{r} \times \vec{p}, \vec{p}_{j}=-i \hbar \vec{\nabla}_{j}
$$

in rotating frame $\sim \Omega L_{3}$ angular momentum
\Leftrightarrow free e^{-}in magnetic field $B=m \omega / q$ (Landau: $\omega=\Omega$)

$$
\mathcal{H}_{i}(\vec{p}, \vec{r})=\frac{1}{2 m}\left(\vec{p}-m \omega \vec{e}_{3} \times \vec{r}\right)^{2}+(\omega-\Omega) \vec{e}_{3} \cdot \vec{r} \times \vec{p}
$$

(lowest) Landau levels (L)LL

- eigenvalues $E_{n_{1}, n_{2}}=\hbar \omega+\hbar(\omega-\Omega) n_{1}+\hbar(\omega+\Omega) n_{2}$ $n_{1}, n_{2} \in \mathbb{N}$, here $n_{2}=0$ LLL
- $2 d$ complex coordinates $z=x+i y$: eigenfunctions ($m=\omega=\hbar=1$) $\Phi_{n_{1}, n_{2}}(x, y) \sim e^{|z|^{2} / 2} \bar{\partial}_{z}^{n_{1}} \partial_{z}^{n_{2}} e^{-|z|^{2}}$, for $n_{2}=0 \rightarrow$ RMT
\neq Hermite in $\mathbb{R}^{2}: e^{-\left(x^{2}+y^{2}\right) / 2} H_{k}(x) H_{l}(y)$

Map to complex Ginibre ensemble GinUE

- bound states: $0 \leq \Omega<\omega=1$, no degeneracy
- N Fermions, fill up energies $E_{n_{1}, n_{2}}$:
choose Ω s.th. first N levels $E_{n_{1}, 0}<E_{0,1}$ for $n_{1}=0,1, \ldots, N-1 \Leftrightarrow 1-\frac{2}{N}<\Omega<1$

Map to complex Ginibre ensemble GinUE

- bound states: $0 \leq \Omega<\omega=1$, no degeneracy
- N Fermions, fill up energies $E_{n_{1}, n_{2}}$:
choose Ω s.th. first N levels $E_{n_{1}, 0}<E_{0,1}$ for

$$
n_{1}=0,1, \ldots, N-1 \Leftrightarrow 1-\frac{2}{N}<\Omega<1
$$

\Rightarrow eigenfunctions $\Phi_{n_{1}, 0}(x, y) \sim z^{n_{1}} e^{-|z|^{2} / 2} n_{1}=0, \ldots, N-1$

Map to complex Ginibre ensemble GinUE

- bound states: $0 \leq \Omega<\omega=1$, no degeneracy
- N Fermions, fill up energies $E_{n_{1}, n_{2}}$:
choose Ω s.th. first N levels $E_{n_{1}, 0}<E_{0,1}$ for

$$
n_{1}=0,1, \ldots, N-1 \Leftrightarrow 1-\frac{2}{N}<\Omega<1
$$

\Rightarrow eigenfunctions $\Phi_{n_{1}, 0}(x, y) \sim z^{n_{1}} e^{-|z|^{2} / 2} n_{1}=0, \ldots, N-1$

- N-particle ground state wave function: Slater determinant

$$
\Psi_{0}\left(z_{1}, \ldots, z_{N}\right) \sim \operatorname{det}\left[z_{i}^{j-1} e^{-\left|z_{i}\right|^{2} / 2}\right]_{i, j=1}^{N}=e^{-\frac{1}{2} \sum_{i=1}^{N}\left|z_{i}\right|^{2}} \Delta_{N}(\{z\})
$$

- $\left|\Psi_{0}\right|^{2}=$ joint density of GinUE, determinantal point process [Lacroix-A-chez-Toine, Majumdar, Schehr '19]

Map to complex Ginibre ensemble GinUE

- bound states: $0 \leq \Omega<\omega=1$, no degeneracy
- N Fermions, fill up energies $E_{n_{1}, n_{2}}$:
choose Ω s.th. first N levels $E_{n_{1}, 0}<E_{0,1}$ for

$$
n_{1}=0,1, \ldots, N-1 \Leftrightarrow 1-\frac{2}{N}<\Omega<1
$$

\Rightarrow eigenfunctions $\Phi_{n_{1}, 0}(x, y) \sim z^{n_{1}} e^{-|z|^{2} / 2} n_{1}=0, \ldots, N-1$

- N-particle ground state wave function: Slater determinant

$$
\Psi_{0}\left(z_{1}, \ldots, z_{N}\right) \sim \operatorname{det}\left[z_{i}^{j-1} e^{-\left|z_{i}\right|^{2} / 2}\right]_{i, j=1}^{N}=e^{-\frac{1}{2} \sum_{i=1}^{N}\left|z_{i}\right|^{2}} \Delta_{N}(\{z\})
$$

- $\left|\Psi_{0}\right|^{2}=$ joint density of GinUE, determinantal point process [Lacroix-A-chez-Toine, Majumdar, Schehr ' ${ }^{19]}$
- higher LL [Smith et al. '22], cf. [Haimi, Hedenmalm '13]

Why is the map to RMT useful?

Why is the map to RMT useful?

- obtain $R_{1}(z)$ circular law, $R_{2}\left(z_{1}, z_{2}\right), \ldots$

Why is the map to RMT useful?

- obtain $R_{1}(z)$ circular law, $R_{2}\left(z_{1}, z_{2}\right), \ldots$
- physics questions:
- $\mathbb{E} \mathcal{N}_{A} \sim N$ mean number of Fermions \mathcal{N}_{A} in area A
$-\operatorname{Var} \mathcal{N}_{A} \sim \sqrt{N}$ Variance, higher order cumulants

Why is the map to RMT useful?

- obtain $R_{1}(z)$ circular law, $R_{2}\left(z_{1}, z_{2}\right), \ldots$
- physics questions:
- $\mathbb{E} \mathcal{N}_{A} \sim N$ mean number of Fermions \mathcal{N}_{A} in area A
- $\operatorname{Var} \mathcal{N}_{A} \sim \sqrt{N}$ Variance, higher order cumulants
- Renyi entanglement entropy
$S_{q}(N, A) \equiv \frac{1}{1-q} \ln \left[\operatorname{Tr}\left(\left(\rho_{A}\right)^{q}\right)\right] \quad q>1 \Rightarrow$ von Neumann
$\rho_{A}=\operatorname{Tr}_{A C}[\rho]$ partial trace over complement $A^{C}=\mathbb{C} \backslash A$, or express with overlap $\mathbb{A}_{k l}=\int_{A} d^{2} z \Phi_{k}(z) \overline{\Phi_{/}(z)}$

$$
S_{q}(N, A)=\frac{1}{1-q} \operatorname{Tr}\left[\ln \left(\mathbb{A}^{q}+(I-\mathbb{A})^{q}\right)\right] \text { KKich }{ }^{\prime 06]}
$$

Results for GinUE [Lacroix-A-chez-Toine, Majumdar, Schehr'19]

- global density cirular law on disc of radius \sqrt{N} (\neq cup)

Results for GinUE [Lacroix-A-chez-Toine, Maumdar, Schentr' '19]

- global density cirular law on disc of radius \sqrt{N} (\neq cup) choice area $A=D_{R}$ centred disc of radius $R \sim \sqrt{N}$
- mean $\mathbb{E} \mathcal{N}_{A} \sim \operatorname{area}(R) \sim R^{2}$

Results for GinUE [Lacroix-A-chez-Toine, Maumdar, Schentr' '19]

- global density cirular law on disc of radius \sqrt{N} (\neq cup) choice area $A=D_{R}$ centred disc of radius $R \sim \sqrt{N}$
- mean $\mathbb{E} \mathcal{N}_{A} \sim \operatorname{area}(R) \sim R^{2}$
- variance $\operatorname{Var} \mathcal{N}_{A} \sim \partial A \sim R$ "holography"

Results for GinUE [Lacroix-A-chez-Toine, Maumdar, Schentr' '19]

- global density cirular law on disc of radius \sqrt{N} (\neq cup) choice area $A=D_{R}$ centred disc of radius $R \sim \sqrt{N}$
- mean $\mathbb{E} \mathcal{N}_{A} \sim \operatorname{area}(R) \sim R^{2}$
- variance $\operatorname{Var} \mathcal{N}_{A} \sim \partial A \sim R$ "holography"
- entropy $S_{q}(N, A)=\alpha_{q} \operatorname{Var} \mathcal{N}_{A}, q \geq 1$ (bulk only!)

Results for GinUE [Lacroix-A-chez-Toine, Majumdar, Schehr'19]

- global density cirular law on disc of radius \sqrt{N} (\neq cup) choice area $A=D_{R}$ centred disc of radius $R \sim \sqrt{N}$
- mean $\mathbb{E} \mathcal{N}_{A} \sim \operatorname{area}(R) \sim R^{2}$
- variance $\operatorname{Var} \mathcal{N}_{A} \sim \partial A \sim R$ "holography"
- entropy $S_{q}(N, A)=\alpha_{q} \operatorname{Var} \mathcal{N}_{A}, q \geq 1$ (bulk only!)
- hyperuniformity: $\lim _{N \rightarrow \infty} \operatorname{Var} \mathcal{N}_{A} / \mathbb{E} \mathcal{N}_{A}=0$

Results for GinUE [Lacroix-A-chez-Toine, Majumdar, Schehr'19]

- global density cirular law on disc of radius \sqrt{N} (\neq cup) choice area $A=D_{R}$ centred disc of radius $R \sim \sqrt{N}$
- mean $\mathbb{E} \mathcal{N}_{A} \sim \operatorname{area}(R) \sim R^{2}$
- variance $\operatorname{Var} \mathcal{N}_{A} \sim \partial A \sim R$ "holography"
- entropy $S_{q}(N, A)=\alpha_{q} \operatorname{Var} \mathcal{N}_{A}, q \geq 1$ (bulk only!)
- hyperuniformity: $\lim _{N \rightarrow \infty} \operatorname{Var} \mathcal{N}_{A} / \mathbb{E} \mathcal{N}_{A}=0$

Q1 How general is the variance in non-Gaussian RMT universal? (e.g. anharmonic trap?)
Q2 Var $\sim \partial A$ holds for general A, general RMT?

Complex, quaternion and real Ginibre ensemble

- GinUE (left) vs. GinSE (middle) vs. GinOE (right): uniform vs. depletion vs. accumulation on \mathbb{R}
- spectral correlations
$R_{k}\left(z_{1}, \ldots, z_{k}\right)$ determinantal vs. Pfaffian

Complex, quaternion and real Ginibre ensemble

- GinUE (left) vs. GinSE (middle) vs. GinOE (right): uniform vs. depletion vs. accumulation on \mathbb{R}
- spectral correlations
$R_{k}\left(z_{1}, \ldots, z_{k}\right)$ determinantal vs. Pfaffian
- limiting local R_{k} :
- agree in bulk \& at edge = universal
- differ along \mathbb{R}

Complex, quaternion and real Ginibre ensemble

- GinUE (left) vs. GinSE (middle) vs. GinOE (right): uniform vs. depletion vs. accumulation on \mathbb{R}
- spectral correlations
$R_{k}\left(z_{1}, \ldots, z_{k}\right)$ determinantal vs. Pfaffian
- limiting local R_{k} :
- agree in bulk \& at edge = universal
- differ along \mathbb{R}
- study further examples: global density \neq const.
- normal matrices $\exp [-V(|z|)]$
- truncated $U(N+M)$ Haar distributed $\rightarrow U(N)$
- products of m Ginibre matrices

Mean and Variance - finite N \& general $V(|z|)$

- mean number of eigenvalues

$$
\mathbb{E} \mathcal{N}_{R} \equiv \int_{D_{R}} d^{2} z R_{1, N}(z)
$$

- variance

$$
\operatorname{Var} \mathcal{N}_{R} \equiv \int_{D_{R}} d^{2} z \int_{\mathbb{C} \backslash D_{R}} d^{2} u\left|K_{N}(z, u)\right|^{2} \quad \text { GinUE/SE class }
$$

Mean and Variance - finite N \& general $V(|z|)$

- mean number of eigenvalues

$$
\mathbb{E} \mathcal{N}_{R} \equiv \int_{D_{R}} d^{2} z R_{1, N}(z)
$$

- variance

$$
\operatorname{Var} \mathcal{N}_{R} \equiv \int_{D_{R}} d^{2} z \int_{\mathbb{C} \backslash D_{R}} d^{2} u\left|K_{N}(z, u)\right|^{2} \quad \text { GinUE/SE class }
$$

Proposition [LMS '18; A, Byun, Ebke '22]: For $V(|z|)$ admissible: $\mathcal{C}^{2}, V(|z|) \gg \ln |z|$ at $|z| \gg 1, \Delta_{z} V>0$

$$
\begin{aligned}
& \mathbb{E} \mathcal{N}_{R}=\sum_{j=0}^{N-1} h_{j}(R) h_{j}^{-1} \text { GinUE }(\operatorname{GinSE} j \rightarrow 2 j+1) \\
& \hline \operatorname{Var}_{R}=\sum_{j=0}^{N-1} h_{j}(R) h_{j}^{-1}\left(1-h_{j}(R) h_{j}^{-1}\right) \text { ditto } \\
& \text { partial moments } h_{j}(R)=\int_{D_{R}} d^{2} z|z|^{2 j} w(z)
\end{aligned}
$$

Mean and Variance - finite N \& general $V(|z|)$

- mean number of eigenvalues

$$
\mathbb{E} \mathcal{N}_{R} \equiv \int_{D_{R}} d^{2} z R_{1, N}(z)
$$

- variance

$$
\operatorname{Var} \mathcal{N}_{R} \equiv \int_{D_{R}} d^{2} z \int_{\mathbb{C} \backslash D_{R}} d^{2} u\left|K_{N}(z, u)\right|^{2} \quad \text { GinUE/SE class }
$$

Proposition [LMS'18; A, Byun, Ebke '22]: For $V(|z|)$ admissible: $\mathcal{C}^{2}, V(|z|) \gg \ln |z|$ at $|z| \gg 1, \Delta_{z} V>0$

$$
\begin{aligned}
& \mathbb{E} \mathcal{N}_{R}=\sum_{j=0}^{N-1} h_{j}(R) h_{j}^{-1} \text { GinUE }(\operatorname{GinSE} j \rightarrow 2 j+1) \\
& \hline \operatorname{Var} \mathcal{N}_{R}=\sum_{j=0}^{N-1} h_{j}(R) h_{j}^{-1}\left(1-h_{j}(R) h_{j}^{-1}\right) \text { ditto } \\
& \text { partial moments } h_{j}(R)=\int_{D_{R}} d^{2} z|z|^{2 j} w(z)
\end{aligned}
$$

- example GinUE:

$$
\begin{aligned}
& K_{N}(z, u)=e^{-\frac{1}{2}|z|^{2}-\frac{1}{2}|u|^{2}} \sum_{j=0}^{N-1} \frac{1}{j!}(z \bar{u})^{j} \Rightarrow \text { circular law } \\
& \Rightarrow h_{j}(R) / h_{j}=\gamma\left(j+1, N R^{2}\right) / j!
\end{aligned}
$$

Full counting statistics - finite N \& general $V(|z|)$

- higher order cumulants: centred generating function

$$
\ln \left[\mathbb{E} \exp \left[-\mu\left(\mathcal{N}_{R}-\mathbb{E} \mathcal{N}_{R}\right)\right]\right] \equiv \sum_{p=2}^{\infty} \frac{(-1)^{p}}{p!} \mu^{p} \mathbb{E}_{c} \mathcal{N}_{R}^{p}
$$

Full counting statistics - finite N \& general $V(|z|)$

- higher order cumulants: centred generating function

$$
\ln \left[\mathbb{E} \exp \left[-\mu\left(\mathcal{N}_{R}-\mathbb{E} \mathcal{N}_{R}\right)\right]\right] \equiv \sum_{p=2}^{\infty} \frac{(-1)^{p}}{p!} \mu^{p} \mathbb{E}_{c} \mathcal{N}_{R}^{p}
$$

Proposition [Lacroix-a-chez-Toine, Majumdar, Schehr '18 GinUE;
A, Byun, Ebke, Schehr '23 GinSE]
For $V(|z|)$ admissable the cumulants read:

$$
\mathbb{E}_{c} \mathcal{N}_{R}^{p}=(-1)^{p+1} \sum_{j=0}^{N-1} \operatorname{Li}_{1-p}\left(1-h_{j} / h_{j}(R)\right)
$$

for GinUE and index $j \rightarrow 2 j+1$ for GinSE class,
where $\operatorname{Li}_{q}(x)=\sum_{k=1}^{\infty} k^{-q} X^{k}$ is the polylogarithm.

The large- N Limit: Global density and scaling limits

eigenvalues of GinUE

- rescaled weight $w(z)=e^{-N V(|z|)}, V(|z|)$ admissible: global density $\rho(z) \equiv \lim _{N \rightarrow \infty} R_{1, N}(z)=\frac{2}{\beta} \Delta_{z} V(|z|) \cdot \chi_{D}$
Frostman's equilibrium measure on droplet D, for Ginibre $V(|z|)=|z|^{2}$ circular law on disc $D_{R=1}$
- scaling regimes for variance of particles in D_{R}, radius R
- origin limit: $R=t / N^{\delta}$ non-universal
- bulk: $0<R<1$ fixed
- edge: $R=1-\frac{S}{c \sqrt{N}} \rightarrow 1, S$ fixed

Mean and Variance - 3 scaling regimes

- origin (left) vs. bulk (middle) vs. edge (right) scaling

The large- N Limit: Universal Bulk and Edge

Theorem [LMS' '19 / A, Byun, Ebke '22]
For GinUE / GinSE class ($\beta=2 / 4$) with V admissible:
(i) (Bulk) For $R \in(0,1)$ fixed, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(R)}} \operatorname{Var} \mathcal{N}_{R}=\frac{2 R}{\sqrt{\pi}} .
$$

The large- N Limit: Universal Bulk and Edge

Theorem [LMS' 19 / A, Byun, Ebke '22]
For GinUE / GinSE class ($\beta=2 / 4$) with V admissible:
(i) (Bulk) For $R \in(0,1)$ fixed, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(R)}} \operatorname{Var} \mathcal{N}_{R}=\frac{2 R}{\sqrt{\pi}} .
$$

(ii) (Edge) For $S \in \mathbb{R}$, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(1)}} \operatorname{Var} \mathcal{N}_{R}\left(R=1-\frac{S}{\sqrt{2 \Delta_{z} V(1) N}}\right)=\frac{2}{\sqrt{\pi}} f(S),
$$

where

$$
f(S)=\sqrt{2 \pi} \int_{-\infty}^{S} \frac{\operatorname{erfc}(t) \operatorname{erfc}(-t)}{4} d t
$$

The large- N Limit: Universal Bulk and Edge

Theorem [LMS' 19 / A, Byun, Ebke '22]
For GinUE / GinSE class $(\beta=2 / 4)$ with V admissible:
(i) (Bulk) For $R \in(0,1)$ fixed, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(R)}} \operatorname{Var} \mathcal{N}_{R}=\frac{2 R}{\sqrt{\pi}} .
$$

(ii) (Edge) For $S \in \mathbb{R}$, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(1)}} \operatorname{Var} \mathcal{N}_{R}\left(R=1-\frac{S}{\sqrt{2 \Delta_{z} V(1) N}}\right)=\frac{2}{\sqrt{\pi}} f(S)
$$

where

$$
f(S)=\sqrt{2 \pi} \int_{-\infty}^{S} \frac{\operatorname{erfc}(t) \operatorname{erfc}(-t)}{4} d t
$$

- origin non-universal, cf. [Shirai '06]
- proof idea: saddle point $h_{j}(r)=2 \int_{0}^{R} d r r^{2 j+1} e^{-N V(r)}$

The large- N Limit: Universal Bulk and Edge

Theorem [LMS' 19 / A, Byun, Ebke '22]
For GinUE / GinSE class ($\beta=2 / 4$) with V admissible:
(i) (Bulk) For $R \in(0,1)$ fixed, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(R)}} \operatorname{Var} \mathcal{N}_{R}=\frac{2 R}{\sqrt{\pi}} .
$$

(ii) (Edge) For $S \in \mathbb{R}$, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(1)}} \operatorname{Var} \mathcal{N}_{R}\left(R=1-\frac{S}{\sqrt{2 \Delta_{z} V(1) N}}\right)=\frac{2}{\sqrt{\pi}} f(S)
$$

where

$$
f(S)=\sqrt{2 \pi} \int_{-\infty}^{S} \frac{\operatorname{erfc}(t) \operatorname{erfc}(-t)}{4} d t
$$

- origin non-universal, cf. [Shirai '06]
- proof idea: saddle point $h_{j}(r)=2 \int_{0}^{R} d r r^{2 j+1} e^{-N V(r)}$
- limiting cumulants all of same order, \neq Gauss, Poisson [A,Byun, Ebke, Schehr '23], cf. [Ameur, Charlier+Cronvall, Lenells+Moreillon]

The large- N Limit: Universal Bulk and Edge

Theorem [LMS' 19 / A, Byun, Ebke '22]
For GinUE / GinSE class $(\beta=2 / 4)$ with V admissible:
(i) (Bulk) For $R \in(0,1)$ fixed, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(R)}} \operatorname{Var} \mathcal{N}_{R}=\frac{2 R}{\sqrt{\pi}} .
$$

(ii) (Edge) For $S \in \mathbb{R}$, we have

$$
\lim _{N \rightarrow \infty} \frac{\beta}{\sqrt{N \rho(1)}} \operatorname{Var} \mathcal{N}_{R}\left(R=1-\frac{S}{\sqrt{2 \Delta_{z} V(1) N}}\right)=\frac{2}{\sqrt{\pi}} f(S)
$$

where

$$
f(S)=\sqrt{2 \pi} \int_{-\infty}^{S} \frac{\operatorname{erfc}(t) \operatorname{erfc}(-t)}{4} d t
$$

- origin non-universal, cf. [Shirai '06]
- proof idea: saddle point $h_{j}(r)=2 \int_{0}^{R} d r r^{2 j+1} e^{-N V(r)}$
- limiting cumulants all of same order, \neq Gauss, Poisson [A,Byun, Ebke, Schehr '23], cf. [Ameur, Charlier+Cronvall, Lenells+Moreillon]
- expect same for GinOE: origin at large R, numerics

Comparison GinOE/UE/SE: limiting mean at origin

	GinOE	GinUE	GinSE
$\mathbb{E N} \mathcal{R}_{R}$	$R^{2}+\frac{1}{2}-\frac{1}{2} e^{2 R^{2}} \operatorname{erf(}(\sqrt{2} R)$	R^{2}	$R^{2}-\frac{1}{4}+\frac{1}{4} e^{-4 R^{2}}$
$R \rightarrow 0$	$\sqrt{\frac{2}{\pi}} R+O\left(R^{3}\right)$	R^{2}	$2 R^{4}+O\left(R^{6}\right)$
$R \rightarrow \infty$	$R^{2}+\frac{1}{2}+O\left(\frac{1}{R}\right)$	R^{2}	$R^{2}-\frac{1}{4}+O\left(e^{-4 R^{2}}\right)$

Universality: Product of m Random Matrices

- top: global density for product of $m=1,3,10$ GinUE $\rho(z)=\frac{1}{m}|z|^{\frac{2}{m}-2}$ divergence at origin

Universality: Product of m Random Matrices

- top: global density for product of $m=1,3,10$ GinUE $\rho(z)=\frac{1}{m}|z|^{\frac{2}{m}-2}$ divergence at origin
- bottom: lim $\operatorname{Var} \mathcal{N}_{R}$ in bulk (line) \& edge regime (dotted) vs. finite $N=500$ (red) and 10 k samples (blue stars)

Universality: Product of m Random Matrices

- top: global density for product of $m=1,3,10$ GinUE $\rho(z)=\frac{1}{m}|z|^{\frac{2}{m}-2}$ divergence at origin
- bottom: lim $\operatorname{Var} \mathcal{N}_{R}$ in bulk (line) \& edge regime (dotted) vs. finite $N=500$ (red) and 10 k samples (blue stars)
- origin behaviour $\sim(\log T)^{m-1} T$ not visible, $R=T / N^{m / 2}$

Universality: Product of m Random Matrices

- top: global density for product of $m=1,3,10$ GinUE $\rho(z)=\frac{1}{m}|z|^{\frac{2}{m}-2}$ divergence at origin
- bottom: lim $\operatorname{Var} \mathcal{N}_{R}$ in bulk (line) \& edge regime (dotted) vs. finite $N=500$ (red) and 10 k samples (blue stars)
- origin behaviour $\sim(\log T)^{m-1} T$ not visible, $R=T / N^{m / 2}$
- similar plots for quaternionic matrices

Universality: Truncated Unitary Symplectic Matrices

- top: global density for truncated unitary symplectic matrices $\operatorname{USp}(2 N(1+c)+1) \rightarrow \operatorname{USp}(2 N), c=0.2,0.8,2.0$ $\rho(z)=\frac{c(1+c)}{\left(1+c-|z|^{2}\right)^{2}}$ spike at edge

Universality: Truncated Unitary Symplectic Matrices

- top: global density for truncated unitary symplectic matrices $\operatorname{USp}(2 N(1+c)+1) \rightarrow U S p(2 N), c=0.2,0.8,2.0$ $\rho(z)=\frac{c(1+c)}{\left(1+c-|z|^{2}\right)^{2}}$ spike at edge
- bottom: lim $\operatorname{Var} \mathcal{N}_{R}$ in bulk (line) \& edge regime (dotted) vs. finite $N=250$ (red) and 10 k samples (blue stars)
- origin behaviour $\sim T^{4}$ is visible, $R=T / N^{1 / 2}$
- similar plots for unitary matrices

Summary \& Open Questions

- N non-interacting Fermions in harmonic trap in $1 d /$ in $2 d$ in rotating trap \Leftrightarrow with \vec{B} mapped to Gaussian RMT with \mathbb{R} / \mathbb{C} eigenvalues
- universal asymptotic \forall cumulants in GinUE class \& GinSE class for V admissible in bulk and edge limit
- bulk relation entropy - variance beyond Gaussian RMT
- real matrices GinOE: mean and variance at origin $\sqrt{ }$
\rightarrow bulk (and edge) conjectured to be universal
- variance $\sim \partial A$ for more general A in elliptic GinUE \longrightarrow talk by Leslie Molag

